Echo9Zulu commited on
Commit
ac75b4f
·
verified ·
1 Parent(s): abb4064

Upload 12 files

Browse files
.gitattributes CHANGED
@@ -35,3 +35,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  Mistral-NeMo-Minitron-8B-Instruct-int4_asym-awq-se-ov/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
  Mistral-NeMo-Minitron-8B-Instruct-int4_asym-ov/tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  Mistral-NeMo-Minitron-8B-Instruct-int4_asym-awq-se-ov/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
  Mistral-NeMo-Minitron-8B-Instruct-int4_asym-ov/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
+ Mistral-NeMo-Minitron-8B-Instruct-int4_asym-gptq-ov/tokenizer.json filter=lfs diff=lfs merge=lfs -text
Mistral-NeMo-Minitron-8B-Instruct-int4_asym-gptq-ov/config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation": "silu",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 11520,
14
+ "max_position_embeddings": 8192,
15
+ "model_type": "mistral",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 40,
18
+ "num_key_value_heads": 8,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.51.3",
25
+ "use_cache": true,
26
+ "vocab_size": 131072
27
+ }
Mistral-NeMo-Minitron-8B-Instruct-int4_asym-gptq-ov/generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.51.3"
6
+ }
Mistral-NeMo-Minitron-8B-Instruct-int4_asym-gptq-ov/openvino_config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dtype": "int4",
3
+ "input_info": null,
4
+ "optimum_version": "1.25.2",
5
+ "quantization_config": {
6
+ "all_layers": null,
7
+ "backup_precision": null,
8
+ "bits": 4,
9
+ "dataset": "wikitext2",
10
+ "dtype": "int4",
11
+ "gptq": true,
12
+ "group_size": 128,
13
+ "ignored_scope": null,
14
+ "lora_correction": null,
15
+ "num_samples": null,
16
+ "processor": null,
17
+ "quant_method": "default",
18
+ "ratio": 0.8,
19
+ "scale_estimation": null,
20
+ "sensitivity_metric": null,
21
+ "sym": false,
22
+ "tokenizer": null,
23
+ "trust_remote_code": false
24
+ },
25
+ "save_onnx_model": false,
26
+ "transformers_version": "4.51.3"
27
+ }
Mistral-NeMo-Minitron-8B-Instruct-int4_asym-gptq-ov/openvino_detokenizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3f29ca8f5d47f3ff16501cfbfa42f1e39a8600f6d0e9f85b7890835d53e3e9b
3
+ size 1943696
Mistral-NeMo-Minitron-8B-Instruct-int4_asym-gptq-ov/openvino_detokenizer.xml ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="detokenizer" version="11">
3
+ <layers>
4
+ <layer id="0" name="Parameter_2894600" type="Parameter" version="opset1">
5
+ <data shape="?,?" element_type="i64" />
6
+ <output>
7
+ <port id="0" precision="I64" names="Parameter_2894600">
8
+ <dim>-1</dim>
9
+ <dim>-1</dim>
10
+ </port>
11
+ </output>
12
+ </layer>
13
+ <layer id="1" name="Convert_2894770" type="Convert" version="opset1">
14
+ <data destination_type="i32" />
15
+ <input>
16
+ <port id="0" precision="I64">
17
+ <dim>-1</dim>
18
+ <dim>-1</dim>
19
+ </port>
20
+ </input>
21
+ <output>
22
+ <port id="1" precision="I32">
23
+ <dim>-1</dim>
24
+ <dim>-1</dim>
25
+ </port>
26
+ </output>
27
+ </layer>
28
+ <layer id="2" name="Constant_2894602" type="Const" version="opset1">
29
+ <data element_type="i32" shape="131072" offset="0" size="524288" />
30
+ <output>
31
+ <port id="0" precision="I32">
32
+ <dim>131072</dim>
33
+ </port>
34
+ </output>
35
+ </layer>
36
+ <layer id="3" name="Constant_2894604" type="Const" version="opset1">
37
+ <data element_type="i32" shape="131072" offset="524288" size="524288" />
38
+ <output>
39
+ <port id="0" precision="I32">
40
+ <dim>131072</dim>
41
+ </port>
42
+ </output>
43
+ </layer>
44
+ <layer id="4" name="Constant_2894606" type="Const" version="opset1">
45
+ <data element_type="u8" shape="891120" offset="1048576" size="891120" />
46
+ <output>
47
+ <port id="0" precision="U8">
48
+ <dim>891120</dim>
49
+ </port>
50
+ </output>
51
+ </layer>
52
+ <layer id="5" name="Slice_2894611" type="Const" version="opset1">
53
+ <data element_type="i32" shape="1000" offset="1939696" size="4000" />
54
+ <output>
55
+ <port id="0" precision="I32">
56
+ <dim>1000</dim>
57
+ </port>
58
+ </output>
59
+ </layer>
60
+ <layer id="6" name="VocabDecoder_2894613" type="VocabDecoder" version="extension">
61
+ <data skip_tokens="" />
62
+ <input>
63
+ <port id="0" precision="I32">
64
+ <dim>-1</dim>
65
+ <dim>-1</dim>
66
+ </port>
67
+ <port id="1" precision="I32">
68
+ <dim>131072</dim>
69
+ </port>
70
+ <port id="2" precision="I32">
71
+ <dim>131072</dim>
72
+ </port>
73
+ <port id="3" precision="U8">
74
+ <dim>891120</dim>
75
+ </port>
76
+ <port id="4" precision="I32">
77
+ <dim>1000</dim>
78
+ </port>
79
+ </input>
80
+ <output>
81
+ <port id="5" precision="I32">
82
+ <dim>-1</dim>
83
+ </port>
84
+ <port id="6" precision="I32">
85
+ <dim>-1</dim>
86
+ </port>
87
+ <port id="7" precision="I32">
88
+ <dim>-1</dim>
