Upload ViT_SITS_ONLY.yaml
Browse files- ViT_SITS_ONLY.yaml +95 -0
ViT_SITS_ONLY.yaml
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- _self_
|
3 |
+
- global_config
|
4 |
+
|
5 |
+
MODEL:
|
6 |
+
architecture: "ViTFacto"
|
7 |
+
vit_type: "dinov2_small"
|
8 |
+
pretrained: True
|
9 |
+
input_img_res: 264
|
10 |
+
img_res: 252
|
11 |
+
train_max_seq_len: 5
|
12 |
+
val_max_seq_len: 5
|
13 |
+
input_dim: 14
|
14 |
+
patch_size: 14
|
15 |
+
num_classes: 2
|
16 |
+
out_H: 25
|
17 |
+
out_W: 25
|
18 |
+
doy_int_type: "channel"
|
19 |
+
temp_enc_type: "convlstm"
|
20 |
+
kernel_size: [3, 3]
|
21 |
+
n_stack_layers: 1
|
22 |
+
threshold: 0.5
|
23 |
+
flag_lora: True
|
24 |
+
rank_lora: 32
|
25 |
+
alpha_lora: 32.0
|
26 |
+
dropout_lora: 0.1
|
27 |
+
|
28 |
+
SOLVER:
|
29 |
+
num_epochs: 20
|
30 |
+
num_warmup_epochs: 2
|
31 |
+
loss_function: masked_dice_loss
|
32 |
+
lr_scheduler: 'cosine'
|
33 |
+
lr_base: 5e-6
|
34 |
+
lr_min: 1e-7
|
35 |
+
lr_start: 1e-7
|
36 |
+
num_cycles: 1
|
37 |
+
weight_decay: 0.01
|
38 |
+
accumulate_grad_batches: 3
|
39 |
+
interval: "epoch"
|
40 |
+
|
41 |
+
### Leveraging RAW *.npy files ###
|
42 |
+
DATASETS:
|
43 |
+
kwargs:
|
44 |
+
mean_file: "${paths.bands_mean}"
|
45 |
+
std_file: "${paths.bands_std}"
|
46 |
+
with_loc: False
|
47 |
+
with_doy: True
|
48 |
+
# bands: possibility to specify the selected bands.
|
49 |
+
train:
|
50 |
+
paths: "${paths.split}"
|
51 |
+
base_dir: ["${paths.pos_sits}", ${paths.neg_sits}"]
|
52 |
+
label_dir: "${paths.label}"
|
53 |
+
batch_size: 12
|
54 |
+
num_workers: 8
|
55 |
+
|
56 |
+
eval:
|
57 |
+
paths: "${paths.split}"
|
58 |
+
base_dir: ["${paths.pos_sits}", ${paths.neg_sits}"]
|
59 |
+
label_dir: "${paths.label}"
|
60 |
+
batch_size: 12
|
61 |
+
num_workers: 8
|
62 |
+
|
63 |
+
test:
|
64 |
+
|
65 |
+
### Leveraging Hf parquet files ###
|
66 |
+
#DATASETS:
|
67 |
+
# mode: "huggingface"
|
68 |
+
# kwargs:
|
69 |
+
# mean_file: "${paths.bands_mean}"
|
70 |
+
# std_file: "${paths.bands_std}"
|
71 |
+
# with_loc: False
|
72 |
+
# with_doy: True
|
73 |
+
# bands: possibility to specify the selected bands.
|
74 |
+
# train:
|
75 |
+
# data_dir: "${paths.hf_data}"
|
76 |
+
# batch_size: 24
|
77 |
+
# num_workers: 8
|
78 |
+
#
|
79 |
+
# eval:
|
80 |
+
# data_dir: "${paths.hf_data}"
|
81 |
+
# batch_size: 24
|
82 |
+
# num_workers: 8
|
83 |
+
|
84 |
+
CHECKPOINT:
|
85 |
+
load_from_checkpoint:
|
86 |
+
experiment_name: "ViT_SITS_ONLY"
|
87 |
+
save_path: "./results/models"
|
88 |
+
train_metrics_steps: 200
|
89 |
+
save_steps: 10000
|
90 |
+
wandb_project: "${wandb.project}"
|
91 |
+
wandb_user: "${wandb.user}"
|
92 |
+
|
93 |
+
SET-UP:
|
94 |
+
seed: 42
|
95 |
+
local_device_ids: [0]
|