File size: 1,681 Bytes
de87165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
license: apache-2.0
base_model:
- nvidia/Mistral-NeMo-Minitron-8B-Instruct
tags:
- OpenArc
- OpenVINO
- Intel
---

My Project [OpenArc](https://github.com/SearchSavior/OpenArc), an inference engine for OpenVINO, now supports this model and serves inference over OpenAI compatible endpoints for text to text *and* text with vision!

We have a growing Discord community of others interested in using Intel for AI/ML. 

[![Discord](https://img.shields.io/discord/1341627368581628004?logo=Discord&logoColor=%23ffffff&label=Discord&link=https%3A%2F%2Fdiscord.gg%2FmaMY7QjG)](https://discord.gg/maMY7QjG)

- Find documentation on the Optimum-CLI export process [here](https://huggingface.co/docs/optimum/main/en/intel/openvino/export)
- Use my HF space [Echo9Zulu/Optimum-CLI-Tool_tool](https://huggingface.co/spaces/Echo9Zulu/Optimum-CLI-Tool_tool) to build commands and execute locally

## This repo contains OpenVINO quantizations of nvidia/Mistral-NeMo-Minitron-8B-Instruct.

I reccomend starting with **Mistral-NeMo-Minitron-8B-Instruct-int4_asym-awq-se-ov**

To download individual models from this repo use the provided snippet:

```
from huggingface_hub import snapshot_download

repo_id = "Echo9Zulu/Mistral-NeMo-Minitron-8B-Instruct-OpenVINO"     

# Choose the weights you want
repo_directory = "Mistral-NeMo-Minitron-8B-Instruct-int4_asym-awq-se-ov"

# Where you want to save it
local_dir = "./Echo9Zulu_Mistral-NeMo-Minitron-8B-Instruct/Mistral-NeMo-Minitron-8B-Instruct-int4_asym-awq-se-ov"

snapshot_download(
    repo_id=repo_id,
    allow_patterns=[f"{repo_directory}/*"], 
    local_dir=local_dir,
    local_dir_use_symlinks=True
) 

print("Download complete!")
```