89
+ </port>
90
+ <port id="8" precision="I32">
91
+ <dim>-1</dim>
92
+ </port>
93
+ <port id="9" precision="U8">
94
+ <dim>-1</dim>
95
+ </port>
96
+ </output>
97
+ </layer>
98
+ <layer id="7" name="FuzeRagged_2894614" type="FuzeRagged" version="extension">
99
+ <input>
100
+ <port id="0" precision="I32">
101
+ <dim>-1</dim>
102
+ </port>
103
+ <port id="1" precision="I32">
104
+ <dim>-1</dim>
105
+ </port>
106
+ <port id="2" precision="I32">
107
+ <dim>-1</dim>
108
+ </port>
109
+ <port id="3" precision="I32">
110
+ <dim>-1</dim>
111
+ </port>
112
+ </input>
113
+ <output>
114
+ <port id="4" precision="I32">
115
+ <dim>-1</dim>
116
+ </port>
117
+ <port id="5" precision="I32">
118
+ <dim>-1</dim>
119
+ </port>
120
+ </output>
121
+ </layer>
122
+ <layer id="8" name="UTF8Validate_2894615" type="UTF8Validate" version="extension">
123
+ <data replace_mode="true" />
124
+ <input>
125
+ <port id="0" precision="I32">
126
+ <dim>-1</dim>
127
+ </port>
128
+ <port id="1" precision="I32">
129
+ <dim>-1</dim>
130
+ </port>
131
+ <port id="2" precision="U8">
132
+ <dim>-1</dim>
133
+ </port>
134
+ </input>
135
+ <output>
136
+ <port id="3" precision="I32">
137
+ <dim>-1</dim>
138
+ </port>
139
+ <port id="4" precision="I32">
140
+ <dim>-1</dim>
141
+ </port>
142
+ <port id="5" precision="U8">
143
+ <dim>-1</dim>
144
+ </port>
145
+ </output>
146
+ </layer>
147
+ <layer id="9" name="StringTensorPack_2894616" type="StringTensorPack" version="opset15">
148
+ <input>
149
+ <port id="0" precision="I32">
150
+ <dim>-1</dim>
151
+ </port>
152
+ <port id="1" precision="I32">
153
+ <dim>-1</dim>
154
+ </port>
155
+ <port id="2" precision="U8">
156
+ <dim>-1</dim>
157
+ </port>
158
+ </input>
159
+ <output>
160
+ <port id="3" precision="STRING" names="Result_2894617,string_output">
161
+ <dim>-1</dim>
162
+ </port>
163
+ </output>
164
+ </layer>
165
+ <layer id="10" name="Result_2894617" type="Result" version="opset1" output_names="Result_2894617,string_output">
166
+ <input>
167
+ <port id="0" precision="STRING">
168
+ <dim>-1</dim>
169
+ </port>
170
+ </input>
171
+ </layer>
172
+ </layers>
173
+ <edges>
174
+ <edge from-layer="0" from-port="0" to-layer="1" to-port="0" />
175
+ <edge from-layer="1" from-port="1" to-layer="6" to-port="0" />
176
+ <edge from-layer="2" from-port="0" to-layer="6" to-port="1" />
177
+ <edge from-layer="3" from-port="0" to-layer="6" to-port="2" />
178
+ <edge from-layer="4" from-port="0" to-layer="6" to-port="3" />
179
+ <edge from-layer="5" from-port="0" to-layer="6" to-port="4" />
180
+ <edge from-layer="6" from-port="7" to-layer="7" to-port="2" />
181
+ <edge from-layer="6" from-port="9" to-layer="8" to-port="2" />
182
+ <edge from-layer="6" from-port="8" to-layer="7" to-port="3" />
183
+ <edge from-layer="6" from-port="6" to-layer="7" to-port="1" />
184
+ <edge from-layer="6" from-port="5" to-layer="7" to-port="0" />
185
+ <edge from-layer="7" from-port="4" to-layer="8" to-port="0" />
186
+ <edge from-layer="7" from-port="5" to-layer="8" to-port="1" />
187
+ <edge from-layer="8" from-port="3" to-layer="9" to-port="0" />
188
+ <edge from-layer="8" from-port="4" to-layer="9" to-port="1" />
189
+ <edge from-layer="8" from-port="5" to-layer="9" to-port="2" />
190
+ <edge from-layer="9" from-port="3" to-layer="10" to-port="0" />
191
+ </edges>
192
+ <rt_info>
193
+ <add_attention_mask value="True" />
194
+ <add_prefix_space />
195
+ <add_special_tokens value="True" />
196
+ <bos_token_id value="1" />
197
+ <chat_template value="{{'&lt;extra_id_0>System'}}{% for message in messages %}{% if message['role'] == 'system' %}{{'&#10;' + message['content'].strip()}}{% endif %}{% endfor %}{{'&#10;'}}{% for message in messages %}{% if message['role'] == 'user' %}{{ '&#10;&lt;extra_id_1>User&#10;' + message['content'].strip() + '&#10;&lt;extra_id_1>Assistant&#10;' }}{% elif message['role'] == 'assistant' %}{{ message['content'].strip() }}{% endif %}{% endfor %}" />
198
+ <clean_up_tokenization_spaces />
199
+ <detokenizer_input_type value="i64" />
200
+ <eos_token_id value="2" />
201
+ <handle_special_tokens_with_re />
202
+ <max_length />
203
+ <number_of_inputs value="1" />
204
+ <openvino_tokenizers_version value="2025.1.0.0-523-710ddf14de8" />
205
+ <openvino_version value="2025.1.0-18503-6fec06580ab-releases/2025/1" />
206
+ <original_post_processor_template value="{&quot;type&quot;: &quot;TemplateProcessing&quot;, &quot;single&quot;: [{&quot;SpecialToken&quot;: {&quot;id&quot;: &quot;&lt;s>&quot;, &quot;type_id&quot;: 0}}, {&quot;Sequence&quot;: {&quot;id&quot;: &quot;A&quot;, &quot;type_id&quot;: 0}}], &quot;pair&quot;: [{&quot;SpecialToken&quot;: {&quot;id&quot;: &quot;&lt;s>&quot;, &quot;type_id&quot;: 0}}, {&quot;Sequence&quot;: {&quot;id&quot;: &quot;A&quot;, &quot;type_id&quot;: 0}}, {&quot;SpecialToken&quot;: {&quot;id&quot;: &quot;&lt;s>&quot;, &quot;type_id&quot;: 1}}, {&quot;Sequence&quot;: {&quot;id&quot;: &quot;B&quot;, &quot;type_id&quot;: 1}}], &quot;special_tokens&quot;: {&quot;&lt;/s>&quot;: {&quot;id&quot;: &quot;&lt;/s>&quot;, &quot;ids&quot;: [2], &quot;tokens&quot;: [&quot;&lt;/s>&quot;]}, &quot;&lt;s>&quot;: {&quot;id&quot;: &quot;&lt;s>&quot;, &quot;ids&quot;: [1], &quot;tokens&quot;: [&quot;&lt;s>&quot;]}}}" />
207
+ <original_tokenizer_class value="&lt;class 'transformers.tokenization_utils_fast.PreTrainedTokenizerFast'>" />
208
+ <processed_post_processor_template value="{&quot;single&quot;: {&quot;ids&quot;: [1, -1], &quot;type_ids&quot;: [0, 0]}, &quot;pair&quot;: {&quot;ids&quot;: [1, -1, 1, -2], &quot;type_ids&quot;: [0, 0, 1, 1]}}" />
209
+ <sentencepiece_version value="0.2.0" />
210
+ <skip_special_tokens value="True" />
211
+ <streaming_detokenizer value="False" />
212
+ <tokenizer_output_type value="i64" />
213
+ <tokenizers_version value="0.21.1" />
214
+ <transformers_version value="4.51.3" />
215
+ <use_max_padding value="False" />
216
+ <use_sentencepiece_backend value="False" />
217
+ <utf8_replace_mode value="replace" />
218
+ <with_detokenizer value="True" />
219
+ </rt_info>
220
+ </net>
Mistral-NeMo-Minitron-8B-Instruct-int4_asym-gptq-ov/openvino_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f38cb9e5ee0242b49228f061f05843fc7310b00b18e151d2d53420128482d82b
3
+ size 5596009292
Mistral-NeMo-Minitron-8B-Instruct-int4_asym-gptq-ov/openvino_model.xml ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-NeMo-Minitron-8B-Instruct-int4_asym-gptq-ov/openvino_tokenizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0b12029962fe8e29f8c9a385c32bf5af44731d897ed8beef1d5d1e66896b988
3
+ size 8151102
Mistral-NeMo-Minitron-8B-Instruct-int4_asym-gptq-ov/openvino_tokenizer.xml ADDED
@@ -0,0 +1,762 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="tokenizer" version="11">
3
+ <layers>
4
+ <layer id="0" name="Parameter_2894474" type="Parameter" version="opset1">
5
+ <data shape="?" element_type="string" />
6
+ <output>
7
+ <port id="0" precision="STRING" names="Parameter_2894474">
8
+ <dim>-1</dim>
9
+ </port>
10
+ </output>
11
+ </layer>
12
+ <layer id="1" name="Constant_2894584" type="Const" version="opset1">
13
+ <data element_type="i32" shape="" offset="0" size="4" />
14
+ <output>
15
+ <port id="0" precision="I32" />
16
+ </output>
17
+ </layer>
18
+ <layer id="2" name="Constant_2894585" type="Const" version="opset1">
19
+ <data element_type="i32" shape="" offset="4" size="4" />
20
+ <output>
21
+ <port id="0" precision="I32" />
22
+ </output>
23
+ </layer>
24
+ <layer id="3" name="Constant_2894586" type="Const" version="opset1">
25
+ <data element_type="i32" shape="1" offset="4" size="4" />
26
+ <output>
27
+ <port id="0" precision="I32">
28
+ <dim>1</dim>
29
+ </port>
30
+ </output>
31
+ </layer>
32
+ <layer id="4" name="Constant_2894480" type="Const" version="opset1">
33
+ <data element_type="i64" shape="" offset="8" size="8" />
34
+ <output>
35
+ <port id="0" precision="I64" />
36
+ </output>
37
+ </layer>
38
+ <layer id="5" name="StringTensorUnpack_2894475" type="StringTensorUnpack" version="opset15">
39
+ <input>
40
+ <port id="0" precision="STRING">
41
+ <dim>-1</dim>
42
+ </port>
43
+ </input>
44
+ <output>
45
+ <port id="1" precision="I32">
46
+ <dim>-1</dim>
47
+ </port>
48
+ <port id="2" precision="I32">
49
+ <dim>-1</dim>
50
+ </port>
51
+ <port id="3" precision="U8">
52
+ <dim>-1</dim>
53
+ </port>
54
+ </output>
55
+ </layer>
56
+ <layer id="6" name="ShapeOf_2894476" type="ShapeOf" version="opset3">
57
+ <data output_type="i64" />
58
+ <input>
59
+ <port id="0" precision="I32">
60
+ <dim>-1</dim>
61
+ </port>
62
+ </input>
63
+ <output>
64
+ <port id="1" precision="I64">
65
+ <dim>1</dim>
66
+ </port>
67
+ </output>
68
+ </layer>
69
+ <layer id="7" name="Constant_2894477" type="Const" version="opset1">
70
+ <data element_type="i64" shape="" offset="8" size="8" />
71
+ <output>
72
+ <port id="0" precision="I64" />
73
+ </output>
74
+ </layer>
75
+ <layer id="8" name="Constant_2894478" type="Const" version="opset1">
76
+ <data element_type="i64" shape="" offset="8" size="8" />
77
+ <output>
78
+ <port id="0" precision="I64" />
79
+ </output>
80
+ </layer>
81
+ <layer id="9" name="Gather_2894479" type="Gather" version="opset8">
82
+ <data batch_dims="0" />
83
+ <input>
84
+ <port id="0" precision="I64">
85
+ <dim>1</dim>
86
+ </port>
87
+ <port id="1" precision="I64" />
88
+ <port id="2" precision="I64" />
89
+ </input>
90
+ <output>
91
+ <port id="3" precision="I64" />
92
+ </output>
93
+ </layer>
94
+ <layer id="10" name="Constant_2894481" type="Const" version="opset1">
95
+ <data element_type="i64" shape="" offset="16" size="8" />
96
+ <output>
97
+ <port id="0" precision="I64" />
98
+ </output>
99
+ </layer>
100
+ <layer id="11" name="Range_2894482" type="Range" version="opset4">
101
+ <data output_type="i32" />
102
+ <input>
103
+ <port id="0" precision="I64" />
104
+ <port id="1" precision="I64" />
105
+ <port id="2" precision="I64" />
106
+ </input>
107
+ <output>
108
+ <port id="3" precision="I32">
109
+ <dim>-1</dim>
110
+ </port>
111
+ </output>
112
+ </layer>
113
+ <layer id="12" name="Constant_2894483" type="Const" version="opset1">
114
+ <data element_type="i64" shape="" offset="16" size="8" />
115
+ <output>
116
+ <port id="0" precision="I64" />
117
+ </output>
118
+ </layer>
119
+ <layer id="13" name="Constant_2894484" type="Const" version="opset1">
120
+ <data element_type="i64" shape="" offset="16" size="8" />
121
+ <output>
122
+ <port id="0" precision="I64" />
123
+ </output>
124
+ </layer>
125
+ <layer id="14" name="Add_2894485" type="Add" version="opset1">
126
+ <data auto_broadcast="numpy" />
127
+ <input>
128
+ <port id="0" precision="I64" />
129
+ <port id="1" precision="I64" />
130
+ </input>
131
+ <output>
132
+ <port id="2" precision="I64" />
133
+ </output>
134
+ </layer>
135
+ <layer id="15" name="Constant_2894486" type="Const" version="opset1">
136
+ <data element_type="i64" shape="" offset="16" size="8" />
137
+ <output>
138
+ <port id="0" precision="I64" />
139
+ </output>
140
+ </layer>
141
+ <layer id="16" name="Range_2894487" type="Range" version="opset4">
142
+ <data output_type="i32" />
143
+ <input>
144
+ <port id="0" precision="I64" />
145
+ <port id="1" precision="I64" />
146
+ <port id="2" precision="I64" />
147
+ </input>
148
+ <output>
149
+ <port id="3" precision="I32">
150
+ <dim>-1</dim>
151
+ </port>
152
+ </output>
153
+ </layer>
154
+ <layer id="17" name="Constant_2894549" type="Const" version="opset1">
155
+ <data element_type="u8" shape="17865" offset="24" size="17865" />
156
+ <output>
157
+ <port id="0" precision="U8">
158
+ <dim>17865</dim>
159
+ </port>
160
+ </output>
161
+ </layer>
162
+ <layer id="18" name="SpecialTokensSplit_2894550" type="SpecialTokensSplit" version="extension">
163
+ <input>
164
+ <port id="0" precision="I32">
165
+ <dim>-1</dim>
166
+ </port>
167
+ <port id="1" precision="I32">
168
+ <dim>-1</dim>
169
+ </port>
170
+ <port id="2" precision="I32">
171
+ <dim>-1</dim>
172
+ </port>
173
+ <port id="3" precision="I32">
174
+ <dim>-1</dim>
175
+ </port>
176
+ <port id="4" precision="U8">
177
+ <dim>-1</dim>
178
+ </port>
179
+ <port id="5" precision="U8">
180
+ <dim>17865</dim>
181
+ </port>
182
+ </input>
183
+ <output>
184
+ <port id="6" precision="I32">
185
+ <dim>-1</dim>
186
+ </port>
187
+ <port id="7" precision="I32">
188
+ <dim>-1</dim>
189
+ </port>
190
+ <port id="8" precision="I32">
191
+ <dim>-1</dim>
192
+ </port>
193
+ <port id="9" precision="I32">
194
+ <dim>-1</dim>
195
+ </port>
196
+ <port id="10" precision="U8">
197
+ <dim>-1</dim>
198
+ </port>
199
+ <port id="11" precision="BOOL">
200
+ <dim>-1</dim>
201
+ </port>
202
+ </output>
203
+ </layer>
204
+ <layer id="19" name="Constant_2894552" type="Const" version="opset1">
205
+ <data element_type="u8" shape="211" offset="17889" size="211" />
206
+ <output>
207
+ <port id="0" precision="U8">
208
+ <dim>211</dim>
209
+ </port>
210
+ </output>
211
+ </layer>
212
+ <layer id="20" name="RegexSplit_2894553" type="RegexSplit" version="extension">
213
+ <data behaviour="isolate" invert="false" max_splits="-1" />
214
+ <input>
215
+ <port id="0" precision="I32">
216
+ <dim>-1</dim>
217
+ </port>
218
+ <port id="1" precision="I32">
219
+ <dim>-1</dim>
220
+ </port>
221
+ <port id="2" precision="I32">
222
+ <dim>-1</dim>
223
+ </port>
224
+ <port id="3" precision="I32">
225
+ <dim>-1</dim>
226
+ </port>
227
+ <port id="4" precision="U8">
228
+ <dim>-1</dim>
229
+ </port>
230
+ <port id="5" precision="BOOL">
231
+ <dim>-1</dim>
232
+ </port>
233
+ <port id="6" precision="U8">
234
+ <dim>211</dim>
235
+ </port>
236
+ </input>
237
+ <output>
238
+ <port id="7" precision="I32">
239
+ <dim>-1</dim>
240
+ </port>
241
+ <port id="8" precision="I32">
242
+ <dim>-1</dim>
243
+ </port>
244
+ <port id="9" precision="I32">
245
+ <dim>-1</dim>
246
+ </port>
247
+ <port id="10" precision="I32">
248
+ <dim>-1</dim>
249
+ </port>
250
+ <port id="11" precision="U8">
251
+ <dim>-1</dim>
252
+ </port>
253
+ <port id="12" precision="BOOL">
254
+ <dim>-1</dim>
255
+ </port>
256
+ </output>
257
+ </layer>
258
+ <layer id="21" name="Constant_2894555" type="Const" version="opset1">
259
+ <data element_type="i32" shape="131072" offset="18100" size="524288" />
260
+ <output>
261
+ <port id="0" precision="I32">
262
+ <dim>131072</dim>
263
+ </port>
264
+ </output>
265
+ </layer>
266
+ <layer id="22" name="Constant_2894557" type="Const" version="opset1">
267
+ <data element_type="i32" shape="131072" offset="542388" size="524288" />
268
+ <output>
269
+ <port id="0" precision="I32">
270
+ <dim>131072</dim>
271
+ </port>
272
+ </output>
273
+ </layer>
274
+ <layer id="23" name="Constant_2894559" type="Const" version="opset1">
275
+ <data element_type="u8" shape="891120" offset="1066676" size="891120" />
276
+ <output>
277
+ <port id="0" precision="U8">
278
+ <dim>891120</dim>
279
+ </port>
280
+ </output>
281
+ </layer>
282
+ <layer id="24" name="Constant_2894567" type="Const" version="opset1">
283
+ <data element_type="i32" shape="269443" offset="1957796" size="1077772" />
284
+ <output>
285
+ <port id="0" precision="I32">
286
+ <dim>269443</dim>
287
+ </port>
288
+ </output>
289
+ </layer>
290
+ <layer id="25" name="Constant_2894569" type="Const" version="opset1">
291
+ <data element_type="i32" shape="269443" offset="3035568" size="1077772" />
292
+ <output>
293
+ <port id="0" precision="I32">
294
+ <dim>269443</dim>
295
+ </port>
296
+ </output>
297
+ </layer>
298
+ <layer id="26" name="Constant_2894571" type="Const" version="opset1">
299
+ <data element_type="u8" shape="989624" offset="4113340" size="989624" />
300
+ <output>
301
+ <port id="0" precision="U8">
302
+ <dim>989624</dim>
303
+ </port>
304
+ </output>
305
+ </layer>
306
+ <layer id="27" name="Constant_2894573" type="Const" version="opset1">
307
+ <data element_type="i32" shape="269443" offset="5102964" size="1077772" />
308
+ <output>
309
+ <port id="0" precision="I32">
310
+ <dim>269443</dim>
311
+ </port>
312
+ </output>
313
+ </layer>
314
+ <layer id="28" name="Constant_2894575" type="Const" version="opset1">
315
+ <data element_type="i32" shape="269443" offset="6180736" size="1077772" />
316
+ <output>
317
+ <port id="0" precision="I32">
318
+ <dim>269443</dim>
319
+ </port>
320
+ </output>
321
+ </layer>
322
+ <layer id="29" name="Constant_2894577" type="Const" version="opset1">
323
+ <data element_type="u8" shape="867745" offset="7258508" size="867745" />
324
+ <output>
325
+ <port id="0" precision="U8">
326
+ <dim>867745</dim>
327
+ </port>
328
+ </output>
329
+ </layer>
330
+ <layer id="30" name="Constant_2894561" type="Const" version="opset1">
331
+ <data element_type="i32" shape="999" offset="8126253" size="3996" />
332
+ <output>
333
+ <port id="0" precision="I32">
334
+ <dim>999</dim>
335
+ </port>
336
+ </output>
337
+ </layer>
338
+ <layer id="31" name="Constant_2894563" type="Const" version="opset1">
339
+ <data element_type="i32" shape="999" offset="8130249" size="3996" />
340
+ <output>
341
+ <port id="0" precision="I32">
342
+ <dim>999</dim>
343
+ </port>
344
+ </output>
345
+ </layer>
346
+ <layer id="32" name="Constant_2894565" type="Const" version="opset1">
347
+ <data element_type="u8" shape="12857" offset="8134245" size="12857" />
348
+ <output>
349
+ <port id="0" precision="U8">
350
+ <dim>12857</dim>
351
+ </port>
352
+ </output>
353
+ </layer>
354
+ <layer id="33" name="Constant_2894578" type="Const" version="opset1">
355
+ <data element_type="i32" shape="999" offset="8147102" size="3996" />
356
+ <output>
357
+ <port id="0" precision="I32">
358
+ <dim>999</dim>
359
+ </port>
360
+ </output>
361
+ </layer>
362
+ <layer id="34" name="BPETokenizer_2894579" type="BPETokenizer" version="extension">
363
+ <data unk_token="" fuse_unk="false" suffix_indicator="" end_suffix="" byte_fallback="false" cache_capacity="26214" />
364
+ <input>
365
+ <port id="0" precision="I32">
366
+ <dim>-1</dim>
367
+ </port>
368
+ <port id="1" precision="I32">
369
+ <dim>-1</dim>
370
+ </port>
371
+ <port id="2" precision="I32">
372
+ <dim>-1</dim>
373
+ </port>
374
+ <port id="3" precision="I32">
375
+ <dim>-1</dim>
376
+ </port>
377
+ <port id="4" precision="U8">
378
+ <dim>-1</dim>
379
+ </port>
380
+ <port id="5" precision="I32">
381
+ <dim>131072</dim>
382
+ </port>
383
+ <port id="6" precision="I32">
384
+ <dim>131072</dim>
385
+ </port>
386
+ <port id="7" precision="U8">
387
+ <dim>891120</dim>
388
+ </port>
389
+ <port id="8" precision="I32">
390
+ <dim>269443</dim>
391
+ </port>
392
+ <port id="9" precision="I32">
393
+ <dim>269443</dim>
394
+ </port>
395
+ <port id="10" precision="U8">
396
+ <dim>989624</dim>
397
+ </port>
398
+ <port id="11" precision="I32">
399
+ <dim>269443</dim>
400
+ </port>
401
+ <port id="12" precision="I32">
402
+ <dim>269443</dim>
403
+ </port>
404
+ <port id="13" precision="U8">
405
+ <dim>867745</dim>
406
+ </port>
407
+ <port id="14" precision="I32">
408
+ <dim>999</dim>
409
+ </port>
410
+ <port id="15" precision="I32">
411
+ <dim>999</dim>
412
+ </port>
413
+ <port id="16" precision="U8">
414
+ <dim>12857</dim>
415
+ </port>
416
+ <port id="17" precision="I32">
417
+ <dim>999</dim>
418
+ </port>
419
+ </input>
420
+ <output>
421
+ <port id="18" precision="I32">
422
+ <dim>-1</dim>
423
+ </port>
424
+ <port id="19" precision="I32">
425
+ <dim>-1</dim>
426
+ </port>
427
+ <port id="20" precision="I32">
428
+ <dim>-1</dim>
429
+ </port>
430
+ </output>
431
+ </layer>
432
+ <layer id="35" name="Subtract_2894580" type="Subtract" version="opset1">
433
+ <data auto_broadcast="numpy" />
434
+ <input>
435
+ <port id="0" precision="I32">
436
+ <dim>-1</dim>
437
+ </port>
438
+ <port id="1" precision="I32">
439
+ <dim>-1</dim>
440
+ </port>
441
+ </input>
442
+ <output>
443
+ <port id="2" precision="I32">
444
+ <dim>-1</dim>
445
+ </port>
446
+ </output>
447
+ </layer>
448
+ <layer id="36" name="Constant_2894581" type="Const" version="opset1">
449
+ <data element_type="i32" shape="" offset="8151098" size="4" />
450
+ <output>
451
+ <port id="0" precision="I32" />
452
+ </output>
453
+ </layer>
454
+ <layer id="37" name="Minimum_2894582" type="Minimum" version="opset1">
455
+ <data auto_broadcast="numpy" />
456
+ <input>
457
+ <port id="0" precision="I32">
458
+ <dim>-1</dim>
459
+ </port>
460
+ <port id="1" precision="I32" />
461
+ </input>
462
+ <output>
463
+ <port id="2" precision="I32">
464
+ <dim>-1</dim>
465
+ </port>
466
+ </output>
467
+ </layer>
468
+ <layer id="38" name="Subtract_2894583" type="Subtract" version="opset1">
469
+ <data auto_broadcast="numpy" />
470
+ <input>
471
+ <port id="0" precision="I32">
472
+ <dim>-1</dim>
473
+ </port>
474
+ <port id="1" precision="I32">
475
+ <dim>-1</dim>
476
+ </port>
477
+ </input>
478
+ <output>
479
+ <port id="2" precision="I32">
480
+ <dim>-1</dim>
481
+ </port>
482
+ </output>
483
+ </layer>
484
+ <layer id="39" name="Constant_2894587" type="Const" version="opset1">
485
+ <data element_type="i32" shape="2" offset="8" size="8" />
486
+ <output>
487
+ <port id="0" precision="I32">
488
+ <dim>2</dim>
489
+ </port>
490
+ </output>
491
+ </layer>
492
+ <layer id="40" name="CombineSegments_2894588" type="CombineSegments" version="extension">
493
+ <input>
494
+ <port id="0" precision="I32" />
495
+ <port id="1" precision="I32" />
496
+ <port id="2" precision="I32">
497
+ <dim>1</dim>
498
+ </port>
499
+ <port id="3" precision="I32">
500
+ <dim>-1</dim>
501
+ </port>
502
+ <port id="4" precision="I32">
503
+ <dim>-1</dim>
504
+ </port>
505
+ <port id="5" precision="I32">
506
+ <dim>-1</dim>
507
+ </port>
508
+ <port id="6" precision="I32">
509
+ <dim>2</dim>
510
+ </port>
511
+ </input>
512
+ <output>
513
+ <port id="7" precision="I32">
514
+ <dim>-1</dim>
515
+ </port>
516
+ <port id="8" precision="I32">
517
+ <dim>-1</dim>
518
+ </port>
519
+ <port id="9" precision="I32">
520
+ <dim>-1</dim>
521
+ </port>
522
+ <port id="10" precision="I32">
523
+ <dim>-1</dim>
524
+ </port>
525
+ <port id="11" precision="I32">
526
+ <dim>-1</dim>
527
+ </port>
528
+ <port id="12" precision="I32">
529
+ <dim>-1</dim>
530
+ </port>
531
+ </output>
532
+ </layer>
533
+ <layer id="41" name="Subtract_2894589" type="Subtract" version="opset1">
534
+ <data auto_broadcast="numpy" />
535
+ <input>
536
+ <port id="0" precision="I32">
537
+ <dim>-1</dim>
538
+ </port>
539
+ <port id="1" precision="I32">
540
+ <dim>-1</dim>
541
+ </port>
542
+ </input>
543
+ <output>
544
+ <port id="2" precision="I32">
545
+ <dim>-1</dim>
546
+ </port>
547
+ </output>
548
+ </layer>
549
+ <layer id="42" name="Constant_2894590" type="Const" version="opset1">
550
+ <data element_type="i32" shape="" offset="0" size="4" />
551
+ <output>
552
+ <port id="0" precision="I32" />
553
+ </output>
554
+ </layer>
555
+ <layer id="43" name="ReduceMax_2894591" type="ReduceMax" version="opset1">
556
+ <data keep_dims="false" />
557
+ <input>
558
+ <port id="0" precision="I32">
559
+ <dim>-1</dim>
560
+ </port>
561
+ <port id="1" precision="I32" />
562
+ </input>
563
+ <output>
564
+ <port id="2" precision="I32" />
565
+ </output>
566
+ </layer>
567
+ <layer id="44" name="Constant_2894592" type="Const" version="opset1">
568
+ <data element_type="i32" shape="" offset="0" size="4" />
569
+ <output>
570
+ <port id="0" precision="I32" />
571
+ </output>
572
+ </layer>
573
+ <layer id="45" name="RaggedToDense_2894593" type="RaggedToDense" version="extension">
574
+ <data pad_right="false" m_pad_max_length="false" />
575
+ <input>
576
+ <port id="0" precision="I32">
577
+ <dim>-1</dim>
578
+ </port>
579
+ <port id="1" precision="I32">
580
+ <dim>-1</dim>
581
+ </port>
582
+ <port id="2" precision="I32">
583
+ <dim>-1</dim>
584
+ </port>
585
+ <port id="3" precision="I32" />
586
+ <port id="4" precision="I32" />
587
+ </input>
588
+ <output>
589
+ <port id="5" precision="I32">
590
+ <dim>-1</dim>
591
+ <dim>-1</dim>
592
+ </port>
593
+ <port id="6" precision="BOOL">
594
+ <dim>-1</dim>
595
+ <dim>-1</dim>
596
+ </port>
597
+ </output>
598
+ </layer>
599
+ <layer id="46" name="Convert_2894594" type="Convert" version="opset1">
600
+ <data destination_type="i32" />
601
+ <input>
602
+ <port id="0" precision="BOOL">
603
+ <dim>-1</dim>
604
+ <dim>-1</dim>
605
+ </port>
606
+ </input>
607
+ <output>
608
+ <port id="1" precision="I32">
609
+ <dim>-1</dim>
610
+ <dim>-1</dim>
611
+ </port>
612
+ </output>
613
+ </layer>
614
+ <layer id="47" name="Convert_2894594.0" type="Convert" version="opset1">
615
+ <data destination_type="i64" />
616
+ <input>
617
+ <port id="0" precision="I32">
618
+ <dim>-1</dim>
619
+ <dim>-1</dim>
620
+ </port>
621
+ </input>
622
+ <output>
623
+ <port id="1" precision="I64" names="attention_mask">
624
+ <dim>-1</dim>
625
+ <dim>-1</dim>
626
+ </port>
627
+ </output>
628
+ </layer>
629
+ <layer id="49" name="RaggedToDense_2894593.0" type="Convert" version="opset1">
630
+ <data destination_type="i64" />
631
+ <input>
632
+ <port id="0" precision="I32">
633
+ <dim>-1</dim>
634
+ <dim>-1</dim>
635
+ </port>
636
+ </input>
637
+ <output>
638
+ <port id="1" precision="I64" names="input_ids">
639
+ <dim>-1</dim>
640
+ <dim>-1</dim>
641
+ </port>
642
+ </output>
643
+ </layer>
644
+ <layer id="50" name="Result_2894597" type="Result" version="opset1" output_names="input_ids">
645
+ <input>
646
+ <port id="0" precision="I64">
647
+ <dim>-1</dim>
648
+ <dim>-1</dim>
649
+ </port>
650
+ </input>
651
+ </layer>
652
+ <layer id="48" name="Result_2894599" type="Result" version="opset1" output_names="attention_mask">
653
+ <input>
654
+ <port id="0" precision="I64">
655
+ <dim>-1</dim>
656
+ <dim>-1</dim>
657
+ </port>
658
+ </input>
659
+ </layer>
660
+ </layers>
661
+ <edges>
662
+ <edge from-layer="0" from-port="0" to-layer="5" to-port="0" />
663
+ <edge from-layer="1" from-port="0" to-layer="40" to-port="0" />
664
+ <edge from-layer="2" from-port="0" to-layer="40" to-port="1" />
665
+ <edge from-layer="3" from-port="0" to-layer="40" to-port="2" />
666
+ <edge from-layer="4" from-port="0" to-layer="11" to-port="0" />
667
+ <edge from-layer="5" from-port="1" to-layer="6" to-port="0" />
668
+ <edge from-layer="5" from-port="3" to-layer="18" to-port="4" />
669
+ <edge from-layer="5" from-port="2" to-layer="18" to-port="3" />
670
+ <edge from-layer="5" from-port="1" to-layer="18" to-port="2" />
671
+ <edge from-layer="6" from-port="1" to-layer="9" to-port="0" />
672
+ <edge from-layer="7" from-port="0" to-layer="9" to-port="1" />
673
+ <edge from-layer="8" from-port="0" to-layer="9" to-port="2" />
674
+ <edge from-layer="9" from-port="3" to-layer="14" to-port="0" />
675
+ <edge from-layer="9" from-port="3" to-layer="11" to-port="1" />
676
+ <edge from-layer="10" from-port="0" to-layer="11" to-port="2" />
677
+ <edge from-layer="11" from-port="3" to-layer="18" to-port="0" />
678
+ <edge from-layer="12" from-port="0" to-layer="16" to-port="0" />
679
+ <edge from-layer="13" from-port="0" to-layer="14" to-port="1" />
680
+ <edge from-layer="14" from-port="2" to-layer="16" to-port="1" />
681
+ <edge from-layer="15" from-port="0" to-layer="16" to-port="2" />
682
+ <edge from-layer="16" from-port="3" to-layer="18" to-port="1" />
683
+ <edge from-layer="17" from-port="0" to-layer="18" to-port="5" />
684
+ <edge from-layer="18" from-port="11" to-layer="20" to-port="5" />
685
+ <edge from-layer="18" from-port="10" to-layer="20" to-port="4" />
686
+ <edge from-layer="18" from-port="9" to-layer="20" to-port="3" />
687
+ <edge from-layer="18" from-port="8" to-layer="20" to-port="2" />
688
+ <edge from-layer="18" from-port="7" to-layer="20" to-port="1" />
689
+ <edge from-layer="18" from-port="6" to-layer="20" to-port="0" />
690
+ <edge from-layer="19" from-port="0" to-layer="20" to-port="6" />
691
+ <edge from-layer="20" from-port="7" to-layer="34" to-port="0" />
692
+ <edge from-layer="20" from-port="8" to-layer="34" to-port="1" />
693
+ <edge from-layer="20" from-port="9" to-layer="34" to-port="2" />
694
+ <edge from-layer="20" from-port="10" to-layer="34" to-port="3" />
695
+ <edge from-layer="20" from-port="11" to-layer="34" to-port="4" />
696
+ <edge from-layer="21" from-port="0" to-layer="34" to-port="5" />
697
+ <edge from-layer="22" from-port="0" to-layer="34" to-port="6" />
698
+ <edge from-layer="23" from-port="0" to-layer="34" to-port="7" />
699
+ <edge from-layer="24" from-port="0" to-layer="34" to-port="8" />
700
+ <edge from-layer="25" from-port="0" to-layer="34" to-port="9" />
701
+ <edge from-layer="26" from-port="0" to-layer="34" to-port="10" />
702
+ <edge from-layer="27" from-port="0" to-layer="34" to-port="11" />
703
+ <edge from-layer="28" from-port="0" to-layer="34" to-port="12" />
704
+ <edge from-layer="29" from-port="0" to-layer="34" to-port="13" />
705
+ <edge from-layer="30" from-port="0" to-layer="34" to-port="14" />
706
+ <edge from-layer="31" from-port="0" to-layer="34" to-port="15" />
707
+ <edge from-layer="32" from-port="0" to-layer="34" to-port="16" />
708
+ <edge from-layer="33" from-port="0" to-layer="34" to-port="17" />
709
+ <edge from-layer="34" from-port="20" to-layer="40" to-port="5" />
710
+ <edge from-layer="34" from-port="19" to-layer="40" to-port="4" />
711
+ <edge from-layer="34" from-port="19" to-layer="38" to-port="0" />
712
+ <edge from-layer="34" from-port="18" to-layer="35" to-port="1" />
713
+ <edge from-layer="34" from-port="19" to-layer="35" to-port="0" />
714
+ <edge from-layer="35" from-port="2" to-layer="37" to-port="0" />
715
+ <edge from-layer="36" from-port="0" to-layer="37" to-port="1" />
716
+ <edge from-layer="37" from-port="2" to-layer="38" to-port="1" />
717
+ <edge from-layer="38" from-port="2" to-layer="40" to-port="3" />
718
+ <edge from-layer="39" from-port="0" to-layer="40" to-port="6" />
719
+ <edge from-layer="40" from-port="8" to-layer="41" to-port="0" />
720
+ <edge from-layer="40" from-port="7" to-layer="41" to-port="1" />
721
+ <edge from-layer="40" from-port="7" to-layer="45" to-port="0" />
722
+ <edge from-layer="40" from-port="8" to-layer="45" to-port="1" />
723
+ <edge from-layer="40" from-port="9" to-layer="45" to-port="2" />
724
+ <edge from-layer="41" from-port="2" to-layer="43" to-port="0" />
725
+ <edge from-layer="42" from-port="0" to-layer="43" to-port="1" />
726
+ <edge from-layer="43" from-port="2" to-layer="45" to-port="3" />
727
+ <edge from-layer="44" from-port="0" to-layer="45" to-port="4" />
728
+ <edge from-layer="45" from-port="6" to-layer="46" to-port="0" />
729
+ <edge from-layer="45" from-port="5" to-layer="49" to-port="0" />
730
+ <edge from-layer="46" from-port="1" to-layer="47" to-port="0" />
731
+ <edge from-layer="47" from-port="1" to-layer="48" to-port="0" />
732
+ <edge from-layer="49" from-port="1" to-layer="50" to-port="0" />
733
+ </edges>
734
+ <rt_info>
735
+ <add_attention_mask value="True" />
736
+ <add_prefix_space />
737
+ <add_special_tokens value="True" />
738
+ <bos_token_id value="1" />
739
+ <chat_template value="{{'&lt;extra_id_0>System'}}{% for message in messages %}{% if message['role'] == 'system' %}{{'&#10;' + message['content'].strip()}}{% endif %}{% endfor %}{{'&#10;'}}{% for message in messages %}{% if message['role'] == 'user' %}{{ '&#10;&lt;extra_id_1>User&#10;' + message['content'].strip() + '&#10;&lt;extra_id_1>Assistant&#10;' }}{% elif message['role'] == 'assistant' %}{{ message['content'].strip() }}{% endif %}{% endfor %}" />
740
+ <clean_up_tokenization_spaces />
741
+ <detokenizer_input_type value="i64" />
742
+ <eos_token_id value="2" />
743
+ <handle_special_tokens_with_re />
744
+ <max_length />
745
+ <number_of_inputs value="1" />
746
+ <openvino_tokenizers_version value="2025.1.0.0-523-710ddf14de8" />
747
+ <openvino_version value="2025.1.0-18503-6fec06580ab-releases/2025/1" />
748
+ <original_post_processor_template value="{&quot;type&quot;: &quot;TemplateProcessing&quot;, &quot;single&quot;: [{&quot;SpecialToken&quot;: {&quot;id&quot;: &quot;&lt;s>&quot;, &quot;type_id&quot;: 0}}, {&quot;Sequence&quot;: {&quot;id&quot;: &quot;A&quot;, &quot;type_id&quot;: 0}}], &quot;pair&quot;: [{&quot;SpecialToken&quot;: {&quot;id&quot;: &quot;&lt;s>&quot;, &quot;type_id&quot;: 0}}, {&quot;Sequence&quot;: {&quot;id&quot;: &quot;A&quot;, &quot;type_id&quot;: 0}}, {&quot;SpecialToken&quot;: {&quot;id&quot;: &quot;&lt;s>&quot;, &quot;type_id&quot;: 1}}, {&quot;Sequence&quot;: {&quot;id&quot;: &quot;B&quot;, &quot;type_id&quot;: 1}}], &quot;special_tokens&quot;: {&quot;&lt;/s>&quot;: {&quot;id&quot;: &quot;&lt;/s>&quot;, &quot;ids&quot;: [2], &quot;tokens&quot;: [&quot;&lt;/s>&quot;]}, &quot;&lt;s>&quot;: {&quot;id&quot;: &quot;&lt;s>&quot;, &quot;ids&quot;: [1], &quot;tokens&quot;: [&quot;&lt;s>&quot;]}}}" />
749
+ <original_tokenizer_class value="&lt;class 'transformers.tokenization_utils_fast.PreTrainedTokenizerFast'>" />
750
+ <processed_post_processor_template value="{&quot;single&quot;: {&quot;ids&quot;: [1, -1], &quot;type_ids&quot;: [0, 0]}, &quot;pair&quot;: {&quot;ids&quot;: [1, -1, 1, -2], &quot;type_ids&quot;: [0, 0, 1, 1]}}" />
751
+ <sentencepiece_version value="0.2.0" />
752
+ <skip_special_tokens value="True" />
753
+ <streaming_detokenizer value="False" />
754
+ <tokenizer_output_type value="i64" />
755
+ <tokenizers_version value="0.21.1" />
756
+ <transformers_version value="4.51.3" />
757
+ <use_max_padding value="False" />
758
+ <use_sentencepiece_backend value="False" />
759
+ <utf8_replace_mode value="replace" />
760
+ <with_detokenizer value="True" />
761
+ </rt_info>
762
+ </net>
Mistral-NeMo-Minitron-8B-Instruct-int4_asym-gptq-ov/special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
Mistral-NeMo-Minitron-8B-Instruct-int4_asym-gptq-ov/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0240ce510f08e6c2041724e9043e33be9d251d1e4a4d94eb68cd47b954b61d2
3
+ size 17078292
Mistral-NeMo-Minitron-8B-Instruct-int4_asym-gptq-ov/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff