Upload 76 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +5 -0
- Phi-4-mini-instruct-fp16-ov/added_tokens.json +12 -0
- Phi-4-mini-instruct-fp16-ov/config.json +144 -0
- Phi-4-mini-instruct-fp16-ov/configuration_phi3.py +226 -0
- Phi-4-mini-instruct-fp16-ov/generation_config.json +10 -0
- Phi-4-mini-instruct-fp16-ov/merges.txt +0 -0
- Phi-4-mini-instruct-fp16-ov/openvino_detokenizer.bin +3 -0
- Phi-4-mini-instruct-fp16-ov/openvino_detokenizer.xml +219 -0
- Phi-4-mini-instruct-fp16-ov/openvino_model.bin +3 -0
- Phi-4-mini-instruct-fp16-ov/openvino_model.xml +0 -0
- Phi-4-mini-instruct-fp16-ov/openvino_tokenizer.bin +3 -0
- Phi-4-mini-instruct-fp16-ov/openvino_tokenizer.xml +685 -0
- Phi-4-mini-instruct-fp16-ov/special_tokens_map.json +30 -0
- Phi-4-mini-instruct-fp16-ov/tokenizer.json +3 -0
- Phi-4-mini-instruct-fp16-ov/tokenizer_config.json +112 -0
- Phi-4-mini-instruct-fp16-ov/vocab.json +0 -0
- Phi-4-mini-instruct-int4_asym-awq-se-ov/added_tokens.json +12 -0
- Phi-4-mini-instruct-int4_asym-awq-se-ov/config.json +143 -0
- Phi-4-mini-instruct-int4_asym-awq-se-ov/configuration_phi3.py +226 -0
- Phi-4-mini-instruct-int4_asym-awq-se-ov/generation_config.json +10 -0
- Phi-4-mini-instruct-int4_asym-awq-se-ov/merges.txt +0 -0
- Phi-4-mini-instruct-int4_asym-awq-se-ov/openvino_config.json +27 -0
- Phi-4-mini-instruct-int4_asym-awq-se-ov/openvino_detokenizer.bin +3 -0
- Phi-4-mini-instruct-int4_asym-awq-se-ov/openvino_detokenizer.xml +219 -0
- Phi-4-mini-instruct-int4_asym-awq-se-ov/openvino_model.bin +3 -0
- Phi-4-mini-instruct-int4_asym-awq-se-ov/openvino_model.xml +0 -0
- Phi-4-mini-instruct-int4_asym-awq-se-ov/openvino_tokenizer.bin +3 -0
- Phi-4-mini-instruct-int4_asym-awq-se-ov/openvino_tokenizer.xml +685 -0
- Phi-4-mini-instruct-int4_asym-awq-se-ov/special_tokens_map.json +30 -0
- Phi-4-mini-instruct-int4_asym-awq-se-ov/tokenizer.json +3 -0
- Phi-4-mini-instruct-int4_asym-awq-se-ov/tokenizer_config.json +112 -0
- Phi-4-mini-instruct-int4_asym-awq-se-ov/vocab.json +0 -0
- Phi-4-mini-instruct-int4_asym-ov/added_tokens.json +12 -0
- Phi-4-mini-instruct-int4_asym-ov/config.json +144 -0
- Phi-4-mini-instruct-int4_asym-ov/generation_config.json +10 -0
- Phi-4-mini-instruct-int4_asym-ov/merges.txt +0 -0
- Phi-4-mini-instruct-int4_asym-ov/openvino_detokenizer.bin +3 -0
- Phi-4-mini-instruct-int4_asym-ov/openvino_detokenizer.xml +219 -0
- Phi-4-mini-instruct-int4_asym-ov/openvino_model.bin +3 -0
- Phi-4-mini-instruct-int4_asym-ov/openvino_model.xml +0 -0
- Phi-4-mini-instruct-int4_asym-ov/openvino_tokenizer.bin +3 -0
- Phi-4-mini-instruct-int4_asym-ov/openvino_tokenizer.xml +685 -0
- Phi-4-mini-instruct-int4_asym-ov/special_tokens_map.json +30 -0
- Phi-4-mini-instruct-int4_asym-ov/tokenizer.json +3 -0
- Phi-4-mini-instruct-int4_asym-ov/tokenizer_config.json +112 -0
- Phi-4-mini-instruct-int4_asym-ov/vocab.json +0 -0
- Phi-4-mini-instruct-int8_asym-ov/added_tokens.json +12 -0
- Phi-4-mini-instruct-int8_asym-ov/config.json +144 -0
- Phi-4-mini-instruct-int8_asym-ov/configuration_phi3.py +226 -0
- Phi-4-mini-instruct-int8_asym-ov/generation_config.json +10 -0
.gitattributes
CHANGED
@@ -38,3 +38,8 @@ fp16-ov/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
38 |
int4_asym-awq-se-ov/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
39 |
int4_asym-ov/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
40 |
int8_asym-ov/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
38 |
int4_asym-awq-se-ov/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
39 |
int4_asym-ov/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
40 |
int8_asym-ov/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
41 |
+
Phi-4-mini-instruct-fp16-ov/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
42 |
+
Phi-4-mini-instruct-int4_asym-awq-se-ov/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
43 |
+
Phi-4-mini-instruct-int4_asym-ov/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
44 |
+
Phi-4-mini-instruct-int8_asym-ov/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
45 |
+
Phi-4-mini-instruct-nf4-g64-awq-se-ov/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
Phi-4-mini-instruct-fp16-ov/added_tokens.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|/tool_call|>": 200026,
|
3 |
+
"<|/tool|>": 200024,
|
4 |
+
"<|assistant|>": 200019,
|
5 |
+
"<|end|>": 200020,
|
6 |
+
"<|system|>": 200022,
|
7 |
+
"<|tag|>": 200028,
|
8 |
+
"<|tool_call|>": 200025,
|
9 |
+
"<|tool_response|>": 200027,
|
10 |
+
"<|tool|>": 200023,
|
11 |
+
"<|user|>": 200021
|
12 |
+
}
|
Phi-4-mini-instruct-fp16-ov/config.json
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_attn_implementation_autoset": true,
|
3 |
+
"architectures": [
|
4 |
+
"Phi3ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_phi3.Phi3Config",
|
10 |
+
"AutoModelForCausalLM": "modeling_phi3.Phi3ForCausalLM",
|
11 |
+
"AutoTokenizer": "Xenova/gpt-4o"
|
12 |
+
},
|
13 |
+
"bos_token_id": 199999,
|
14 |
+
"embd_pdrop": 0.0,
|
15 |
+
"eos_token_id": 199999,
|
16 |
+
"full_attn_mod": 1,
|
17 |
+
"hidden_act": "silu",
|
18 |
+
"hidden_size": 3072,
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"intermediate_size": 8192,
|
21 |
+
"interpolate_factor": 1,
|
22 |
+
"lm_head_bias": false,
|
23 |
+
"max_position_embeddings": 131072,
|
24 |
+
"mlp_bias": false,
|
25 |
+
"model_type": "phi3",
|
26 |
+
"num_attention_heads": 24,
|
27 |
+
"num_hidden_layers": 32,
|
28 |
+
"num_key_value_heads": 8,
|
29 |
+
"original_max_position_embeddings": 4096,
|
30 |
+
"pad_token_id": 199999,
|
31 |
+
"partial_rotary_factor": 0.75,
|
32 |
+
"resid_pdrop": 0.0,
|
33 |
+
"rms_norm_eps": 1e-05,
|
34 |
+
"rope_scaling": {
|
35 |
+
"long_factor": [
|
36 |
+
1,
|
37 |
+
1.118320672,
|
38 |
+
1.250641126,
|
39 |
+
1.398617824,
|
40 |
+
1.564103225,
|
41 |
+
1.74916897,
|
42 |
+
1.956131817,
|
43 |
+
2.187582649,
|
44 |
+
2.446418898,
|
45 |
+
2.735880826,
|
46 |
+
3.059592084,
|
47 |
+
3.421605075,
|
48 |
+
3.826451687,
|
49 |
+
4.279200023,
|
50 |
+
4.785517845,
|
51 |
+
5.351743533,
|
52 |
+
5.984965424,
|
53 |
+
6.693110555,
|
54 |
+
7.485043894,
|
55 |
+
8.370679318,
|
56 |
+
9.36110372,
|
57 |
+
10.4687158,
|
58 |
+
11.70738129,
|
59 |
+
13.09260651,
|
60 |
+
14.64173252,
|
61 |
+
16.37415215,
|
62 |
+
18.31155283,
|
63 |
+
20.47818807,
|
64 |
+
22.90118105,
|
65 |
+
25.61086418,
|
66 |
+
28.64115884,
|
67 |
+
32.03,
|
68 |
+
32.1,
|
69 |
+
32.13,
|
70 |
+
32.23,
|
71 |
+
32.6,
|
72 |
+
32.61,
|
73 |
+
32.64,
|
74 |
+
32.66,
|
75 |
+
32.7,
|
76 |
+
32.71,
|
77 |
+
32.93,
|
78 |
+
32.97,
|
79 |
+
33.28,
|
80 |
+
33.49,
|
81 |
+
33.5,
|
82 |
+
44.16,
|
83 |
+
47.77
|
84 |
+
],
|
85 |
+
"short_factor": [
|
86 |
+
1.0,
|
87 |
+
1.0,
|
88 |
+
1.0,
|
89 |
+
1.0,
|
90 |
+
1.0,
|
91 |
+
1.0,
|
92 |
+
1.0,
|
93 |
+
1.0,
|
94 |
+
1.0,
|
95 |
+
1.0,
|
96 |
+
1.0,
|
97 |
+
1.0,
|
98 |
+
1.0,
|
99 |
+
1.0,
|
100 |
+
1.0,
|
101 |
+
1.0,
|
102 |
+
1.0,
|
103 |
+
1.0,
|
104 |
+
1.0,
|
105 |
+
1.0,
|
106 |
+
1.0,
|
107 |
+
1.0,
|
108 |
+
1.0,
|
109 |
+
1.0,
|
110 |
+
1.0,
|
111 |
+
1.0,
|
112 |
+
1.0,
|
113 |
+
1.0,
|
114 |
+
1.0,
|
115 |
+
1.0,
|
116 |
+
1.0,
|
117 |
+
1.0,
|
118 |
+
1.0,
|
119 |
+
1.0,
|
120 |
+
1.0,
|
121 |
+
1.0,
|
122 |
+
1.0,
|
123 |
+
1.0,
|
124 |
+
1.0,
|
125 |
+
1.0,
|
126 |
+
1.0,
|
127 |
+
1.0,
|
128 |
+
1.0,
|
129 |
+
1.0,
|
130 |
+
1.0,
|
131 |
+
1.0,
|
132 |
+
1.0,
|
133 |
+
1.0
|
134 |
+
],
|
135 |
+
"type": "longrope"
|
136 |
+
},
|
137 |
+
"rope_theta": 10000.0,
|
138 |
+
"sliding_window": 262144,
|
139 |
+
"tie_word_embeddings": true,
|
140 |
+
"torch_dtype": "float16",
|
141 |
+
"transformers_version": "4.51.3",
|
142 |
+
"use_cache": true,
|
143 |
+
"vocab_size": 200064
|
144 |
+
}
|
Phi-4-mini-instruct-fp16-ov/configuration_phi3.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""Phi-3 model configuration"""
|
17 |
+
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
class Phi3Config(PretrainedConfig):
|
26 |
+
r"""
|
27 |
+
This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
|
28 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
29 |
+
defaults will yield a similar configuration to that of the
|
30 |
+
[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
|
31 |
+
|
32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
33 |
+
documentation from [`PretrainedConfig`] for more information.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
vocab_size (`int`, *optional*, defaults to 32064):
|
37 |
+
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
|
38 |
+
`inputs_ids` passed when calling [`Phi3Model`].
|
39 |
+
hidden_size (`int`, *optional*, defaults to 3072):
|
40 |
+
Dimension of the hidden representations.
|
41 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
42 |
+
Dimension of the MLP representations.
|
43 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
44 |
+
Number of hidden layers in the Transformer decoder.
|
45 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
46 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
47 |
+
num_key_value_heads (`int`, *optional*):
|
48 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
49 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
50 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
51 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
52 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
53 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
54 |
+
`num_attention_heads`.
|
55 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
56 |
+
Dropout probability for mlp outputs.
|
57 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
58 |
+
The dropout ratio for the embeddings.
|
59 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
60 |
+
The dropout ratio after computing the attention scores.
|
61 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
62 |
+
The non-linear activation function (function or string) in the decoder.
|
63 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
64 |
+
The maximum sequence length that this model might ever be used with.
|
65 |
+
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
|
66 |
+
The maximum sequence length that this model was trained with. This is used to determine the size of the
|
67 |
+
original RoPE embeddings when using long scaling.
|
68 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
69 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
70 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
71 |
+
The epsilon value used for the RMSNorm.
|
72 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
73 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
74 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
75 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
76 |
+
Whether to tie weight embeddings
|
77 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
78 |
+
The base period of the RoPE embeddings.
|
79 |
+
rope_scaling (`dict`, *optional*):
|
80 |
+
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
|
81 |
+
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
|
82 |
+
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
|
83 |
+
divided by the number of attention heads divided by 2.
|
84 |
+
partial_rotary_factor (`float`, *optional*, defaults to 1.0):
|
85 |
+
Percentage of the query and keys which will have rotary embedding. Must be between 0.0 and 1.0.
|
86 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
87 |
+
The id of the "beginning-of-sequence" token.
|
88 |
+
eos_token_id (`int`, *optional*, defaults to 32000):
|
89 |
+
The id of the "end-of-sequence" token.
|
90 |
+
pad_token_id (`int`, *optional*, defaults to 32000):
|
91 |
+
The id of the padding token.
|
92 |
+
sliding_window (`int`, *optional*):
|
93 |
+
Sliding window attention window size. If `None`, no sliding window is applied.
|
94 |
+
|
95 |
+
Example:
|
96 |
+
|
97 |
+
```python
|
98 |
+
>>> from transformers import Phi3Model, Phi3Config
|
99 |
+
|
100 |
+
>>> # Initializing a Phi-3 style configuration
|
101 |
+
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
102 |
+
|
103 |
+
>>> # Initializing a model from the configuration
|
104 |
+
>>> model = Phi3Model(configuration)
|
105 |
+
|
106 |
+
>>> # Accessing the model configuration
|
107 |
+
>>> configuration = model.config
|
108 |
+
```"""
|
109 |
+
|
110 |
+
model_type = "phi3"
|
111 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
112 |
+
|
113 |
+
def __init__(
|
114 |
+
self,
|
115 |
+
vocab_size=32064,
|
116 |
+
hidden_size=3072,
|
117 |
+
intermediate_size=8192,
|
118 |
+
num_hidden_layers=32,
|
119 |
+
num_attention_heads=32,
|
120 |
+
num_key_value_heads=None,
|
121 |
+
resid_pdrop=0.0,
|
122 |
+
embd_pdrop=0.0,
|
123 |
+
attention_dropout=0.0,
|
124 |
+
hidden_act="silu",
|
125 |
+
max_position_embeddings=4096,
|
126 |
+
original_max_position_embeddings=4096,
|
127 |
+
initializer_range=0.02,
|
128 |
+
rms_norm_eps=1e-5,
|
129 |
+
use_cache=True,
|
130 |
+
tie_word_embeddings=False,
|
131 |
+
rope_theta=10000.0,
|
132 |
+
rope_scaling=None,
|
133 |
+
partial_rotary_factor=1.0,
|
134 |
+
bos_token_id=1,
|
135 |
+
eos_token_id=32000,
|
136 |
+
pad_token_id=32000,
|
137 |
+
sliding_window=None,
|
138 |
+
**kwargs,
|
139 |
+
):
|
140 |
+
self.vocab_size = vocab_size
|
141 |
+
self.hidden_size = hidden_size
|
142 |
+
self.intermediate_size = intermediate_size
|
143 |
+
self.num_hidden_layers = num_hidden_layers
|
144 |
+
self.num_attention_heads = num_attention_heads
|
145 |
+
|
146 |
+
if num_key_value_heads is None:
|
147 |
+
num_key_value_heads = num_attention_heads
|
148 |
+
|
149 |
+
self.num_key_value_heads = num_key_value_heads
|
150 |
+
self.resid_pdrop = resid_pdrop
|
151 |
+
self.embd_pdrop = embd_pdrop
|
152 |
+
self.attention_dropout = attention_dropout
|
153 |
+
self.hidden_act = hidden_act
|
154 |
+
self.max_position_embeddings = max_position_embeddings
|
155 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
156 |
+
self.initializer_range = initializer_range
|
157 |
+
self.rms_norm_eps = rms_norm_eps
|
158 |
+
self.use_cache = use_cache
|
159 |
+
self.rope_theta = rope_theta
|
160 |
+
self.rope_scaling = rope_scaling
|
161 |
+
self.partial_rotary_factor = partial_rotary_factor
|
162 |
+
self._rope_scaling_adjustment()
|
163 |
+
self._rope_scaling_validation()
|
164 |
+
self.sliding_window = sliding_window
|
165 |
+
|
166 |
+
super().__init__(
|
167 |
+
bos_token_id=bos_token_id,
|
168 |
+
eos_token_id=eos_token_id,
|
169 |
+
pad_token_id=pad_token_id,
|
170 |
+
tie_word_embeddings=tie_word_embeddings,
|
171 |
+
**kwargs,
|
172 |
+
)
|
173 |
+
|
174 |
+
def _rope_scaling_adjustment(self):
|
175 |
+
"""
|
176 |
+
Adjust the `type` of the `rope_scaling` configuration for backward compatibility.
|
177 |
+
"""
|
178 |
+
if self.rope_scaling is None:
|
179 |
+
return
|
180 |
+
|
181 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
182 |
+
|
183 |
+
# For backward compatibility if previous version used "su" or "yarn"
|
184 |
+
if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]:
|
185 |
+
self.rope_scaling["type"] = "longrope"
|
186 |
+
|
187 |
+
def _rope_scaling_validation(self):
|
188 |
+
"""
|
189 |
+
Validate the `rope_scaling` configuration.
|
190 |
+
"""
|
191 |
+
if self.rope_scaling is None:
|
192 |
+
return
|
193 |
+
|
194 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
|
195 |
+
raise ValueError(
|
196 |
+
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
|
197 |
+
f"got {self.rope_scaling}"
|
198 |
+
)
|
199 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
200 |
+
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
|
201 |
+
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
|
202 |
+
if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
|
203 |
+
raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
|
204 |
+
if not (
|
205 |
+
isinstance(rope_scaling_short_factor, list)
|
206 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
|
207 |
+
):
|
208 |
+
raise ValueError(
|
209 |
+
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
|
210 |
+
)
|
211 |
+
rotary_ndims = int(self.hidden_size // self.num_attention_heads * self.partial_rotary_factor)
|
212 |
+
if not len(rope_scaling_short_factor) == rotary_ndims // 2:
|
213 |
+
raise ValueError(
|
214 |
+
f"`rope_scaling`'s short_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_short_factor)}"
|
215 |
+
)
|
216 |
+
if not (
|
217 |
+
isinstance(rope_scaling_long_factor, list)
|
218 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
|
219 |
+
):
|
220 |
+
raise ValueError(
|
221 |
+
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
|
222 |
+
)
|
223 |
+
if not len(rope_scaling_long_factor) == rotary_ndims // 2:
|
224 |
+
raise ValueError(
|
225 |
+
f"`rope_scaling`'s long_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_long_factor)}"
|
226 |
+
)
|
Phi-4-mini-instruct-fp16-ov/generation_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 199999,
|
4 |
+
"eos_token_id": [
|
5 |
+
200020,
|
6 |
+
199999
|
7 |
+
],
|
8 |
+
"pad_token_id": 199999,
|
9 |
+
"transformers_version": "4.51.3"
|
10 |
+
}
|
Phi-4-mini-instruct-fp16-ov/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Phi-4-mini-instruct-fp16-ov/openvino_detokenizer.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58ec20da66d1d780b298f3cdcf252ccc0e228636fc7bee219163af81f1837e0a
|
3 |
+
size 2998349
|
Phi-4-mini-instruct-fp16-ov/openvino_detokenizer.xml
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<net name="detokenizer" version="11">
|
3 |
+
<layers>
|
4 |
+
<layer id="0" name="Parameter_172325" type="Parameter" version="opset1">
|
5 |
+
<data shape="?,?" element_type="i64" />
|
6 |
+
<output>
|
7 |
+
<port id="0" precision="I64" names="Parameter_172325">
|
8 |
+
<dim>-1</dim>
|
9 |
+
<dim>-1</dim>
|
10 |
+
</port>
|
11 |
+
</output>
|
12 |
+
</layer>
|
13 |
+
<layer id="1" name="Convert_172495" type="Convert" version="opset1">
|
14 |
+
<data destination_type="i32" />
|
15 |
+
<input>
|
16 |
+
<port id="0" precision="I64">
|
17 |
+
<dim>-1</dim>
|
18 |
+
<dim>-1</dim>
|
19 |
+
</port>
|
20 |
+
</input>
|
21 |
+
<output>
|
22 |
+
<port id="1" precision="I32">
|
23 |
+
<dim>-1</dim>
|
24 |
+
<dim>-1</dim>
|
25 |
+
</port>
|
26 |
+
</output>
|
27 |
+
</layer>
|
28 |
+
<layer id="2" name="Constant_172327" type="Const" version="opset1">
|
29 |
+
<data element_type="i32" shape="200029" offset="0" size="800116" />
|
30 |
+
<output>
|
31 |
+
<port id="0" precision="I32">
|
32 |
+
<dim>200029</dim>
|
33 |
+
</port>
|
34 |
+
</output>
|
35 |
+
</layer>
|
36 |
+
<layer id="3" name="Constant_172329" type="Const" version="opset1">
|
37 |
+
<data element_type="i32" shape="200029" offset="800116" size="800116" />
|
38 |
+
<output>
|
39 |
+
<port id="0" precision="I32">
|
40 |
+
<dim>200029</dim>
|
41 |
+
</port>
|
42 |
+
</output>
|
43 |
+
</layer>
|
44 |
+
<layer id="4" name="Constant_172331" type="Const" version="opset1">
|
45 |
+
<data element_type="u8" shape="1398089" offset="1600232" size="1398089" />
|
46 |
+
<output>
|
47 |
+
<port id="0" precision="U8">
|
48 |
+
<dim>1398089</dim>
|
49 |
+
</port>
|
50 |
+
</output>
|
51 |
+
</layer>
|
52 |
+
<layer id="5" name="Slice_172336" type="Const" version="opset1">
|
53 |
+
<data element_type="i32" shape="7" offset="2998321" size="28" />
|
54 |
+
<output>
|
55 |
+
<port id="0" precision="I32">
|
56 |
+
<dim>7</dim>
|
57 |
+
</port>
|
58 |
+
</output>
|
59 |
+
</layer>
|
60 |
+
<layer id="6" name="VocabDecoder_172338" type="VocabDecoder" version="extension">
|
61 |
+
<data skip_tokens="" />
|
62 |
+
<input>
|
63 |
+
<port id="0" precision="I32">
|
64 |
+
<dim>-1</dim>
|
65 |
+
<dim>-1</dim>
|
66 |
+
</port>
|
67 |
+
<port id="1" precision="I32">
|
68 |
+
<dim>200029</dim>
|
69 |
+
</port>
|
70 |
+
<port id="2" precision="I32">
|
71 |
+
<dim>200029</dim>
|
72 |
+
</port>
|
73 |
+
<port id="3" precision="U8">
|
74 |
+
<dim>1398089</dim>
|
75 |
+
</port>
|
76 |
+
<port id="4" precision="I32">
|
77 |
+
<dim>7</dim>
|
78 |
+
</port>
|
79 |
+
</input>
|
80 |
+
<output>
|
81 |
+
<port id="5" precision="I32">
|
82 |
+
<dim>-1</dim>
|
83 |
+
</port>
|
84 |
+
<port id="6" precision="I32">
|
85 |
+
<dim>-1</dim>
|
86 |
+
</port>
|
87 |
+
<port id="7" precision="I32">
|
88 |
+
<dim>-1</dim>
|
89 |
+
</port>
|
90 |
+
<port id="8" precision="I32">
|
91 |
+
<dim>-1</dim>
|
92 |
+
</port>
|
93 |
+
<port id="9" precision="U8">
|
94 |
+
<dim>-1</dim>
|
95 |
+
</port>
|
96 |
+
</output>
|
97 |
+
</layer>
|
98 |
+
<layer id="7" name="FuzeRagged_172339" type="FuzeRagged" version="extension">
|
99 |
+
<input>
|
100 |
+
<port id="0" precision="I32">
|
101 |
+
<dim>-1</dim>
|
102 |
+
</port>
|
103 |
+
<port id="1" precision="I32">
|
104 |
+
<dim>-1</dim>
|
105 |
+
</port>
|
106 |
+
<port id="2" precision="I32">
|
107 |
+
<dim>-1</dim>
|
108 |
+
</port>
|
109 |
+
<port id="3" precision="I32">
|
110 |
+
<dim>-1</dim>
|
111 |
+
</port>
|
112 |
+
</input>
|
113 |
+
<output>
|
114 |
+
<port id="4" precision="I32">
|
115 |
+
<dim>-1</dim>
|
116 |
+
</port>
|
117 |
+
<port id="5" precision="I32">
|
118 |
+
<dim>-1</dim>
|
119 |
+
</port>
|
120 |
+
</output>
|
121 |
+
</layer>
|
122 |
+
<layer id="8" name="UTF8Validate_172340" type="UTF8Validate" version="extension">
|
123 |
+
<data replace_mode="true" />
|
124 |
+
<input>
|
125 |
+
<port id="0" precision="I32">
|
126 |
+
<dim>-1</dim>
|
127 |
+
</port>
|
128 |
+
<port id="1" precision="I32">
|
129 |
+
<dim>-1</dim>
|
130 |
+
</port>
|
131 |
+
<port id="2" precision="U8">
|
132 |
+
<dim>-1</dim>
|
133 |
+
</port>
|
134 |
+
</input>
|
135 |
+
<output>
|
136 |
+
<port id="3" precision="I32">
|
137 |
+
<dim>-1</dim>
|
138 |
+
</port>
|
139 |
+
<port id="4" precision="I32">
|
140 |
+
<dim>-1</dim>
|
141 |
+
</port>
|
142 |
+
<port id="5" precision="U8">
|
143 |
+
<dim>-1</dim>
|
144 |
+
</port>
|
145 |
+
</output>
|
146 |
+
</layer>
|
147 |
+
<layer id="9" name="StringTensorPack_172341" type="StringTensorPack" version="opset15">
|
148 |
+
<input>
|
149 |
+
<port id="0" precision="I32">
|
150 |
+
<dim>-1</dim>
|
151 |
+
</port>
|
152 |
+
<port id="1" precision="I32">
|
153 |
+
<dim>-1</dim>
|
154 |
+
</port>
|
155 |
+
<port id="2" precision="U8">
|
156 |
+
<dim>-1</dim>
|
157 |
+
</port>
|
158 |
+
</input>
|
159 |
+
<output>
|
160 |
+
<port id="3" precision="STRING" names="Result_172342,string_output">
|
161 |
+
<dim>-1</dim>
|
162 |
+
</port>
|
163 |
+
</output>
|
164 |
+
</layer>
|
165 |
+
<layer id="10" name="Result_172342" type="Result" version="opset1" output_names="Result_172342,string_output">
|
166 |
+
<input>
|
167 |
+
<port id="0" precision="STRING">
|
168 |
+
<dim>-1</dim>
|
169 |
+
</port>
|
170 |
+
</input>
|
171 |
+
</layer>
|
172 |
+
</layers>
|
173 |
+
<edges>
|
174 |
+
<edge from-layer="0" from-port="0" to-layer="1" to-port="0" />
|
175 |
+
<edge from-layer="1" from-port="1" to-layer="6" to-port="0" />
|
176 |
+
<edge from-layer="2" from-port="0" to-layer="6" to-port="1" />
|
177 |
+
<edge from-layer="3" from-port="0" to-layer="6" to-port="2" />
|
178 |
+
<edge from-layer="4" from-port="0" to-layer="6" to-port="3" />
|
179 |
+
<edge from-layer="5" from-port="0" to-layer="6" to-port="4" />
|
180 |
+
<edge from-layer="6" from-port="7" to-layer="7" to-port="2" />
|
181 |
+
<edge from-layer="6" from-port="9" to-layer="8" to-port="2" />
|
182 |
+
<edge from-layer="6" from-port="8" to-layer="7" to-port="3" />
|
183 |
+
<edge from-layer="6" from-port="6" to-layer="7" to-port="1" />
|
184 |
+
<edge from-layer="6" from-port="5" to-layer="7" to-port="0" />
|
185 |
+
<edge from-layer="7" from-port="4" to-layer="8" to-port="0" />
|
186 |
+
<edge from-layer="7" from-port="5" to-layer="8" to-port="1" />
|
187 |
+
<edge from-layer="8" from-port="3" to-layer="9" to-port="0" />
|
188 |
+
<edge from-layer="8" from-port="4" to-layer="9" to-port="1" />
|
189 |
+
<edge from-layer="8" from-port="5" to-layer="9" to-port="2" />
|
190 |
+
<edge from-layer="9" from-port="3" to-layer="10" to-port="0" />
|
191 |
+
</edges>
|
192 |
+
<rt_info>
|
193 |
+
<add_attention_mask value="True" />
|
194 |
+
<add_prefix_space />
|
195 |
+
<add_special_tokens value="True" />
|
196 |
+
<bos_token_id value="199999" />
|
197 |
+
<chat_template value="{% for message in messages %}{% if message['role'] == 'system' and 'tools' in message and message['tools'] is not none %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|tool|>' + message['tools'] + '<|/tool|>' + '<|end|>' }}{% else %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|end|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>' }}{% else %}{{ eos_token }}{% endif %}" />
|
198 |
+
<clean_up_tokenization_spaces />
|
199 |
+
<detokenizer_input_type value="i64" />
|
200 |
+
<eos_token_id value="199999" />
|
201 |
+
<handle_special_tokens_with_re />
|
202 |
+
<max_length />
|
203 |
+
<number_of_inputs value="1" />
|
204 |
+
<openvino_tokenizers_version value="2025.1.0.0-523-710ddf14de8" />
|
205 |
+
<openvino_version value="2025.1.0-18503-6fec06580ab-releases/2025/1" />
|
206 |
+
<original_tokenizer_class value="<class 'transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast'>" />
|
207 |
+
<pad_token_id value="199999" />
|
208 |
+
<sentencepiece_version value="0.2.0" />
|
209 |
+
<skip_special_tokens value="True" />
|
210 |
+
<streaming_detokenizer value="False" />
|
211 |
+
<tokenizer_output_type value="i64" />
|
212 |
+
<tokenizers_version value="0.21.1" />
|
213 |
+
<transformers_version value="4.51.3" />
|
214 |
+
<use_max_padding value="False" />
|
215 |
+
<use_sentencepiece_backend value="False" />
|
216 |
+
<utf8_replace_mode value="replace" />
|
217 |
+
<with_detokenizer value="True" />
|
218 |
+
</rt_info>
|
219 |
+
</net>
|
Phi-4-mini-instruct-fp16-ov/openvino_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b3c2cb44b725fa41ef90a482f20fd0c6ca2656a80b7869e6c9bee94a10c9e82
|
3 |
+
size 7672043906
|
Phi-4-mini-instruct-fp16-ov/openvino_model.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Phi-4-mini-instruct-fp16-ov/openvino_tokenizer.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:818537d6633196e2f45e51017a6320010ca3c06120460c14028a6c325f92f477
|
3 |
+
size 7602768
|
Phi-4-mini-instruct-fp16-ov/openvino_tokenizer.xml
ADDED
@@ -0,0 +1,685 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<net name="tokenizer" version="11">
|
3 |
+
<layers>
|
4 |
+
<layer id="0" name="Parameter_172207" type="Parameter" version="opset1">
|
5 |
+
<data shape="?" element_type="string" />
|
6 |
+
<output>
|
7 |
+
<port id="0" precision="STRING" names="Parameter_172207">
|
8 |
+
<dim>-1</dim>
|
9 |
+
</port>
|
10 |
+
</output>
|
11 |
+
</layer>
|
12 |
+
<layer id="1" name="Constant_172213" type="Const" version="opset1">
|
13 |
+
<data element_type="i64" shape="" offset="0" size="8" />
|
14 |
+
<output>
|
15 |
+
<port id="0" precision="I64" />
|
16 |
+
</output>
|
17 |
+
</layer>
|
18 |
+
<layer id="2" name="StringTensorUnpack_172208" type="StringTensorUnpack" version="opset15">
|
19 |
+
<input>
|
20 |
+
<port id="0" precision="STRING">
|
21 |
+
<dim>-1</dim>
|
22 |
+
</port>
|
23 |
+
</input>
|
24 |
+
<output>
|
25 |
+
<port id="1" precision="I32">
|
26 |
+
<dim>-1</dim>
|
27 |
+
</port>
|
28 |
+
<port id="2" precision="I32">
|
29 |
+
<dim>-1</dim>
|
30 |
+
</port>
|
31 |
+
<port id="3" precision="U8">
|
32 |
+
<dim>-1</dim>
|
33 |
+
</port>
|
34 |
+
</output>
|
35 |
+
</layer>
|
36 |
+
<layer id="3" name="ShapeOf_172209" type="ShapeOf" version="opset3">
|
37 |
+
<data output_type="i64" />
|
38 |
+
<input>
|
39 |
+
<port id="0" precision="I32">
|
40 |
+
<dim>-1</dim>
|
41 |
+
</port>
|
42 |
+
</input>
|
43 |
+
<output>
|
44 |
+
<port id="1" precision="I64">
|
45 |
+
<dim>1</dim>
|
46 |
+
</port>
|
47 |
+
</output>
|
48 |
+
</layer>
|
49 |
+
<layer id="4" name="Constant_172210" type="Const" version="opset1">
|
50 |
+
<data element_type="i64" shape="" offset="0" size="8" />
|
51 |
+
<output>
|
52 |
+
<port id="0" precision="I64" />
|
53 |
+
</output>
|
54 |
+
</layer>
|
55 |
+
<layer id="5" name="Constant_172211" type="Const" version="opset1">
|
56 |
+
<data element_type="i64" shape="" offset="0" size="8" />
|
57 |
+
<output>
|
58 |
+
<port id="0" precision="I64" />
|
59 |
+
</output>
|
60 |
+
</layer>
|
61 |
+
<layer id="6" name="Gather_172212" type="Gather" version="opset8">
|
62 |
+
<data batch_dims="0" />
|
63 |
+
<input>
|
64 |
+
<port id="0" precision="I64">
|
65 |
+
<dim>1</dim>
|
66 |
+
</port>
|
67 |
+
<port id="1" precision="I64" />
|
68 |
+
<port id="2" precision="I64" />
|
69 |
+
</input>
|
70 |
+
<output>
|
71 |
+
<port id="3" precision="I64" />
|
72 |
+
</output>
|
73 |
+
</layer>
|
74 |
+
<layer id="7" name="Constant_172214" type="Const" version="opset1">
|
75 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
76 |
+
<output>
|
77 |
+
<port id="0" precision="I64" />
|
78 |
+
</output>
|
79 |
+
</layer>
|
80 |
+
<layer id="8" name="Range_172215" type="Range" version="opset4">
|
81 |
+
<data output_type="i32" />
|
82 |
+
<input>
|
83 |
+
<port id="0" precision="I64" />
|
84 |
+
<port id="1" precision="I64" />
|
85 |
+
<port id="2" precision="I64" />
|
86 |
+
</input>
|
87 |
+
<output>
|
88 |
+
<port id="3" precision="I32">
|
89 |
+
<dim>-1</dim>
|
90 |
+
</port>
|
91 |
+
</output>
|
92 |
+
</layer>
|
93 |
+
<layer id="9" name="Constant_172216" type="Const" version="opset1">
|
94 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
95 |
+
<output>
|
96 |
+
<port id="0" precision="I64" />
|
97 |
+
</output>
|
98 |
+
</layer>
|
99 |
+
<layer id="10" name="Constant_172217" type="Const" version="opset1">
|
100 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
101 |
+
<output>
|
102 |
+
<port id="0" precision="I64" />
|
103 |
+
</output>
|
104 |
+
</layer>
|
105 |
+
<layer id="11" name="Add_172218" type="Add" version="opset1">
|
106 |
+
<data auto_broadcast="numpy" />
|
107 |
+
<input>
|
108 |
+
<port id="0" precision="I64" />
|
109 |
+
<port id="1" precision="I64" />
|
110 |
+
</input>
|
111 |
+
<output>
|
112 |
+
<port id="2" precision="I64" />
|
113 |
+
</output>
|
114 |
+
</layer>
|
115 |
+
<layer id="12" name="Constant_172219" type="Const" version="opset1">
|
116 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
117 |
+
<output>
|
118 |
+
<port id="0" precision="I64" />
|
119 |
+
</output>
|
120 |
+
</layer>
|
121 |
+
<layer id="13" name="Range_172220" type="Range" version="opset4">
|
122 |
+
<data output_type="i32" />
|
123 |
+
<input>
|
124 |
+
<port id="0" precision="I64" />
|
125 |
+
<port id="1" precision="I64" />
|
126 |
+
<port id="2" precision="I64" />
|
127 |
+
</input>
|
128 |
+
<output>
|
129 |
+
<port id="3" precision="I32">
|
130 |
+
<dim>-1</dim>
|
131 |
+
</port>
|
132 |
+
</output>
|
133 |
+
</layer>
|
134 |
+
<layer id="14" name="Constant_172282" type="Const" version="opset1">
|
135 |
+
<data element_type="u8" shape="289" offset="16" size="289" />
|
136 |
+
<output>
|
137 |
+
<port id="0" precision="U8">
|
138 |
+
<dim>289</dim>
|
139 |
+
</port>
|
140 |
+
</output>
|
141 |
+
</layer>
|
142 |
+
<layer id="15" name="SpecialTokensSplit_172283" type="SpecialTokensSplit" version="extension">
|
143 |
+
<input>
|
144 |
+
<port id="0" precision="I32">
|
145 |
+
<dim>-1</dim>
|
146 |
+
</port>
|
147 |
+
<port id="1" precision="I32">
|
148 |
+
<dim>-1</dim>
|
149 |
+
</port>
|
150 |
+
<port id="2" precision="I32">
|
151 |
+
<dim>-1</dim>
|
152 |
+
</port>
|
153 |
+
<port id="3" precision="I32">
|
154 |
+
<dim>-1</dim>
|
155 |
+
</port>
|
156 |
+
<port id="4" precision="U8">
|
157 |
+
<dim>-1</dim>
|
158 |
+
</port>
|
159 |
+
<port id="5" precision="U8">
|
160 |
+
<dim>289</dim>
|
161 |
+
</port>
|
162 |
+
</input>
|
163 |
+
<output>
|
164 |
+
<port id="6" precision="I32">
|
165 |
+
<dim>-1</dim>
|
166 |
+
</port>
|
167 |
+
<port id="7" precision="I32">
|
168 |
+
<dim>-1</dim>
|
169 |
+
</port>
|
170 |
+
<port id="8" precision="I32">
|
171 |
+
<dim>-1</dim>
|
172 |
+
</port>
|
173 |
+
<port id="9" precision="I32">
|
174 |
+
<dim>-1</dim>
|
175 |
+
</port>
|
176 |
+
<port id="10" precision="U8">
|
177 |
+
<dim>-1</dim>
|
178 |
+
</port>
|
179 |
+
<port id="11" precision="BOOL">
|
180 |
+
<dim>-1</dim>
|
181 |
+
</port>
|
182 |
+
</output>
|
183 |
+
</layer>
|
184 |
+
<layer id="16" name="Constant_172285" type="Const" version="opset1">
|
185 |
+
<data element_type="u8" shape="274" offset="305" size="274" />
|
186 |
+
<output>
|
187 |
+
<port id="0" precision="U8">
|
188 |
+
<dim>274</dim>
|
189 |
+
</port>
|
190 |
+
</output>
|
191 |
+
</layer>
|
192 |
+
<layer id="17" name="RegexSplit_172286" type="RegexSplit" version="extension">
|
193 |
+
<data behaviour="remove" invert="true" max_splits="-1" />
|
194 |
+
<input>
|
195 |
+
<port id="0" precision="I32">
|
196 |
+
<dim>-1</dim>
|
197 |
+
</port>
|
198 |
+
<port id="1" precision="I32">
|
199 |
+
<dim>-1</dim>
|
200 |
+
</port>
|
201 |
+
<port id="2" precision="I32">
|
202 |
+
<dim>-1</dim>
|
203 |
+
</port>
|
204 |
+
<port id="3" precision="I32">
|
205 |
+
<dim>-1</dim>
|
206 |
+
</port>
|
207 |
+
<port id="4" precision="U8">
|
208 |
+
<dim>-1</dim>
|
209 |
+
</port>
|
210 |
+
<port id="5" precision="BOOL">
|
211 |
+
<dim>-1</dim>
|
212 |
+
</port>
|
213 |
+
<port id="6" precision="U8">
|
214 |
+
<dim>274</dim>
|
215 |
+
</port>
|
216 |
+
</input>
|
217 |
+
<output>
|
218 |
+
<port id="7" precision="I32">
|
219 |
+
<dim>-1</dim>
|
220 |
+
</port>
|
221 |
+
<port id="8" precision="I32">
|
222 |
+
<dim>-1</dim>
|
223 |
+
</port>
|
224 |
+
<port id="9" precision="I32">
|
225 |
+
<dim>-1</dim>
|
226 |
+
</port>
|
227 |
+
<port id="10" precision="I32">
|
228 |
+
<dim>-1</dim>
|
229 |
+
</port>
|
230 |
+
<port id="11" precision="U8">
|
231 |
+
<dim>-1</dim>
|
232 |
+
</port>
|
233 |
+
<port id="12" precision="BOOL">
|
234 |
+
<dim>-1</dim>
|
235 |
+
</port>
|
236 |
+
</output>
|
237 |
+
</layer>
|
238 |
+
<layer id="18" name="Constant_172288" type="Const" version="opset1">
|
239 |
+
<data element_type="i32" shape="200029" offset="579" size="800116" />
|
240 |
+
<output>
|
241 |
+
<port id="0" precision="I32">
|
242 |
+
<dim>200029</dim>
|
243 |
+
</port>
|
244 |
+
</output>
|
245 |
+
</layer>
|
246 |
+
<layer id="19" name="Constant_172290" type="Const" version="opset1">
|
247 |
+
<data element_type="i32" shape="200029" offset="800695" size="800116" />
|
248 |
+
<output>
|
249 |
+
<port id="0" precision="I32">
|
250 |
+
<dim>200029</dim>
|
251 |
+
</port>
|
252 |
+
</output>
|
253 |
+
</layer>
|
254 |
+
<layer id="20" name="Constant_172292" type="Const" version="opset1">
|
255 |
+
<data element_type="u8" shape="1398109" offset="1600811" size="1398109" />
|
256 |
+
<output>
|
257 |
+
<port id="0" precision="U8">
|
258 |
+
<dim>1398109</dim>
|
259 |
+
</port>
|
260 |
+
</output>
|
261 |
+
</layer>
|
262 |
+
<layer id="21" name="Constant_172300" type="Const" version="opset1">
|
263 |
+
<data element_type="i32" shape="199742" offset="2998920" size="798968" />
|
264 |
+
<output>
|
265 |
+
<port id="0" precision="I32">
|
266 |
+
<dim>199742</dim>
|
267 |
+
</port>
|
268 |
+
</output>
|
269 |
+
</layer>
|
270 |
+
<layer id="22" name="Constant_172302" type="Const" version="opset1">
|
271 |
+
<data element_type="i32" shape="199742" offset="3797888" size="798968" />
|
272 |
+
<output>
|
273 |
+
<port id="0" precision="I32">
|
274 |
+
<dim>199742</dim>
|
275 |
+
</port>
|
276 |
+
</output>
|
277 |
+
</layer>
|
278 |
+
<layer id="23" name="Constant_172304" type="Const" version="opset1">
|
279 |
+
<data element_type="u8" shape="718313" offset="4596856" size="718313" />
|
280 |
+
<output>
|
281 |
+
<port id="0" precision="U8">
|
282 |
+
<dim>718313</dim>
|
283 |
+
</port>
|
284 |
+
</output>
|
285 |
+
</layer>
|
286 |
+
<layer id="24" name="Constant_172306" type="Const" version="opset1">
|
287 |
+
<data element_type="i32" shape="199742" offset="5315169" size="798968" />
|
288 |
+
<output>
|
289 |
+
<port id="0" precision="I32">
|
290 |
+
<dim>199742</dim>
|
291 |
+
</port>
|
292 |
+
</output>
|
293 |
+
</layer>
|
294 |
+
<layer id="25" name="Constant_172308" type="Const" version="opset1">
|
295 |
+
<data element_type="i32" shape="199742" offset="6114137" size="798968" />
|
296 |
+
<output>
|
297 |
+
<port id="0" precision="I32">
|
298 |
+
<dim>199742</dim>
|
299 |
+
</port>
|
300 |
+
</output>
|
301 |
+
</layer>
|
302 |
+
<layer id="26" name="Constant_172310" type="Const" version="opset1">
|
303 |
+
<data element_type="u8" shape="679101" offset="6913105" size="679101" />
|
304 |
+
<output>
|
305 |
+
<port id="0" precision="U8">
|
306 |
+
<dim>679101</dim>
|
307 |
+
</port>
|
308 |
+
</output>
|
309 |
+
</layer>
|
310 |
+
<layer id="27" name="Constant_172294" type="Const" version="opset1">
|
311 |
+
<data element_type="i32" shape="432" offset="7592206" size="1728" />
|
312 |
+
<output>
|
313 |
+
<port id="0" precision="I32">
|
314 |
+
<dim>432</dim>
|
315 |
+
</port>
|
316 |
+
</output>
|
317 |
+
</layer>
|
318 |
+
<layer id="28" name="Constant_172296" type="Const" version="opset1">
|
319 |
+
<data element_type="i32" shape="432" offset="7593934" size="1728" />
|
320 |
+
<output>
|
321 |
+
<port id="0" precision="I32">
|
322 |
+
<dim>432</dim>
|
323 |
+
</port>
|
324 |
+
</output>
|
325 |
+
</layer>
|
326 |
+
<layer id="29" name="Constant_172298" type="Const" version="opset1">
|
327 |
+
<data element_type="u8" shape="5366" offset="7595662" size="5366" />
|
328 |
+
<output>
|
329 |
+
<port id="0" precision="U8">
|
330 |
+
<dim>5366</dim>
|
331 |
+
</port>
|
332 |
+
</output>
|
333 |
+
</layer>
|
334 |
+
<layer id="30" name="Constant_172311" type="Const" version="opset1">
|
335 |
+
<data element_type="i32" shape="432" offset="7601028" size="1728" />
|
336 |
+
<output>
|
337 |
+
<port id="0" precision="I32">
|
338 |
+
<dim>432</dim>
|
339 |
+
</port>
|
340 |
+
</output>
|
341 |
+
</layer>
|
342 |
+
<layer id="31" name="BPETokenizer_172312" type="BPETokenizer" version="extension">
|
343 |
+
<data unk_token="" fuse_unk="false" suffix_indicator="" end_suffix="" byte_fallback="false" cache_capacity="40003" />
|
344 |
+
<input>
|
345 |
+
<port id="0" precision="I32">
|
346 |
+
<dim>-1</dim>
|
347 |
+
</port>
|
348 |
+
<port id="1" precision="I32">
|
349 |
+
<dim>-1</dim>
|
350 |
+
</port>
|
351 |
+
<port id="2" precision="I32">
|
352 |
+
<dim>-1</dim>
|
353 |
+
</port>
|
354 |
+
<port id="3" precision="I32">
|
355 |
+
<dim>-1</dim>
|
356 |
+
</port>
|
357 |
+
<port id="4" precision="U8">
|
358 |
+
<dim>-1</dim>
|
359 |
+
</port>
|
360 |
+
<port id="5" precision="I32">
|
361 |
+
<dim>200029</dim>
|
362 |
+
</port>
|
363 |
+
<port id="6" precision="I32">
|
364 |
+
<dim>200029</dim>
|
365 |
+
</port>
|
366 |
+
<port id="7" precision="U8">
|
367 |
+
<dim>1398109</dim>
|
368 |
+
</port>
|
369 |
+
<port id="8" precision="I32">
|
370 |
+
<dim>199742</dim>
|
371 |
+
</port>
|
372 |
+
<port id="9" precision="I32">
|
373 |
+
<dim>199742</dim>
|
374 |
+
</port>
|
375 |
+
<port id="10" precision="U8">
|
376 |
+
<dim>718313</dim>
|
377 |
+
</port>
|
378 |
+
<port id="11" precision="I32">
|
379 |
+
<dim>199742</dim>
|
380 |
+
</port>
|
381 |
+
<port id="12" precision="I32">
|
382 |
+
<dim>199742</dim>
|
383 |
+
</port>
|
384 |
+
<port id="13" precision="U8">
|
385 |
+
<dim>679101</dim>
|
386 |
+
</port>
|
387 |
+
<port id="14" precision="I32">
|
388 |
+
<dim>432</dim>
|
389 |
+
</port>
|
390 |
+
<port id="15" precision="I32">
|
391 |
+
<dim>432</dim>
|
392 |
+
</port>
|
393 |
+
<port id="16" precision="U8">
|
394 |
+
<dim>5366</dim>
|
395 |
+
</port>
|
396 |
+
<port id="17" precision="I32">
|
397 |
+
<dim>432</dim>
|
398 |
+
</port>
|
399 |
+
</input>
|
400 |
+
<output>
|
401 |
+
<port id="18" precision="I32">
|
402 |
+
<dim>-1</dim>
|
403 |
+
</port>
|
404 |
+
<port id="19" precision="I32">
|
405 |
+
<dim>-1</dim>
|
406 |
+
</port>
|
407 |
+
<port id="20" precision="I32">
|
408 |
+
<dim>-1</dim>
|
409 |
+
</port>
|
410 |
+
</output>
|
411 |
+
</layer>
|
412 |
+
<layer id="32" name="Subtract_172313" type="Subtract" version="opset1">
|
413 |
+
<data auto_broadcast="numpy" />
|
414 |
+
<input>
|
415 |
+
<port id="0" precision="I32">
|
416 |
+
<dim>-1</dim>
|
417 |
+
</port>
|
418 |
+
<port id="1" precision="I32">
|
419 |
+
<dim>-1</dim>
|
420 |
+
</port>
|
421 |
+
</input>
|
422 |
+
<output>
|
423 |
+
<port id="2" precision="I32">
|
424 |
+
<dim>-1</dim>
|
425 |
+
</port>
|
426 |
+
</output>
|
427 |
+
</layer>
|
428 |
+
<layer id="33" name="Constant_172314" type="Const" version="opset1">
|
429 |
+
<data element_type="i32" shape="" offset="7602756" size="4" />
|
430 |
+
<output>
|
431 |
+
<port id="0" precision="I32" />
|
432 |
+
</output>
|
433 |
+
</layer>
|
434 |
+
<layer id="34" name="Minimum_172315" type="Minimum" version="opset1">
|
435 |
+
<data auto_broadcast="numpy" />
|
436 |
+
<input>
|
437 |
+
<port id="0" precision="I32">
|
438 |
+
<dim>-1</dim>
|
439 |
+
</port>
|
440 |
+
<port id="1" precision="I32" />
|
441 |
+
</input>
|
442 |
+
<output>
|
443 |
+
<port id="2" precision="I32">
|
444 |
+
<dim>-1</dim>
|
445 |
+
</port>
|
446 |
+
</output>
|
447 |
+
</layer>
|
448 |
+
<layer id="35" name="Subtract_172316" type="Subtract" version="opset1">
|
449 |
+
<data auto_broadcast="numpy" />
|
450 |
+
<input>
|
451 |
+
<port id="0" precision="I32">
|
452 |
+
<dim>-1</dim>
|
453 |
+
</port>
|
454 |
+
<port id="1" precision="I32">
|
455 |
+
<dim>-1</dim>
|
456 |
+
</port>
|
457 |
+
</input>
|
458 |
+
<output>
|
459 |
+
<port id="2" precision="I32">
|
460 |
+
<dim>-1</dim>
|
461 |
+
</port>
|
462 |
+
</output>
|
463 |
+
</layer>
|
464 |
+
<layer id="36" name="Subtract_172317" type="Subtract" version="opset1">
|
465 |
+
<data auto_broadcast="numpy" />
|
466 |
+
<input>
|
467 |
+
<port id="0" precision="I32">
|
468 |
+
<dim>-1</dim>
|
469 |
+
</port>
|
470 |
+
<port id="1" precision="I32">
|
471 |
+
<dim>-1</dim>
|
472 |
+
</port>
|
473 |
+
</input>
|
474 |
+
<output>
|
475 |
+
<port id="2" precision="I32">
|
476 |
+
<dim>-1</dim>
|
477 |
+
</port>
|
478 |
+
</output>
|
479 |
+
</layer>
|
480 |
+
<layer id="37" name="Constant_172318" type="Const" version="opset1">
|
481 |
+
<data element_type="i32" shape="" offset="7602760" size="4" />
|
482 |
+
<output>
|
483 |
+
<port id="0" precision="I32" />
|
484 |
+
</output>
|
485 |
+
</layer>
|
486 |
+
<layer id="38" name="ReduceMax_172319" type="ReduceMax" version="opset1">
|
487 |
+
<data keep_dims="false" />
|
488 |
+
<input>
|
489 |
+
<port id="0" precision="I32">
|
490 |
+
<dim>-1</dim>
|
491 |
+
</port>
|
492 |
+
<port id="1" precision="I32" />
|
493 |
+
</input>
|
494 |
+
<output>
|
495 |
+
<port id="2" precision="I32" />
|
496 |
+
</output>
|
497 |
+
</layer>
|
498 |
+
<layer id="39" name="Constant_172320" type="Const" version="opset1">
|
499 |
+
<data element_type="i32" shape="" offset="7602764" size="4" />
|
500 |
+
<output>
|
501 |
+
<port id="0" precision="I32" />
|
502 |
+
</output>
|
503 |
+
</layer>
|
504 |
+
<layer id="40" name="RaggedToDense_172321" type="RaggedToDense" version="extension">
|
505 |
+
<data pad_right="false" m_pad_max_length="false" />
|
506 |
+
<input>
|
507 |
+
<port id="0" precision="I32">
|
508 |
+
<dim>-1</dim>
|
509 |
+
</port>
|
510 |
+
<port id="1" precision="I32">
|
511 |
+
<dim>-1</dim>
|
512 |
+
</port>
|
513 |
+
<port id="2" precision="I32">
|
514 |
+
<dim>-1</dim>
|
515 |
+
</port>
|
516 |
+
<port id="3" precision="I32" />
|
517 |
+
<port id="4" precision="I32" />
|
518 |
+
</input>
|
519 |
+
<output>
|
520 |
+
<port id="5" precision="I32">
|
521 |
+
<dim>-1</dim>
|
522 |
+
<dim>-1</dim>
|
523 |
+
</port>
|
524 |
+
<port id="6" precision="BOOL">
|
525 |
+
<dim>-1</dim>
|
526 |
+
<dim>-1</dim>
|
527 |
+
</port>
|
528 |
+
</output>
|
529 |
+
</layer>
|
530 |
+
<layer id="41" name="Convert_172322" type="Convert" version="opset1">
|
531 |
+
<data destination_type="i32" />
|
532 |
+
<input>
|
533 |
+
<port id="0" precision="BOOL">
|
534 |
+
<dim>-1</dim>
|
535 |
+
<dim>-1</dim>
|
536 |
+
</port>
|
537 |
+
</input>
|
538 |
+
<output>
|
539 |
+
<port id="1" precision="I32">
|
540 |
+
<dim>-1</dim>
|
541 |
+
<dim>-1</dim>
|
542 |
+
</port>
|
543 |
+
</output>
|
544 |
+
</layer>
|
545 |
+
<layer id="42" name="Convert_172322.0" type="Convert" version="opset1">
|
546 |
+
<data destination_type="i64" />
|
547 |
+
<input>
|
548 |
+
<port id="0" precision="I32">
|
549 |
+
<dim>-1</dim>
|
550 |
+
<dim>-1</dim>
|
551 |
+
</port>
|
552 |
+
</input>
|
553 |
+
<output>
|
554 |
+
<port id="1" precision="I64" names="attention_mask">
|
555 |
+
<dim>-1</dim>
|
556 |
+
<dim>-1</dim>
|
557 |
+
</port>
|
558 |
+
</output>
|
559 |
+
</layer>
|
560 |
+
<layer id="44" name="RaggedToDense_172321.0" type="Convert" version="opset1">
|
561 |
+
<data destination_type="i64" />
|
562 |
+
<input>
|
563 |
+
<port id="0" precision="I32">
|
564 |
+
<dim>-1</dim>
|
565 |
+
<dim>-1</dim>
|
566 |
+
</port>
|
567 |
+
</input>
|
568 |
+
<output>
|
569 |
+
<port id="1" precision="I64" names="input_ids">
|
570 |
+
<dim>-1</dim>
|
571 |
+
<dim>-1</dim>
|
572 |
+
</port>
|
573 |
+
</output>
|
574 |
+
</layer>
|
575 |
+
<layer id="45" name="Result_172323" type="Result" version="opset1" output_names="input_ids">
|
576 |
+
<input>
|
577 |
+
<port id="0" precision="I64">
|
578 |
+
<dim>-1</dim>
|
579 |
+
<dim>-1</dim>
|
580 |
+
</port>
|
581 |
+
</input>
|
582 |
+
</layer>
|
583 |
+
<layer id="43" name="Result_172324" type="Result" version="opset1" output_names="attention_mask">
|
584 |
+
<input>
|
585 |
+
<port id="0" precision="I64">
|
586 |
+
<dim>-1</dim>
|
587 |
+
<dim>-1</dim>
|
588 |
+
</port>
|
589 |
+
</input>
|
590 |
+
</layer>
|
591 |
+
</layers>
|
592 |
+
<edges>
|
593 |
+
<edge from-layer="0" from-port="0" to-layer="2" to-port="0" />
|
594 |
+
<edge from-layer="1" from-port="0" to-layer="8" to-port="0" />
|
595 |
+
<edge from-layer="2" from-port="2" to-layer="15" to-port="3" />
|
596 |
+
<edge from-layer="2" from-port="3" to-layer="15" to-port="4" />
|
597 |
+
<edge from-layer="2" from-port="1" to-layer="15" to-port="2" />
|
598 |
+
<edge from-layer="2" from-port="1" to-layer="3" to-port="0" />
|
599 |
+
<edge from-layer="3" from-port="1" to-layer="6" to-port="0" />
|
600 |
+
<edge from-layer="4" from-port="0" to-layer="6" to-port="1" />
|
601 |
+
<edge from-layer="5" from-port="0" to-layer="6" to-port="2" />
|
602 |
+
<edge from-layer="6" from-port="3" to-layer="8" to-port="1" />
|
603 |
+
<edge from-layer="6" from-port="3" to-layer="11" to-port="0" />
|
604 |
+
<edge from-layer="7" from-port="0" to-layer="8" to-port="2" />
|
605 |
+
<edge from-layer="8" from-port="3" to-layer="15" to-port="0" />
|
606 |
+
<edge from-layer="9" from-port="0" to-layer="13" to-port="0" />
|
607 |
+
<edge from-layer="10" from-port="0" to-layer="11" to-port="1" />
|
608 |
+
<edge from-layer="11" from-port="2" to-layer="13" to-port="1" />
|
609 |
+
<edge from-layer="12" from-port="0" to-layer="13" to-port="2" />
|
610 |
+
<edge from-layer="13" from-port="3" to-layer="15" to-port="1" />
|
611 |
+
<edge from-layer="14" from-port="0" to-layer="15" to-port="5" />
|
612 |
+
<edge from-layer="15" from-port="6" to-layer="17" to-port="0" />
|
613 |
+
<edge from-layer="15" from-port="7" to-layer="17" to-port="1" />
|
614 |
+
<edge from-layer="15" from-port="8" to-layer="17" to-port="2" />
|
615 |
+
<edge from-layer="15" from-port="9" to-layer="17" to-port="3" />
|
616 |
+
<edge from-layer="15" from-port="10" to-layer="17" to-port="4" />
|
617 |
+
<edge from-layer="15" from-port="11" to-layer="17" to-port="5" />
|
618 |
+
<edge from-layer="16" from-port="0" to-layer="17" to-port="6" />
|
619 |
+
<edge from-layer="17" from-port="7" to-layer="31" to-port="0" />
|
620 |
+
<edge from-layer="17" from-port="8" to-layer="31" to-port="1" />
|
621 |
+
<edge from-layer="17" from-port="9" to-layer="31" to-port="2" />
|
622 |
+
<edge from-layer="17" from-port="10" to-layer="31" to-port="3" />
|
623 |
+
<edge from-layer="17" from-port="11" to-layer="31" to-port="4" />
|
624 |
+
<edge from-layer="18" from-port="0" to-layer="31" to-port="5" />
|
625 |
+
<edge from-layer="19" from-port="0" to-layer="31" to-port="6" />
|
626 |
+
<edge from-layer="20" from-port="0" to-layer="31" to-port="7" />
|
627 |
+
<edge from-layer="21" from-port="0" to-layer="31" to-port="8" />
|
628 |
+
<edge from-layer="22" from-port="0" to-layer="31" to-port="9" />
|
629 |
+
<edge from-layer="23" from-port="0" to-layer="31" to-port="10" />
|
630 |
+
<edge from-layer="24" from-port="0" to-layer="31" to-port="11" />
|
631 |
+
<edge from-layer="25" from-port="0" to-layer="31" to-port="12" />
|
632 |
+
<edge from-layer="26" from-port="0" to-layer="31" to-port="13" />
|
633 |
+
<edge from-layer="27" from-port="0" to-layer="31" to-port="14" />
|
634 |
+
<edge from-layer="28" from-port="0" to-layer="31" to-port="15" />
|
635 |
+
<edge from-layer="29" from-port="0" to-layer="31" to-port="16" />
|
636 |
+
<edge from-layer="30" from-port="0" to-layer="31" to-port="17" />
|
637 |
+
<edge from-layer="31" from-port="19" to-layer="35" to-port="0" />
|
638 |
+
<edge from-layer="31" from-port="20" to-layer="40" to-port="2" />
|
639 |
+
<edge from-layer="31" from-port="19" to-layer="40" to-port="1" />
|
640 |
+
<edge from-layer="31" from-port="19" to-layer="36" to-port="0" />
|
641 |
+
<edge from-layer="31" from-port="18" to-layer="32" to-port="1" />
|
642 |
+
<edge from-layer="31" from-port="19" to-layer="32" to-port="0" />
|
643 |
+
<edge from-layer="32" from-port="2" to-layer="34" to-port="0" />
|
644 |
+
<edge from-layer="33" from-port="0" to-layer="34" to-port="1" />
|
645 |
+
<edge from-layer="34" from-port="2" to-layer="35" to-port="1" />
|
646 |
+
<edge from-layer="35" from-port="2" to-layer="36" to-port="1" />
|
647 |
+
<edge from-layer="35" from-port="2" to-layer="40" to-port="0" />
|
648 |
+
<edge from-layer="36" from-port="2" to-layer="38" to-port="0" />
|
649 |
+
<edge from-layer="37" from-port="0" to-layer="38" to-port="1" />
|
650 |
+
<edge from-layer="38" from-port="2" to-layer="40" to-port="3" />
|
651 |
+
<edge from-layer="39" from-port="0" to-layer="40" to-port="4" />
|
652 |
+
<edge from-layer="40" from-port="6" to-layer="41" to-port="0" />
|
653 |
+
<edge from-layer="40" from-port="5" to-layer="44" to-port="0" />
|
654 |
+
<edge from-layer="41" from-port="1" to-layer="42" to-port="0" />
|
655 |
+
<edge from-layer="42" from-port="1" to-layer="43" to-port="0" />
|
656 |
+
<edge from-layer="44" from-port="1" to-layer="45" to-port="0" />
|
657 |
+
</edges>
|
658 |
+
<rt_info>
|
659 |
+
<add_attention_mask value="True" />
|
660 |
+
<add_prefix_space />
|
661 |
+
<add_special_tokens value="True" />
|
662 |
+
<bos_token_id value="199999" />
|
663 |
+
<chat_template value="{% for message in messages %}{% if message['role'] == 'system' and 'tools' in message and message['tools'] is not none %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|tool|>' + message['tools'] + '<|/tool|>' + '<|end|>' }}{% else %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|end|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>' }}{% else %}{{ eos_token }}{% endif %}" />
|
664 |
+
<clean_up_tokenization_spaces />
|
665 |
+
<detokenizer_input_type value="i64" />
|
666 |
+
<eos_token_id value="199999" />
|
667 |
+
<handle_special_tokens_with_re />
|
668 |
+
<max_length />
|
669 |
+
<number_of_inputs value="1" />
|
670 |
+
<openvino_tokenizers_version value="2025.1.0.0-523-710ddf14de8" />
|
671 |
+
<openvino_version value="2025.1.0-18503-6fec06580ab-releases/2025/1" />
|
672 |
+
<original_tokenizer_class value="<class 'transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast'>" />
|
673 |
+
<pad_token_id value="199999" />
|
674 |
+
<sentencepiece_version value="0.2.0" />
|
675 |
+
<skip_special_tokens value="True" />
|
676 |
+
<streaming_detokenizer value="False" />
|
677 |
+
<tokenizer_output_type value="i64" />
|
678 |
+
<tokenizers_version value="0.21.1" />
|
679 |
+
<transformers_version value="4.51.3" />
|
680 |
+
<use_max_padding value="False" />
|
681 |
+
<use_sentencepiece_backend value="False" />
|
682 |
+
<utf8_replace_mode value="replace" />
|
683 |
+
<with_detokenizer value="True" />
|
684 |
+
</rt_info>
|
685 |
+
</net>
|
Phi-4-mini-instruct-fp16-ov/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<|endoftext|>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
Phi-4-mini-instruct-fp16-ov/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:382cc235b56c725945e149cc25f191da667c836655efd0857b004320e90e91ea
|
3 |
+
size 15524095
|
Phi-4-mini-instruct-fp16-ov/tokenizer_config.json
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": false,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"199999": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"200018": {
|
15 |
+
"content": "<|endofprompt|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"200019": {
|
23 |
+
"content": "<|assistant|>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": true,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
},
|
30 |
+
"200020": {
|
31 |
+
"content": "<|end|>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": true,
|
35 |
+
"single_word": false,
|
36 |
+
"special": true
|
37 |
+
},
|
38 |
+
"200021": {
|
39 |
+
"content": "<|user|>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": false,
|
42 |
+
"rstrip": true,
|
43 |
+
"single_word": false,
|
44 |
+
"special": true
|
45 |
+
},
|
46 |
+
"200022": {
|
47 |
+
"content": "<|system|>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": false,
|
50 |
+
"rstrip": true,
|
51 |
+
"single_word": false,
|
52 |
+
"special": true
|
53 |
+
},
|
54 |
+
"200023": {
|
55 |
+
"content": "<|tool|>",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": false,
|
58 |
+
"rstrip": true,
|
59 |
+
"single_word": false,
|
60 |
+
"special": false
|
61 |
+
},
|
62 |
+
"200024": {
|
63 |
+
"content": "<|/tool|>",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": false,
|
66 |
+
"rstrip": true,
|
67 |
+
"single_word": false,
|
68 |
+
"special": false
|
69 |
+
},
|
70 |
+
"200025": {
|
71 |
+
"content": "<|tool_call|>",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": false,
|
74 |
+
"rstrip": true,
|
75 |
+
"single_word": false,
|
76 |
+
"special": false
|
77 |
+
},
|
78 |
+
"200026": {
|
79 |
+
"content": "<|/tool_call|>",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": false,
|
82 |
+
"rstrip": true,
|
83 |
+
"single_word": false,
|
84 |
+
"special": false
|
85 |
+
},
|
86 |
+
"200027": {
|
87 |
+
"content": "<|tool_response|>",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": false,
|
90 |
+
"rstrip": true,
|
91 |
+
"single_word": false,
|
92 |
+
"special": false
|
93 |
+
},
|
94 |
+
"200028": {
|
95 |
+
"content": "<|tag|>",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": false,
|
98 |
+
"rstrip": true,
|
99 |
+
"single_word": false,
|
100 |
+
"special": true
|
101 |
+
}
|
102 |
+
},
|
103 |
+
"bos_token": "<|endoftext|>",
|
104 |
+
"chat_template": "{% for message in messages %}{% if message['role'] == 'system' and 'tools' in message and message['tools'] is not none %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|tool|>' + message['tools'] + '<|/tool|>' + '<|end|>' }}{% else %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|end|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>' }}{% else %}{{ eos_token }}{% endif %}",
|
105 |
+
"clean_up_tokenization_spaces": false,
|
106 |
+
"eos_token": "<|endoftext|>",
|
107 |
+
"extra_special_tokens": {},
|
108 |
+
"model_max_length": 131072,
|
109 |
+
"pad_token": "<|endoftext|>",
|
110 |
+
"tokenizer_class": "GPT2Tokenizer",
|
111 |
+
"unk_token": "<|endoftext|>"
|
112 |
+
}
|
Phi-4-mini-instruct-fp16-ov/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Phi-4-mini-instruct-int4_asym-awq-se-ov/added_tokens.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|/tool_call|>": 200026,
|
3 |
+
"<|/tool|>": 200024,
|
4 |
+
"<|assistant|>": 200019,
|
5 |
+
"<|end|>": 200020,
|
6 |
+
"<|system|>": 200022,
|
7 |
+
"<|tag|>": 200028,
|
8 |
+
"<|tool_call|>": 200025,
|
9 |
+
"<|tool_response|>": 200027,
|
10 |
+
"<|tool|>": 200023,
|
11 |
+
"<|user|>": 200021
|
12 |
+
}
|
Phi-4-mini-instruct-int4_asym-awq-se-ov/config.json
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Phi3ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_phi3.Phi3Config",
|
9 |
+
"AutoModelForCausalLM": "modeling_phi3.Phi3ForCausalLM",
|
10 |
+
"AutoTokenizer": "Xenova/gpt-4o"
|
11 |
+
},
|
12 |
+
"bos_token_id": 199999,
|
13 |
+
"embd_pdrop": 0.0,
|
14 |
+
"eos_token_id": 199999,
|
15 |
+
"full_attn_mod": 1,
|
16 |
+
"hidden_act": "silu",
|
17 |
+
"hidden_size": 3072,
|
18 |
+
"initializer_range": 0.02,
|
19 |
+
"intermediate_size": 8192,
|
20 |
+
"interpolate_factor": 1,
|
21 |
+
"lm_head_bias": false,
|
22 |
+
"max_position_embeddings": 4096,
|
23 |
+
"mlp_bias": false,
|
24 |
+
"model_type": "phi3",
|
25 |
+
"num_attention_heads": 24,
|
26 |
+
"num_hidden_layers": 32,
|
27 |
+
"num_key_value_heads": 8,
|
28 |
+
"original_max_position_embeddings": 4096,
|
29 |
+
"pad_token_id": 199999,
|
30 |
+
"partial_rotary_factor": 0.75,
|
31 |
+
"resid_pdrop": 0.0,
|
32 |
+
"rms_norm_eps": 1e-05,
|
33 |
+
"rope_scaling": {
|
34 |
+
"long_factor": [
|
35 |
+
1,
|
36 |
+
1.118320672,
|
37 |
+
1.250641126,
|
38 |
+
1.398617824,
|
39 |
+
1.564103225,
|
40 |
+
1.74916897,
|
41 |
+
1.956131817,
|
42 |
+
2.187582649,
|
43 |
+
2.446418898,
|
44 |
+
2.735880826,
|
45 |
+
3.059592084,
|
46 |
+
3.421605075,
|
47 |
+
3.826451687,
|
48 |
+
4.279200023,
|
49 |
+
4.785517845,
|
50 |
+
5.351743533,
|
51 |
+
5.984965424,
|
52 |
+
6.693110555,
|
53 |
+
7.485043894,
|
54 |
+
8.370679318,
|
55 |
+
9.36110372,
|
56 |
+
10.4687158,
|
57 |
+
11.70738129,
|
58 |
+
13.09260651,
|
59 |
+
14.64173252,
|
60 |
+
16.37415215,
|
61 |
+
18.31155283,
|
62 |
+
20.47818807,
|
63 |
+
22.90118105,
|
64 |
+
25.61086418,
|
65 |
+
28.64115884,
|
66 |
+
32.03,
|
67 |
+
32.1,
|
68 |
+
32.13,
|
69 |
+
32.23,
|
70 |
+
32.6,
|
71 |
+
32.61,
|
72 |
+
32.64,
|
73 |
+
32.66,
|
74 |
+
32.7,
|
75 |
+
32.71,
|
76 |
+
32.93,
|
77 |
+
32.97,
|
78 |
+
33.28,
|
79 |
+
33.49,
|
80 |
+
33.5,
|
81 |
+
44.16,
|
82 |
+
47.77
|
83 |
+
],
|
84 |
+
"short_factor": [
|
85 |
+
1.0,
|
86 |
+
1.0,
|
87 |
+
1.0,
|
88 |
+
1.0,
|
89 |
+
1.0,
|
90 |
+
1.0,
|
91 |
+
1.0,
|
92 |
+
1.0,
|
93 |
+
1.0,
|
94 |
+
1.0,
|
95 |
+
1.0,
|
96 |
+
1.0,
|
97 |
+
1.0,
|
98 |
+
1.0,
|
99 |
+
1.0,
|
100 |
+
1.0,
|
101 |
+
1.0,
|
102 |
+
1.0,
|
103 |
+
1.0,
|
104 |
+
1.0,
|
105 |
+
1.0,
|
106 |
+
1.0,
|
107 |
+
1.0,
|
108 |
+
1.0,
|
109 |
+
1.0,
|
110 |
+
1.0,
|
111 |
+
1.0,
|
112 |
+
1.0,
|
113 |
+
1.0,
|
114 |
+
1.0,
|
115 |
+
1.0,
|
116 |
+
1.0,
|
117 |
+
1.0,
|
118 |
+
1.0,
|
119 |
+
1.0,
|
120 |
+
1.0,
|
121 |
+
1.0,
|
122 |
+
1.0,
|
123 |
+
1.0,
|
124 |
+
1.0,
|
125 |
+
1.0,
|
126 |
+
1.0,
|
127 |
+
1.0,
|
128 |
+
1.0,
|
129 |
+
1.0,
|
130 |
+
1.0,
|
131 |
+
1.0,
|
132 |
+
1.0
|
133 |
+
],
|
134 |
+
"type": "longrope"
|
135 |
+
},
|
136 |
+
"rope_theta": 10000.0,
|
137 |
+
"sliding_window": 262144,
|
138 |
+
"tie_word_embeddings": true,
|
139 |
+
"torch_dtype": "bfloat16",
|
140 |
+
"transformers_version": "4.51.3",
|
141 |
+
"use_cache": true,
|
142 |
+
"vocab_size": 200064
|
143 |
+
}
|
Phi-4-mini-instruct-int4_asym-awq-se-ov/configuration_phi3.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""Phi-3 model configuration"""
|
17 |
+
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
class Phi3Config(PretrainedConfig):
|
26 |
+
r"""
|
27 |
+
This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
|
28 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
29 |
+
defaults will yield a similar configuration to that of the
|
30 |
+
[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
|
31 |
+
|
32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
33 |
+
documentation from [`PretrainedConfig`] for more information.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
vocab_size (`int`, *optional*, defaults to 32064):
|
37 |
+
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
|
38 |
+
`inputs_ids` passed when calling [`Phi3Model`].
|
39 |
+
hidden_size (`int`, *optional*, defaults to 3072):
|
40 |
+
Dimension of the hidden representations.
|
41 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
42 |
+
Dimension of the MLP representations.
|
43 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
44 |
+
Number of hidden layers in the Transformer decoder.
|
45 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
46 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
47 |
+
num_key_value_heads (`int`, *optional*):
|
48 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
49 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
50 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
51 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
52 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
53 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
54 |
+
`num_attention_heads`.
|
55 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
56 |
+
Dropout probability for mlp outputs.
|
57 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
58 |
+
The dropout ratio for the embeddings.
|
59 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
60 |
+
The dropout ratio after computing the attention scores.
|
61 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
62 |
+
The non-linear activation function (function or string) in the decoder.
|
63 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
64 |
+
The maximum sequence length that this model might ever be used with.
|
65 |
+
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
|
66 |
+
The maximum sequence length that this model was trained with. This is used to determine the size of the
|
67 |
+
original RoPE embeddings when using long scaling.
|
68 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
69 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
70 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
71 |
+
The epsilon value used for the RMSNorm.
|
72 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
73 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
74 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
75 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
76 |
+
Whether to tie weight embeddings
|
77 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
78 |
+
The base period of the RoPE embeddings.
|
79 |
+
rope_scaling (`dict`, *optional*):
|
80 |
+
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
|
81 |
+
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
|
82 |
+
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
|
83 |
+
divided by the number of attention heads divided by 2.
|
84 |
+
partial_rotary_factor (`float`, *optional*, defaults to 1.0):
|
85 |
+
Percentage of the query and keys which will have rotary embedding. Must be between 0.0 and 1.0.
|
86 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
87 |
+
The id of the "beginning-of-sequence" token.
|
88 |
+
eos_token_id (`int`, *optional*, defaults to 32000):
|
89 |
+
The id of the "end-of-sequence" token.
|
90 |
+
pad_token_id (`int`, *optional*, defaults to 32000):
|
91 |
+
The id of the padding token.
|
92 |
+
sliding_window (`int`, *optional*):
|
93 |
+
Sliding window attention window size. If `None`, no sliding window is applied.
|
94 |
+
|
95 |
+
Example:
|
96 |
+
|
97 |
+
```python
|
98 |
+
>>> from transformers import Phi3Model, Phi3Config
|
99 |
+
|
100 |
+
>>> # Initializing a Phi-3 style configuration
|
101 |
+
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
102 |
+
|
103 |
+
>>> # Initializing a model from the configuration
|
104 |
+
>>> model = Phi3Model(configuration)
|
105 |
+
|
106 |
+
>>> # Accessing the model configuration
|
107 |
+
>>> configuration = model.config
|
108 |
+
```"""
|
109 |
+
|
110 |
+
model_type = "phi3"
|
111 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
112 |
+
|
113 |
+
def __init__(
|
114 |
+
self,
|
115 |
+
vocab_size=32064,
|
116 |
+
hidden_size=3072,
|
117 |
+
intermediate_size=8192,
|
118 |
+
num_hidden_layers=32,
|
119 |
+
num_attention_heads=32,
|
120 |
+
num_key_value_heads=None,
|
121 |
+
resid_pdrop=0.0,
|
122 |
+
embd_pdrop=0.0,
|
123 |
+
attention_dropout=0.0,
|
124 |
+
hidden_act="silu",
|
125 |
+
max_position_embeddings=4096,
|
126 |
+
original_max_position_embeddings=4096,
|
127 |
+
initializer_range=0.02,
|
128 |
+
rms_norm_eps=1e-5,
|
129 |
+
use_cache=True,
|
130 |
+
tie_word_embeddings=False,
|
131 |
+
rope_theta=10000.0,
|
132 |
+
rope_scaling=None,
|
133 |
+
partial_rotary_factor=1.0,
|
134 |
+
bos_token_id=1,
|
135 |
+
eos_token_id=32000,
|
136 |
+
pad_token_id=32000,
|
137 |
+
sliding_window=None,
|
138 |
+
**kwargs,
|
139 |
+
):
|
140 |
+
self.vocab_size = vocab_size
|
141 |
+
self.hidden_size = hidden_size
|
142 |
+
self.intermediate_size = intermediate_size
|
143 |
+
self.num_hidden_layers = num_hidden_layers
|
144 |
+
self.num_attention_heads = num_attention_heads
|
145 |
+
|
146 |
+
if num_key_value_heads is None:
|
147 |
+
num_key_value_heads = num_attention_heads
|
148 |
+
|
149 |
+
self.num_key_value_heads = num_key_value_heads
|
150 |
+
self.resid_pdrop = resid_pdrop
|
151 |
+
self.embd_pdrop = embd_pdrop
|
152 |
+
self.attention_dropout = attention_dropout
|
153 |
+
self.hidden_act = hidden_act
|
154 |
+
self.max_position_embeddings = max_position_embeddings
|
155 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
156 |
+
self.initializer_range = initializer_range
|
157 |
+
self.rms_norm_eps = rms_norm_eps
|
158 |
+
self.use_cache = use_cache
|
159 |
+
self.rope_theta = rope_theta
|
160 |
+
self.rope_scaling = rope_scaling
|
161 |
+
self.partial_rotary_factor = partial_rotary_factor
|
162 |
+
self._rope_scaling_adjustment()
|
163 |
+
self._rope_scaling_validation()
|
164 |
+
self.sliding_window = sliding_window
|
165 |
+
|
166 |
+
super().__init__(
|
167 |
+
bos_token_id=bos_token_id,
|
168 |
+
eos_token_id=eos_token_id,
|
169 |
+
pad_token_id=pad_token_id,
|
170 |
+
tie_word_embeddings=tie_word_embeddings,
|
171 |
+
**kwargs,
|
172 |
+
)
|
173 |
+
|
174 |
+
def _rope_scaling_adjustment(self):
|
175 |
+
"""
|
176 |
+
Adjust the `type` of the `rope_scaling` configuration for backward compatibility.
|
177 |
+
"""
|
178 |
+
if self.rope_scaling is None:
|
179 |
+
return
|
180 |
+
|
181 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
182 |
+
|
183 |
+
# For backward compatibility if previous version used "su" or "yarn"
|
184 |
+
if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]:
|
185 |
+
self.rope_scaling["type"] = "longrope"
|
186 |
+
|
187 |
+
def _rope_scaling_validation(self):
|
188 |
+
"""
|
189 |
+
Validate the `rope_scaling` configuration.
|
190 |
+
"""
|
191 |
+
if self.rope_scaling is None:
|
192 |
+
return
|
193 |
+
|
194 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
|
195 |
+
raise ValueError(
|
196 |
+
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
|
197 |
+
f"got {self.rope_scaling}"
|
198 |
+
)
|
199 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
200 |
+
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
|
201 |
+
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
|
202 |
+
if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
|
203 |
+
raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
|
204 |
+
if not (
|
205 |
+
isinstance(rope_scaling_short_factor, list)
|
206 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
|
207 |
+
):
|
208 |
+
raise ValueError(
|
209 |
+
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
|
210 |
+
)
|
211 |
+
rotary_ndims = int(self.hidden_size // self.num_attention_heads * self.partial_rotary_factor)
|
212 |
+
if not len(rope_scaling_short_factor) == rotary_ndims // 2:
|
213 |
+
raise ValueError(
|
214 |
+
f"`rope_scaling`'s short_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_short_factor)}"
|
215 |
+
)
|
216 |
+
if not (
|
217 |
+
isinstance(rope_scaling_long_factor, list)
|
218 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
|
219 |
+
):
|
220 |
+
raise ValueError(
|
221 |
+
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
|
222 |
+
)
|
223 |
+
if not len(rope_scaling_long_factor) == rotary_ndims // 2:
|
224 |
+
raise ValueError(
|
225 |
+
f"`rope_scaling`'s long_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_long_factor)}"
|
226 |
+
)
|
Phi-4-mini-instruct-int4_asym-awq-se-ov/generation_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 199999,
|
4 |
+
"eos_token_id": [
|
5 |
+
200020,
|
6 |
+
199999
|
7 |
+
],
|
8 |
+
"pad_token_id": 199999,
|
9 |
+
"transformers_version": "4.51.3"
|
10 |
+
}
|
Phi-4-mini-instruct-int4_asym-awq-se-ov/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Phi-4-mini-instruct-int4_asym-awq-se-ov/openvino_config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dtype": "int4",
|
3 |
+
"input_info": null,
|
4 |
+
"optimum_version": "1.25.2",
|
5 |
+
"quantization_config": {
|
6 |
+
"all_layers": null,
|
7 |
+
"backup_precision": null,
|
8 |
+
"bits": 4,
|
9 |
+
"dataset": "wikitext2",
|
10 |
+
"dtype": "int4",
|
11 |
+
"gptq": null,
|
12 |
+
"group_size": 64,
|
13 |
+
"ignored_scope": null,
|
14 |
+
"lora_correction": null,
|
15 |
+
"num_samples": null,
|
16 |
+
"processor": null,
|
17 |
+
"quant_method": "awq",
|
18 |
+
"ratio": 0.8,
|
19 |
+
"scale_estimation": true,
|
20 |
+
"sensitivity_metric": null,
|
21 |
+
"sym": false,
|
22 |
+
"tokenizer": null,
|
23 |
+
"trust_remote_code": true
|
24 |
+
},
|
25 |
+
"save_onnx_model": false,
|
26 |
+
"transformers_version": "4.51.3"
|
27 |
+
}
|
Phi-4-mini-instruct-int4_asym-awq-se-ov/openvino_detokenizer.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58ec20da66d1d780b298f3cdcf252ccc0e228636fc7bee219163af81f1837e0a
|
3 |
+
size 2998349
|
Phi-4-mini-instruct-int4_asym-awq-se-ov/openvino_detokenizer.xml
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<net name="detokenizer" version="11">
|
3 |
+
<layers>
|
4 |
+
<layer id="0" name="Parameter_810750" type="Parameter" version="opset1">
|
5 |
+
<data shape="?,?" element_type="i64" />
|
6 |
+
<output>
|
7 |
+
<port id="0" precision="I64" names="Parameter_810750">
|
8 |
+
<dim>-1</dim>
|
9 |
+
<dim>-1</dim>
|
10 |
+
</port>
|
11 |
+
</output>
|
12 |
+
</layer>
|
13 |
+
<layer id="1" name="Convert_810920" type="Convert" version="opset1">
|
14 |
+
<data destination_type="i32" />
|
15 |
+
<input>
|
16 |
+
<port id="0" precision="I64">
|
17 |
+
<dim>-1</dim>
|
18 |
+
<dim>-1</dim>
|
19 |
+
</port>
|
20 |
+
</input>
|
21 |
+
<output>
|
22 |
+
<port id="1" precision="I32">
|
23 |
+
<dim>-1</dim>
|
24 |
+
<dim>-1</dim>
|
25 |
+
</port>
|
26 |
+
</output>
|
27 |
+
</layer>
|
28 |
+
<layer id="2" name="Constant_810752" type="Const" version="opset1">
|
29 |
+
<data element_type="i32" shape="200029" offset="0" size="800116" />
|
30 |
+
<output>
|
31 |
+
<port id="0" precision="I32">
|
32 |
+
<dim>200029</dim>
|
33 |
+
</port>
|
34 |
+
</output>
|
35 |
+
</layer>
|
36 |
+
<layer id="3" name="Constant_810754" type="Const" version="opset1">
|
37 |
+
<data element_type="i32" shape="200029" offset="800116" size="800116" />
|
38 |
+
<output>
|
39 |
+
<port id="0" precision="I32">
|
40 |
+
<dim>200029</dim>
|
41 |
+
</port>
|
42 |
+
</output>
|
43 |
+
</layer>
|
44 |
+
<layer id="4" name="Constant_810756" type="Const" version="opset1">
|
45 |
+
<data element_type="u8" shape="1398089" offset="1600232" size="1398089" />
|
46 |
+
<output>
|
47 |
+
<port id="0" precision="U8">
|
48 |
+
<dim>1398089</dim>
|
49 |
+
</port>
|
50 |
+
</output>
|
51 |
+
</layer>
|
52 |
+
<layer id="5" name="Slice_810761" type="Const" version="opset1">
|
53 |
+
<data element_type="i32" shape="7" offset="2998321" size="28" />
|
54 |
+
<output>
|
55 |
+
<port id="0" precision="I32">
|
56 |
+
<dim>7</dim>
|
57 |
+
</port>
|
58 |
+
</output>
|
59 |
+
</layer>
|
60 |
+
<layer id="6" name="VocabDecoder_810763" type="VocabDecoder" version="extension">
|
61 |
+
<data skip_tokens="" />
|
62 |
+
<input>
|
63 |
+
<port id="0" precision="I32">
|
64 |
+
<dim>-1</dim>
|
65 |
+
<dim>-1</dim>
|
66 |
+
</port>
|
67 |
+
<port id="1" precision="I32">
|
68 |
+
<dim>200029</dim>
|
69 |
+
</port>
|
70 |
+
<port id="2" precision="I32">
|
71 |
+
<dim>200029</dim>
|
72 |
+
</port>
|
73 |
+
<port id="3" precision="U8">
|
74 |
+
<dim>1398089</dim>
|
75 |
+
</port>
|
76 |
+
<port id="4" precision="I32">
|
77 |
+
<dim>7</dim>
|
78 |
+
</port>
|
79 |
+
</input>
|
80 |
+
<output>
|
81 |
+
<port id="5" precision="I32">
|
82 |
+
<dim>-1</dim>
|
83 |
+
</port>
|
84 |
+
<port id="6" precision="I32">
|
85 |
+
<dim>-1</dim>
|
86 |
+
</port>
|
87 |
+
<port id="7" precision="I32">
|
88 |
+
<dim>-1</dim>
|
89 |
+
</port>
|
90 |
+
<port id="8" precision="I32">
|
91 |
+
<dim>-1</dim>
|
92 |
+
</port>
|
93 |
+
<port id="9" precision="U8">
|
94 |
+
<dim>-1</dim>
|
95 |
+
</port>
|
96 |
+
</output>
|
97 |
+
</layer>
|
98 |
+
<layer id="7" name="FuzeRagged_810764" type="FuzeRagged" version="extension">
|
99 |
+
<input>
|
100 |
+
<port id="0" precision="I32">
|
101 |
+
<dim>-1</dim>
|
102 |
+
</port>
|
103 |
+
<port id="1" precision="I32">
|
104 |
+
<dim>-1</dim>
|
105 |
+
</port>
|
106 |
+
<port id="2" precision="I32">
|
107 |
+
<dim>-1</dim>
|
108 |
+
</port>
|
109 |
+
<port id="3" precision="I32">
|
110 |
+
<dim>-1</dim>
|
111 |
+
</port>
|
112 |
+
</input>
|
113 |
+
<output>
|
114 |
+
<port id="4" precision="I32">
|
115 |
+
<dim>-1</dim>
|
116 |
+
</port>
|
117 |
+
<port id="5" precision="I32">
|
118 |
+
<dim>-1</dim>
|
119 |
+
</port>
|
120 |
+
</output>
|
121 |
+
</layer>
|
122 |
+
<layer id="8" name="UTF8Validate_810765" type="UTF8Validate" version="extension">
|
123 |
+
<data replace_mode="true" />
|
124 |
+
<input>
|
125 |
+
<port id="0" precision="I32">
|
126 |
+
<dim>-1</dim>
|
127 |
+
</port>
|
128 |
+
<port id="1" precision="I32">
|
129 |
+
<dim>-1</dim>
|
130 |
+
</port>
|
131 |
+
<port id="2" precision="U8">
|
132 |
+
<dim>-1</dim>
|
133 |
+
</port>
|
134 |
+
</input>
|
135 |
+
<output>
|
136 |
+
<port id="3" precision="I32">
|
137 |
+
<dim>-1</dim>
|
138 |
+
</port>
|
139 |
+
<port id="4" precision="I32">
|
140 |
+
<dim>-1</dim>
|
141 |
+
</port>
|
142 |
+
<port id="5" precision="U8">
|
143 |
+
<dim>-1</dim>
|
144 |
+
</port>
|
145 |
+
</output>
|
146 |
+
</layer>
|
147 |
+
<layer id="9" name="StringTensorPack_810766" type="StringTensorPack" version="opset15">
|
148 |
+
<input>
|
149 |
+
<port id="0" precision="I32">
|
150 |
+
<dim>-1</dim>
|
151 |
+
</port>
|
152 |
+
<port id="1" precision="I32">
|
153 |
+
<dim>-1</dim>
|
154 |
+
</port>
|
155 |
+
<port id="2" precision="U8">
|
156 |
+
<dim>-1</dim>
|
157 |
+
</port>
|
158 |
+
</input>
|
159 |
+
<output>
|
160 |
+
<port id="3" precision="STRING" names="Result_810767,string_output">
|
161 |
+
<dim>-1</dim>
|
162 |
+
</port>
|
163 |
+
</output>
|
164 |
+
</layer>
|
165 |
+
<layer id="10" name="Result_810767" type="Result" version="opset1" output_names="Result_810767,string_output">
|
166 |
+
<input>
|
167 |
+
<port id="0" precision="STRING">
|
168 |
+
<dim>-1</dim>
|
169 |
+
</port>
|
170 |
+
</input>
|
171 |
+
</layer>
|
172 |
+
</layers>
|
173 |
+
<edges>
|
174 |
+
<edge from-layer="0" from-port="0" to-layer="1" to-port="0" />
|
175 |
+
<edge from-layer="1" from-port="1" to-layer="6" to-port="0" />
|
176 |
+
<edge from-layer="2" from-port="0" to-layer="6" to-port="1" />
|
177 |
+
<edge from-layer="3" from-port="0" to-layer="6" to-port="2" />
|
178 |
+
<edge from-layer="4" from-port="0" to-layer="6" to-port="3" />
|
179 |
+
<edge from-layer="5" from-port="0" to-layer="6" to-port="4" />
|
180 |
+
<edge from-layer="6" from-port="7" to-layer="7" to-port="2" />
|
181 |
+
<edge from-layer="6" from-port="9" to-layer="8" to-port="2" />
|
182 |
+
<edge from-layer="6" from-port="8" to-layer="7" to-port="3" />
|
183 |
+
<edge from-layer="6" from-port="6" to-layer="7" to-port="1" />
|
184 |
+
<edge from-layer="6" from-port="5" to-layer="7" to-port="0" />
|
185 |
+
<edge from-layer="7" from-port="4" to-layer="8" to-port="0" />
|
186 |
+
<edge from-layer="7" from-port="5" to-layer="8" to-port="1" />
|
187 |
+
<edge from-layer="8" from-port="3" to-layer="9" to-port="0" />
|
188 |
+
<edge from-layer="8" from-port="4" to-layer="9" to-port="1" />
|
189 |
+
<edge from-layer="8" from-port="5" to-layer="9" to-port="2" />
|
190 |
+
<edge from-layer="9" from-port="3" to-layer="10" to-port="0" />
|
191 |
+
</edges>
|
192 |
+
<rt_info>
|
193 |
+
<add_attention_mask value="True" />
|
194 |
+
<add_prefix_space />
|
195 |
+
<add_special_tokens value="True" />
|
196 |
+
<bos_token_id value="199999" />
|
197 |
+
<chat_template value="{% for message in messages %}{% if message['role'] == 'system' and 'tools' in message and message['tools'] is not none %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|tool|>' + message['tools'] + '<|/tool|>' + '<|end|>' }}{% else %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|end|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>' }}{% else %}{{ eos_token }}{% endif %}" />
|
198 |
+
<clean_up_tokenization_spaces />
|
199 |
+
<detokenizer_input_type value="i64" />
|
200 |
+
<eos_token_id value="199999" />
|
201 |
+
<handle_special_tokens_with_re />
|
202 |
+
<max_length />
|
203 |
+
<number_of_inputs value="1" />
|
204 |
+
<openvino_tokenizers_version value="2025.1.0.0-523-710ddf14de8" />
|
205 |
+
<openvino_version value="2025.1.0-18503-6fec06580ab-releases/2025/1" />
|
206 |
+
<original_tokenizer_class value="<class 'transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast'>" />
|
207 |
+
<pad_token_id value="199999" />
|
208 |
+
<sentencepiece_version value="0.2.0" />
|
209 |
+
<skip_special_tokens value="True" />
|
210 |
+
<streaming_detokenizer value="False" />
|
211 |
+
<tokenizer_output_type value="i64" />
|
212 |
+
<tokenizers_version value="0.21.1" />
|
213 |
+
<transformers_version value="4.51.3" />
|
214 |
+
<use_max_padding value="False" />
|
215 |
+
<use_sentencepiece_backend value="False" />
|
216 |
+
<utf8_replace_mode value="replace" />
|
217 |
+
<with_detokenizer value="True" />
|
218 |
+
</rt_info>
|
219 |
+
</net>
|
Phi-4-mini-instruct-int4_asym-awq-se-ov/openvino_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55ed14b93e082af6e5dfde48e568a083e368273f9e26f91bdec0f787a7f4369a
|
3 |
+
size 2657906348
|
Phi-4-mini-instruct-int4_asym-awq-se-ov/openvino_model.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Phi-4-mini-instruct-int4_asym-awq-se-ov/openvino_tokenizer.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:818537d6633196e2f45e51017a6320010ca3c06120460c14028a6c325f92f477
|
3 |
+
size 7602768
|
Phi-4-mini-instruct-int4_asym-awq-se-ov/openvino_tokenizer.xml
ADDED
@@ -0,0 +1,685 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<net name="tokenizer" version="11">
|
3 |
+
<layers>
|
4 |
+
<layer id="0" name="Parameter_810632" type="Parameter" version="opset1">
|
5 |
+
<data shape="?" element_type="string" />
|
6 |
+
<output>
|
7 |
+
<port id="0" precision="STRING" names="Parameter_810632">
|
8 |
+
<dim>-1</dim>
|
9 |
+
</port>
|
10 |
+
</output>
|
11 |
+
</layer>
|
12 |
+
<layer id="1" name="Constant_810638" type="Const" version="opset1">
|
13 |
+
<data element_type="i64" shape="" offset="0" size="8" />
|
14 |
+
<output>
|
15 |
+
<port id="0" precision="I64" />
|
16 |
+
</output>
|
17 |
+
</layer>
|
18 |
+
<layer id="2" name="StringTensorUnpack_810633" type="StringTensorUnpack" version="opset15">
|
19 |
+
<input>
|
20 |
+
<port id="0" precision="STRING">
|
21 |
+
<dim>-1</dim>
|
22 |
+
</port>
|
23 |
+
</input>
|
24 |
+
<output>
|
25 |
+
<port id="1" precision="I32">
|
26 |
+
<dim>-1</dim>
|
27 |
+
</port>
|
28 |
+
<port id="2" precision="I32">
|
29 |
+
<dim>-1</dim>
|
30 |
+
</port>
|
31 |
+
<port id="3" precision="U8">
|
32 |
+
<dim>-1</dim>
|
33 |
+
</port>
|
34 |
+
</output>
|
35 |
+
</layer>
|
36 |
+
<layer id="3" name="ShapeOf_810634" type="ShapeOf" version="opset3">
|
37 |
+
<data output_type="i64" />
|
38 |
+
<input>
|
39 |
+
<port id="0" precision="I32">
|
40 |
+
<dim>-1</dim>
|
41 |
+
</port>
|
42 |
+
</input>
|
43 |
+
<output>
|
44 |
+
<port id="1" precision="I64">
|
45 |
+
<dim>1</dim>
|
46 |
+
</port>
|
47 |
+
</output>
|
48 |
+
</layer>
|
49 |
+
<layer id="4" name="Constant_810635" type="Const" version="opset1">
|
50 |
+
<data element_type="i64" shape="" offset="0" size="8" />
|
51 |
+
<output>
|
52 |
+
<port id="0" precision="I64" />
|
53 |
+
</output>
|
54 |
+
</layer>
|
55 |
+
<layer id="5" name="Constant_810636" type="Const" version="opset1">
|
56 |
+
<data element_type="i64" shape="" offset="0" size="8" />
|
57 |
+
<output>
|
58 |
+
<port id="0" precision="I64" />
|
59 |
+
</output>
|
60 |
+
</layer>
|
61 |
+
<layer id="6" name="Gather_810637" type="Gather" version="opset8">
|
62 |
+
<data batch_dims="0" />
|
63 |
+
<input>
|
64 |
+
<port id="0" precision="I64">
|
65 |
+
<dim>1</dim>
|
66 |
+
</port>
|
67 |
+
<port id="1" precision="I64" />
|
68 |
+
<port id="2" precision="I64" />
|
69 |
+
</input>
|
70 |
+
<output>
|
71 |
+
<port id="3" precision="I64" />
|
72 |
+
</output>
|
73 |
+
</layer>
|
74 |
+
<layer id="7" name="Constant_810639" type="Const" version="opset1">
|
75 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
76 |
+
<output>
|
77 |
+
<port id="0" precision="I64" />
|
78 |
+
</output>
|
79 |
+
</layer>
|
80 |
+
<layer id="8" name="Range_810640" type="Range" version="opset4">
|
81 |
+
<data output_type="i32" />
|
82 |
+
<input>
|
83 |
+
<port id="0" precision="I64" />
|
84 |
+
<port id="1" precision="I64" />
|
85 |
+
<port id="2" precision="I64" />
|
86 |
+
</input>
|
87 |
+
<output>
|
88 |
+
<port id="3" precision="I32">
|
89 |
+
<dim>-1</dim>
|
90 |
+
</port>
|
91 |
+
</output>
|
92 |
+
</layer>
|
93 |
+
<layer id="9" name="Constant_810641" type="Const" version="opset1">
|
94 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
95 |
+
<output>
|
96 |
+
<port id="0" precision="I64" />
|
97 |
+
</output>
|
98 |
+
</layer>
|
99 |
+
<layer id="10" name="Constant_810642" type="Const" version="opset1">
|
100 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
101 |
+
<output>
|
102 |
+
<port id="0" precision="I64" />
|
103 |
+
</output>
|
104 |
+
</layer>
|
105 |
+
<layer id="11" name="Add_810643" type="Add" version="opset1">
|
106 |
+
<data auto_broadcast="numpy" />
|
107 |
+
<input>
|
108 |
+
<port id="0" precision="I64" />
|
109 |
+
<port id="1" precision="I64" />
|
110 |
+
</input>
|
111 |
+
<output>
|
112 |
+
<port id="2" precision="I64" />
|
113 |
+
</output>
|
114 |
+
</layer>
|
115 |
+
<layer id="12" name="Constant_810644" type="Const" version="opset1">
|
116 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
117 |
+
<output>
|
118 |
+
<port id="0" precision="I64" />
|
119 |
+
</output>
|
120 |
+
</layer>
|
121 |
+
<layer id="13" name="Range_810645" type="Range" version="opset4">
|
122 |
+
<data output_type="i32" />
|
123 |
+
<input>
|
124 |
+
<port id="0" precision="I64" />
|
125 |
+
<port id="1" precision="I64" />
|
126 |
+
<port id="2" precision="I64" />
|
127 |
+
</input>
|
128 |
+
<output>
|
129 |
+
<port id="3" precision="I32">
|
130 |
+
<dim>-1</dim>
|
131 |
+
</port>
|
132 |
+
</output>
|
133 |
+
</layer>
|
134 |
+
<layer id="14" name="Constant_810707" type="Const" version="opset1">
|
135 |
+
<data element_type="u8" shape="289" offset="16" size="289" />
|
136 |
+
<output>
|
137 |
+
<port id="0" precision="U8">
|
138 |
+
<dim>289</dim>
|
139 |
+
</port>
|
140 |
+
</output>
|
141 |
+
</layer>
|
142 |
+
<layer id="15" name="SpecialTokensSplit_810708" type="SpecialTokensSplit" version="extension">
|
143 |
+
<input>
|
144 |
+
<port id="0" precision="I32">
|
145 |
+
<dim>-1</dim>
|
146 |
+
</port>
|
147 |
+
<port id="1" precision="I32">
|
148 |
+
<dim>-1</dim>
|
149 |
+
</port>
|
150 |
+
<port id="2" precision="I32">
|
151 |
+
<dim>-1</dim>
|
152 |
+
</port>
|
153 |
+
<port id="3" precision="I32">
|
154 |
+
<dim>-1</dim>
|
155 |
+
</port>
|
156 |
+
<port id="4" precision="U8">
|
157 |
+
<dim>-1</dim>
|
158 |
+
</port>
|
159 |
+
<port id="5" precision="U8">
|
160 |
+
<dim>289</dim>
|
161 |
+
</port>
|
162 |
+
</input>
|
163 |
+
<output>
|
164 |
+
<port id="6" precision="I32">
|
165 |
+
<dim>-1</dim>
|
166 |
+
</port>
|
167 |
+
<port id="7" precision="I32">
|
168 |
+
<dim>-1</dim>
|
169 |
+
</port>
|
170 |
+
<port id="8" precision="I32">
|
171 |
+
<dim>-1</dim>
|
172 |
+
</port>
|
173 |
+
<port id="9" precision="I32">
|
174 |
+
<dim>-1</dim>
|
175 |
+
</port>
|
176 |
+
<port id="10" precision="U8">
|
177 |
+
<dim>-1</dim>
|
178 |
+
</port>
|
179 |
+
<port id="11" precision="BOOL">
|
180 |
+
<dim>-1</dim>
|
181 |
+
</port>
|
182 |
+
</output>
|
183 |
+
</layer>
|
184 |
+
<layer id="16" name="Constant_810710" type="Const" version="opset1">
|
185 |
+
<data element_type="u8" shape="274" offset="305" size="274" />
|
186 |
+
<output>
|
187 |
+
<port id="0" precision="U8">
|
188 |
+
<dim>274</dim>
|
189 |
+
</port>
|
190 |
+
</output>
|
191 |
+
</layer>
|
192 |
+
<layer id="17" name="RegexSplit_810711" type="RegexSplit" version="extension">
|
193 |
+
<data behaviour="remove" invert="true" max_splits="-1" />
|
194 |
+
<input>
|
195 |
+
<port id="0" precision="I32">
|
196 |
+
<dim>-1</dim>
|
197 |
+
</port>
|
198 |
+
<port id="1" precision="I32">
|
199 |
+
<dim>-1</dim>
|
200 |
+
</port>
|
201 |
+
<port id="2" precision="I32">
|
202 |
+
<dim>-1</dim>
|
203 |
+
</port>
|
204 |
+
<port id="3" precision="I32">
|
205 |
+
<dim>-1</dim>
|
206 |
+
</port>
|
207 |
+
<port id="4" precision="U8">
|
208 |
+
<dim>-1</dim>
|
209 |
+
</port>
|
210 |
+
<port id="5" precision="BOOL">
|
211 |
+
<dim>-1</dim>
|
212 |
+
</port>
|
213 |
+
<port id="6" precision="U8">
|
214 |
+
<dim>274</dim>
|
215 |
+
</port>
|
216 |
+
</input>
|
217 |
+
<output>
|
218 |
+
<port id="7" precision="I32">
|
219 |
+
<dim>-1</dim>
|
220 |
+
</port>
|
221 |
+
<port id="8" precision="I32">
|
222 |
+
<dim>-1</dim>
|
223 |
+
</port>
|
224 |
+
<port id="9" precision="I32">
|
225 |
+
<dim>-1</dim>
|
226 |
+
</port>
|
227 |
+
<port id="10" precision="I32">
|
228 |
+
<dim>-1</dim>
|
229 |
+
</port>
|
230 |
+
<port id="11" precision="U8">
|
231 |
+
<dim>-1</dim>
|
232 |
+
</port>
|
233 |
+
<port id="12" precision="BOOL">
|
234 |
+
<dim>-1</dim>
|
235 |
+
</port>
|
236 |
+
</output>
|
237 |
+
</layer>
|
238 |
+
<layer id="18" name="Constant_810713" type="Const" version="opset1">
|
239 |
+
<data element_type="i32" shape="200029" offset="579" size="800116" />
|
240 |
+
<output>
|
241 |
+
<port id="0" precision="I32">
|
242 |
+
<dim>200029</dim>
|
243 |
+
</port>
|
244 |
+
</output>
|
245 |
+
</layer>
|
246 |
+
<layer id="19" name="Constant_810715" type="Const" version="opset1">
|
247 |
+
<data element_type="i32" shape="200029" offset="800695" size="800116" />
|
248 |
+
<output>
|
249 |
+
<port id="0" precision="I32">
|
250 |
+
<dim>200029</dim>
|
251 |
+
</port>
|
252 |
+
</output>
|
253 |
+
</layer>
|
254 |
+
<layer id="20" name="Constant_810717" type="Const" version="opset1">
|
255 |
+
<data element_type="u8" shape="1398109" offset="1600811" size="1398109" />
|
256 |
+
<output>
|
257 |
+
<port id="0" precision="U8">
|
258 |
+
<dim>1398109</dim>
|
259 |
+
</port>
|
260 |
+
</output>
|
261 |
+
</layer>
|
262 |
+
<layer id="21" name="Constant_810725" type="Const" version="opset1">
|
263 |
+
<data element_type="i32" shape="199742" offset="2998920" size="798968" />
|
264 |
+
<output>
|
265 |
+
<port id="0" precision="I32">
|
266 |
+
<dim>199742</dim>
|
267 |
+
</port>
|
268 |
+
</output>
|
269 |
+
</layer>
|
270 |
+
<layer id="22" name="Constant_810727" type="Const" version="opset1">
|
271 |
+
<data element_type="i32" shape="199742" offset="3797888" size="798968" />
|
272 |
+
<output>
|
273 |
+
<port id="0" precision="I32">
|
274 |
+
<dim>199742</dim>
|
275 |
+
</port>
|
276 |
+
</output>
|
277 |
+
</layer>
|
278 |
+
<layer id="23" name="Constant_810729" type="Const" version="opset1">
|
279 |
+
<data element_type="u8" shape="718313" offset="4596856" size="718313" />
|
280 |
+
<output>
|
281 |
+
<port id="0" precision="U8">
|
282 |
+
<dim>718313</dim>
|
283 |
+
</port>
|
284 |
+
</output>
|
285 |
+
</layer>
|
286 |
+
<layer id="24" name="Constant_810731" type="Const" version="opset1">
|
287 |
+
<data element_type="i32" shape="199742" offset="5315169" size="798968" />
|
288 |
+
<output>
|
289 |
+
<port id="0" precision="I32">
|
290 |
+
<dim>199742</dim>
|
291 |
+
</port>
|
292 |
+
</output>
|
293 |
+
</layer>
|
294 |
+
<layer id="25" name="Constant_810733" type="Const" version="opset1">
|
295 |
+
<data element_type="i32" shape="199742" offset="6114137" size="798968" />
|
296 |
+
<output>
|
297 |
+
<port id="0" precision="I32">
|
298 |
+
<dim>199742</dim>
|
299 |
+
</port>
|
300 |
+
</output>
|
301 |
+
</layer>
|
302 |
+
<layer id="26" name="Constant_810735" type="Const" version="opset1">
|
303 |
+
<data element_type="u8" shape="679101" offset="6913105" size="679101" />
|
304 |
+
<output>
|
305 |
+
<port id="0" precision="U8">
|
306 |
+
<dim>679101</dim>
|
307 |
+
</port>
|
308 |
+
</output>
|
309 |
+
</layer>
|
310 |
+
<layer id="27" name="Constant_810719" type="Const" version="opset1">
|
311 |
+
<data element_type="i32" shape="432" offset="7592206" size="1728" />
|
312 |
+
<output>
|
313 |
+
<port id="0" precision="I32">
|
314 |
+
<dim>432</dim>
|
315 |
+
</port>
|
316 |
+
</output>
|
317 |
+
</layer>
|
318 |
+
<layer id="28" name="Constant_810721" type="Const" version="opset1">
|
319 |
+
<data element_type="i32" shape="432" offset="7593934" size="1728" />
|
320 |
+
<output>
|
321 |
+
<port id="0" precision="I32">
|
322 |
+
<dim>432</dim>
|
323 |
+
</port>
|
324 |
+
</output>
|
325 |
+
</layer>
|
326 |
+
<layer id="29" name="Constant_810723" type="Const" version="opset1">
|
327 |
+
<data element_type="u8" shape="5366" offset="7595662" size="5366" />
|
328 |
+
<output>
|
329 |
+
<port id="0" precision="U8">
|
330 |
+
<dim>5366</dim>
|
331 |
+
</port>
|
332 |
+
</output>
|
333 |
+
</layer>
|
334 |
+
<layer id="30" name="Constant_810736" type="Const" version="opset1">
|
335 |
+
<data element_type="i32" shape="432" offset="7601028" size="1728" />
|
336 |
+
<output>
|
337 |
+
<port id="0" precision="I32">
|
338 |
+
<dim>432</dim>
|
339 |
+
</port>
|
340 |
+
</output>
|
341 |
+
</layer>
|
342 |
+
<layer id="31" name="BPETokenizer_810737" type="BPETokenizer" version="extension">
|
343 |
+
<data unk_token="" fuse_unk="false" suffix_indicator="" end_suffix="" byte_fallback="false" cache_capacity="40003" />
|
344 |
+
<input>
|
345 |
+
<port id="0" precision="I32">
|
346 |
+
<dim>-1</dim>
|
347 |
+
</port>
|
348 |
+
<port id="1" precision="I32">
|
349 |
+
<dim>-1</dim>
|
350 |
+
</port>
|
351 |
+
<port id="2" precision="I32">
|
352 |
+
<dim>-1</dim>
|
353 |
+
</port>
|
354 |
+
<port id="3" precision="I32">
|
355 |
+
<dim>-1</dim>
|
356 |
+
</port>
|
357 |
+
<port id="4" precision="U8">
|
358 |
+
<dim>-1</dim>
|
359 |
+
</port>
|
360 |
+
<port id="5" precision="I32">
|
361 |
+
<dim>200029</dim>
|
362 |
+
</port>
|
363 |
+
<port id="6" precision="I32">
|
364 |
+
<dim>200029</dim>
|
365 |
+
</port>
|
366 |
+
<port id="7" precision="U8">
|
367 |
+
<dim>1398109</dim>
|
368 |
+
</port>
|
369 |
+
<port id="8" precision="I32">
|
370 |
+
<dim>199742</dim>
|
371 |
+
</port>
|
372 |
+
<port id="9" precision="I32">
|
373 |
+
<dim>199742</dim>
|
374 |
+
</port>
|
375 |
+
<port id="10" precision="U8">
|
376 |
+
<dim>718313</dim>
|
377 |
+
</port>
|
378 |
+
<port id="11" precision="I32">
|
379 |
+
<dim>199742</dim>
|
380 |
+
</port>
|
381 |
+
<port id="12" precision="I32">
|
382 |
+
<dim>199742</dim>
|
383 |
+
</port>
|
384 |
+
<port id="13" precision="U8">
|
385 |
+
<dim>679101</dim>
|
386 |
+
</port>
|
387 |
+
<port id="14" precision="I32">
|
388 |
+
<dim>432</dim>
|
389 |
+
</port>
|
390 |
+
<port id="15" precision="I32">
|
391 |
+
<dim>432</dim>
|
392 |
+
</port>
|
393 |
+
<port id="16" precision="U8">
|
394 |
+
<dim>5366</dim>
|
395 |
+
</port>
|
396 |
+
<port id="17" precision="I32">
|
397 |
+
<dim>432</dim>
|
398 |
+
</port>
|
399 |
+
</input>
|
400 |
+
<output>
|
401 |
+
<port id="18" precision="I32">
|
402 |
+
<dim>-1</dim>
|
403 |
+
</port>
|
404 |
+
<port id="19" precision="I32">
|
405 |
+
<dim>-1</dim>
|
406 |
+
</port>
|
407 |
+
<port id="20" precision="I32">
|
408 |
+
<dim>-1</dim>
|
409 |
+
</port>
|
410 |
+
</output>
|
411 |
+
</layer>
|
412 |
+
<layer id="32" name="Subtract_810738" type="Subtract" version="opset1">
|
413 |
+
<data auto_broadcast="numpy" />
|
414 |
+
<input>
|
415 |
+
<port id="0" precision="I32">
|
416 |
+
<dim>-1</dim>
|
417 |
+
</port>
|
418 |
+
<port id="1" precision="I32">
|
419 |
+
<dim>-1</dim>
|
420 |
+
</port>
|
421 |
+
</input>
|
422 |
+
<output>
|
423 |
+
<port id="2" precision="I32">
|
424 |
+
<dim>-1</dim>
|
425 |
+
</port>
|
426 |
+
</output>
|
427 |
+
</layer>
|
428 |
+
<layer id="33" name="Constant_810739" type="Const" version="opset1">
|
429 |
+
<data element_type="i32" shape="" offset="7602756" size="4" />
|
430 |
+
<output>
|
431 |
+
<port id="0" precision="I32" />
|
432 |
+
</output>
|
433 |
+
</layer>
|
434 |
+
<layer id="34" name="Minimum_810740" type="Minimum" version="opset1">
|
435 |
+
<data auto_broadcast="numpy" />
|
436 |
+
<input>
|
437 |
+
<port id="0" precision="I32">
|
438 |
+
<dim>-1</dim>
|
439 |
+
</port>
|
440 |
+
<port id="1" precision="I32" />
|
441 |
+
</input>
|
442 |
+
<output>
|
443 |
+
<port id="2" precision="I32">
|
444 |
+
<dim>-1</dim>
|
445 |
+
</port>
|
446 |
+
</output>
|
447 |
+
</layer>
|
448 |
+
<layer id="35" name="Subtract_810741" type="Subtract" version="opset1">
|
449 |
+
<data auto_broadcast="numpy" />
|
450 |
+
<input>
|
451 |
+
<port id="0" precision="I32">
|
452 |
+
<dim>-1</dim>
|
453 |
+
</port>
|
454 |
+
<port id="1" precision="I32">
|
455 |
+
<dim>-1</dim>
|
456 |
+
</port>
|
457 |
+
</input>
|
458 |
+
<output>
|
459 |
+
<port id="2" precision="I32">
|
460 |
+
<dim>-1</dim>
|
461 |
+
</port>
|
462 |
+
</output>
|
463 |
+
</layer>
|
464 |
+
<layer id="36" name="Subtract_810742" type="Subtract" version="opset1">
|
465 |
+
<data auto_broadcast="numpy" />
|
466 |
+
<input>
|
467 |
+
<port id="0" precision="I32">
|
468 |
+
<dim>-1</dim>
|
469 |
+
</port>
|
470 |
+
<port id="1" precision="I32">
|
471 |
+
<dim>-1</dim>
|
472 |
+
</port>
|
473 |
+
</input>
|
474 |
+
<output>
|
475 |
+
<port id="2" precision="I32">
|
476 |
+
<dim>-1</dim>
|
477 |
+
</port>
|
478 |
+
</output>
|
479 |
+
</layer>
|
480 |
+
<layer id="37" name="Constant_810743" type="Const" version="opset1">
|
481 |
+
<data element_type="i32" shape="" offset="7602760" size="4" />
|
482 |
+
<output>
|
483 |
+
<port id="0" precision="I32" />
|
484 |
+
</output>
|
485 |
+
</layer>
|
486 |
+
<layer id="38" name="ReduceMax_810744" type="ReduceMax" version="opset1">
|
487 |
+
<data keep_dims="false" />
|
488 |
+
<input>
|
489 |
+
<port id="0" precision="I32">
|
490 |
+
<dim>-1</dim>
|
491 |
+
</port>
|
492 |
+
<port id="1" precision="I32" />
|
493 |
+
</input>
|
494 |
+
<output>
|
495 |
+
<port id="2" precision="I32" />
|
496 |
+
</output>
|
497 |
+
</layer>
|
498 |
+
<layer id="39" name="Constant_810745" type="Const" version="opset1">
|
499 |
+
<data element_type="i32" shape="" offset="7602764" size="4" />
|
500 |
+
<output>
|
501 |
+
<port id="0" precision="I32" />
|
502 |
+
</output>
|
503 |
+
</layer>
|
504 |
+
<layer id="40" name="RaggedToDense_810746" type="RaggedToDense" version="extension">
|
505 |
+
<data pad_right="false" m_pad_max_length="false" />
|
506 |
+
<input>
|
507 |
+
<port id="0" precision="I32">
|
508 |
+
<dim>-1</dim>
|
509 |
+
</port>
|
510 |
+
<port id="1" precision="I32">
|
511 |
+
<dim>-1</dim>
|
512 |
+
</port>
|
513 |
+
<port id="2" precision="I32">
|
514 |
+
<dim>-1</dim>
|
515 |
+
</port>
|
516 |
+
<port id="3" precision="I32" />
|
517 |
+
<port id="4" precision="I32" />
|
518 |
+
</input>
|
519 |
+
<output>
|
520 |
+
<port id="5" precision="I32">
|
521 |
+
<dim>-1</dim>
|
522 |
+
<dim>-1</dim>
|
523 |
+
</port>
|
524 |
+
<port id="6" precision="BOOL">
|
525 |
+
<dim>-1</dim>
|
526 |
+
<dim>-1</dim>
|
527 |
+
</port>
|
528 |
+
</output>
|
529 |
+
</layer>
|
530 |
+
<layer id="41" name="Convert_810747" type="Convert" version="opset1">
|
531 |
+
<data destination_type="i32" />
|
532 |
+
<input>
|
533 |
+
<port id="0" precision="BOOL">
|
534 |
+
<dim>-1</dim>
|
535 |
+
<dim>-1</dim>
|
536 |
+
</port>
|
537 |
+
</input>
|
538 |
+
<output>
|
539 |
+
<port id="1" precision="I32">
|
540 |
+
<dim>-1</dim>
|
541 |
+
<dim>-1</dim>
|
542 |
+
</port>
|
543 |
+
</output>
|
544 |
+
</layer>
|
545 |
+
<layer id="42" name="Convert_810747.0" type="Convert" version="opset1">
|
546 |
+
<data destination_type="i64" />
|
547 |
+
<input>
|
548 |
+
<port id="0" precision="I32">
|
549 |
+
<dim>-1</dim>
|
550 |
+
<dim>-1</dim>
|
551 |
+
</port>
|
552 |
+
</input>
|
553 |
+
<output>
|
554 |
+
<port id="1" precision="I64" names="attention_mask">
|
555 |
+
<dim>-1</dim>
|
556 |
+
<dim>-1</dim>
|
557 |
+
</port>
|
558 |
+
</output>
|
559 |
+
</layer>
|
560 |
+
<layer id="44" name="RaggedToDense_810746.0" type="Convert" version="opset1">
|
561 |
+
<data destination_type="i64" />
|
562 |
+
<input>
|
563 |
+
<port id="0" precision="I32">
|
564 |
+
<dim>-1</dim>
|
565 |
+
<dim>-1</dim>
|
566 |
+
</port>
|
567 |
+
</input>
|
568 |
+
<output>
|
569 |
+
<port id="1" precision="I64" names="input_ids">
|
570 |
+
<dim>-1</dim>
|
571 |
+
<dim>-1</dim>
|
572 |
+
</port>
|
573 |
+
</output>
|
574 |
+
</layer>
|
575 |
+
<layer id="45" name="Result_810748" type="Result" version="opset1" output_names="input_ids">
|
576 |
+
<input>
|
577 |
+
<port id="0" precision="I64">
|
578 |
+
<dim>-1</dim>
|
579 |
+
<dim>-1</dim>
|
580 |
+
</port>
|
581 |
+
</input>
|
582 |
+
</layer>
|
583 |
+
<layer id="43" name="Result_810749" type="Result" version="opset1" output_names="attention_mask">
|
584 |
+
<input>
|
585 |
+
<port id="0" precision="I64">
|
586 |
+
<dim>-1</dim>
|
587 |
+
<dim>-1</dim>
|
588 |
+
</port>
|
589 |
+
</input>
|
590 |
+
</layer>
|
591 |
+
</layers>
|
592 |
+
<edges>
|
593 |
+
<edge from-layer="0" from-port="0" to-layer="2" to-port="0" />
|
594 |
+
<edge from-layer="1" from-port="0" to-layer="8" to-port="0" />
|
595 |
+
<edge from-layer="2" from-port="2" to-layer="15" to-port="3" />
|
596 |
+
<edge from-layer="2" from-port="3" to-layer="15" to-port="4" />
|
597 |
+
<edge from-layer="2" from-port="1" to-layer="15" to-port="2" />
|
598 |
+
<edge from-layer="2" from-port="1" to-layer="3" to-port="0" />
|
599 |
+
<edge from-layer="3" from-port="1" to-layer="6" to-port="0" />
|
600 |
+
<edge from-layer="4" from-port="0" to-layer="6" to-port="1" />
|
601 |
+
<edge from-layer="5" from-port="0" to-layer="6" to-port="2" />
|
602 |
+
<edge from-layer="6" from-port="3" to-layer="8" to-port="1" />
|
603 |
+
<edge from-layer="6" from-port="3" to-layer="11" to-port="0" />
|
604 |
+
<edge from-layer="7" from-port="0" to-layer="8" to-port="2" />
|
605 |
+
<edge from-layer="8" from-port="3" to-layer="15" to-port="0" />
|
606 |
+
<edge from-layer="9" from-port="0" to-layer="13" to-port="0" />
|
607 |
+
<edge from-layer="10" from-port="0" to-layer="11" to-port="1" />
|
608 |
+
<edge from-layer="11" from-port="2" to-layer="13" to-port="1" />
|
609 |
+
<edge from-layer="12" from-port="0" to-layer="13" to-port="2" />
|
610 |
+
<edge from-layer="13" from-port="3" to-layer="15" to-port="1" />
|
611 |
+
<edge from-layer="14" from-port="0" to-layer="15" to-port="5" />
|
612 |
+
<edge from-layer="15" from-port="6" to-layer="17" to-port="0" />
|
613 |
+
<edge from-layer="15" from-port="7" to-layer="17" to-port="1" />
|
614 |
+
<edge from-layer="15" from-port="8" to-layer="17" to-port="2" />
|
615 |
+
<edge from-layer="15" from-port="9" to-layer="17" to-port="3" />
|
616 |
+
<edge from-layer="15" from-port="10" to-layer="17" to-port="4" />
|
617 |
+
<edge from-layer="15" from-port="11" to-layer="17" to-port="5" />
|
618 |
+
<edge from-layer="16" from-port="0" to-layer="17" to-port="6" />
|
619 |
+
<edge from-layer="17" from-port="7" to-layer="31" to-port="0" />
|
620 |
+
<edge from-layer="17" from-port="8" to-layer="31" to-port="1" />
|
621 |
+
<edge from-layer="17" from-port="9" to-layer="31" to-port="2" />
|
622 |
+
<edge from-layer="17" from-port="10" to-layer="31" to-port="3" />
|
623 |
+
<edge from-layer="17" from-port="11" to-layer="31" to-port="4" />
|
624 |
+
<edge from-layer="18" from-port="0" to-layer="31" to-port="5" />
|
625 |
+
<edge from-layer="19" from-port="0" to-layer="31" to-port="6" />
|
626 |
+
<edge from-layer="20" from-port="0" to-layer="31" to-port="7" />
|
627 |
+
<edge from-layer="21" from-port="0" to-layer="31" to-port="8" />
|
628 |
+
<edge from-layer="22" from-port="0" to-layer="31" to-port="9" />
|
629 |
+
<edge from-layer="23" from-port="0" to-layer="31" to-port="10" />
|
630 |
+
<edge from-layer="24" from-port="0" to-layer="31" to-port="11" />
|
631 |
+
<edge from-layer="25" from-port="0" to-layer="31" to-port="12" />
|
632 |
+
<edge from-layer="26" from-port="0" to-layer="31" to-port="13" />
|
633 |
+
<edge from-layer="27" from-port="0" to-layer="31" to-port="14" />
|
634 |
+
<edge from-layer="28" from-port="0" to-layer="31" to-port="15" />
|
635 |
+
<edge from-layer="29" from-port="0" to-layer="31" to-port="16" />
|
636 |
+
<edge from-layer="30" from-port="0" to-layer="31" to-port="17" />
|
637 |
+
<edge from-layer="31" from-port="19" to-layer="35" to-port="0" />
|
638 |
+
<edge from-layer="31" from-port="20" to-layer="40" to-port="2" />
|
639 |
+
<edge from-layer="31" from-port="19" to-layer="40" to-port="1" />
|
640 |
+
<edge from-layer="31" from-port="19" to-layer="36" to-port="0" />
|
641 |
+
<edge from-layer="31" from-port="18" to-layer="32" to-port="1" />
|
642 |
+
<edge from-layer="31" from-port="19" to-layer="32" to-port="0" />
|
643 |
+
<edge from-layer="32" from-port="2" to-layer="34" to-port="0" />
|
644 |
+
<edge from-layer="33" from-port="0" to-layer="34" to-port="1" />
|
645 |
+
<edge from-layer="34" from-port="2" to-layer="35" to-port="1" />
|
646 |
+
<edge from-layer="35" from-port="2" to-layer="36" to-port="1" />
|
647 |
+
<edge from-layer="35" from-port="2" to-layer="40" to-port="0" />
|
648 |
+
<edge from-layer="36" from-port="2" to-layer="38" to-port="0" />
|
649 |
+
<edge from-layer="37" from-port="0" to-layer="38" to-port="1" />
|
650 |
+
<edge from-layer="38" from-port="2" to-layer="40" to-port="3" />
|
651 |
+
<edge from-layer="39" from-port="0" to-layer="40" to-port="4" />
|
652 |
+
<edge from-layer="40" from-port="6" to-layer="41" to-port="0" />
|
653 |
+
<edge from-layer="40" from-port="5" to-layer="44" to-port="0" />
|
654 |
+
<edge from-layer="41" from-port="1" to-layer="42" to-port="0" />
|
655 |
+
<edge from-layer="42" from-port="1" to-layer="43" to-port="0" />
|
656 |
+
<edge from-layer="44" from-port="1" to-layer="45" to-port="0" />
|
657 |
+
</edges>
|
658 |
+
<rt_info>
|
659 |
+
<add_attention_mask value="True" />
|
660 |
+
<add_prefix_space />
|
661 |
+
<add_special_tokens value="True" />
|
662 |
+
<bos_token_id value="199999" />
|
663 |
+
<chat_template value="{% for message in messages %}{% if message['role'] == 'system' and 'tools' in message and message['tools'] is not none %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|tool|>' + message['tools'] + '<|/tool|>' + '<|end|>' }}{% else %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|end|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>' }}{% else %}{{ eos_token }}{% endif %}" />
|
664 |
+
<clean_up_tokenization_spaces />
|
665 |
+
<detokenizer_input_type value="i64" />
|
666 |
+
<eos_token_id value="199999" />
|
667 |
+
<handle_special_tokens_with_re />
|
668 |
+
<max_length />
|
669 |
+
<number_of_inputs value="1" />
|
670 |
+
<openvino_tokenizers_version value="2025.1.0.0-523-710ddf14de8" />
|
671 |
+
<openvino_version value="2025.1.0-18503-6fec06580ab-releases/2025/1" />
|
672 |
+
<original_tokenizer_class value="<class 'transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast'>" />
|
673 |
+
<pad_token_id value="199999" />
|
674 |
+
<sentencepiece_version value="0.2.0" />
|
675 |
+
<skip_special_tokens value="True" />
|
676 |
+
<streaming_detokenizer value="False" />
|
677 |
+
<tokenizer_output_type value="i64" />
|
678 |
+
<tokenizers_version value="0.21.1" />
|
679 |
+
<transformers_version value="4.51.3" />
|
680 |
+
<use_max_padding value="False" />
|
681 |
+
<use_sentencepiece_backend value="False" />
|
682 |
+
<utf8_replace_mode value="replace" />
|
683 |
+
<with_detokenizer value="True" />
|
684 |
+
</rt_info>
|
685 |
+
</net>
|
Phi-4-mini-instruct-int4_asym-awq-se-ov/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<|endoftext|>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
Phi-4-mini-instruct-int4_asym-awq-se-ov/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:382cc235b56c725945e149cc25f191da667c836655efd0857b004320e90e91ea
|
3 |
+
size 15524095
|
Phi-4-mini-instruct-int4_asym-awq-se-ov/tokenizer_config.json
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": false,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"199999": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"200018": {
|
15 |
+
"content": "<|endofprompt|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"200019": {
|
23 |
+
"content": "<|assistant|>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": true,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
},
|
30 |
+
"200020": {
|
31 |
+
"content": "<|end|>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": true,
|
35 |
+
"single_word": false,
|
36 |
+
"special": true
|
37 |
+
},
|
38 |
+
"200021": {
|
39 |
+
"content": "<|user|>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": false,
|
42 |
+
"rstrip": true,
|
43 |
+
"single_word": false,
|
44 |
+
"special": true
|
45 |
+
},
|
46 |
+
"200022": {
|
47 |
+
"content": "<|system|>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": false,
|
50 |
+
"rstrip": true,
|
51 |
+
"single_word": false,
|
52 |
+
"special": true
|
53 |
+
},
|
54 |
+
"200023": {
|
55 |
+
"content": "<|tool|>",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": false,
|
58 |
+
"rstrip": true,
|
59 |
+
"single_word": false,
|
60 |
+
"special": false
|
61 |
+
},
|
62 |
+
"200024": {
|
63 |
+
"content": "<|/tool|>",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": false,
|
66 |
+
"rstrip": true,
|
67 |
+
"single_word": false,
|
68 |
+
"special": false
|
69 |
+
},
|
70 |
+
"200025": {
|
71 |
+
"content": "<|tool_call|>",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": false,
|
74 |
+
"rstrip": true,
|
75 |
+
"single_word": false,
|
76 |
+
"special": false
|
77 |
+
},
|
78 |
+
"200026": {
|
79 |
+
"content": "<|/tool_call|>",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": false,
|
82 |
+
"rstrip": true,
|
83 |
+
"single_word": false,
|
84 |
+
"special": false
|
85 |
+
},
|
86 |
+
"200027": {
|
87 |
+
"content": "<|tool_response|>",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": false,
|
90 |
+
"rstrip": true,
|
91 |
+
"single_word": false,
|
92 |
+
"special": false
|
93 |
+
},
|
94 |
+
"200028": {
|
95 |
+
"content": "<|tag|>",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": false,
|
98 |
+
"rstrip": true,
|
99 |
+
"single_word": false,
|
100 |
+
"special": true
|
101 |
+
}
|
102 |
+
},
|
103 |
+
"bos_token": "<|endoftext|>",
|
104 |
+
"chat_template": "{% for message in messages %}{% if message['role'] == 'system' and 'tools' in message and message['tools'] is not none %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|tool|>' + message['tools'] + '<|/tool|>' + '<|end|>' }}{% else %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|end|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>' }}{% else %}{{ eos_token }}{% endif %}",
|
105 |
+
"clean_up_tokenization_spaces": false,
|
106 |
+
"eos_token": "<|endoftext|>",
|
107 |
+
"extra_special_tokens": {},
|
108 |
+
"model_max_length": 131072,
|
109 |
+
"pad_token": "<|endoftext|>",
|
110 |
+
"tokenizer_class": "GPT2Tokenizer",
|
111 |
+
"unk_token": "<|endoftext|>"
|
112 |
+
}
|
Phi-4-mini-instruct-int4_asym-awq-se-ov/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Phi-4-mini-instruct-int4_asym-ov/added_tokens.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|/tool_call|>": 200026,
|
3 |
+
"<|/tool|>": 200024,
|
4 |
+
"<|assistant|>": 200019,
|
5 |
+
"<|end|>": 200020,
|
6 |
+
"<|system|>": 200022,
|
7 |
+
"<|tag|>": 200028,
|
8 |
+
"<|tool_call|>": 200025,
|
9 |
+
"<|tool_response|>": 200027,
|
10 |
+
"<|tool|>": 200023,
|
11 |
+
"<|user|>": 200021
|
12 |
+
}
|
Phi-4-mini-instruct-int4_asym-ov/config.json
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_attn_implementation_autoset": true,
|
3 |
+
"architectures": [
|
4 |
+
"Phi3ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_phi3.Phi3Config",
|
10 |
+
"AutoModelForCausalLM": "modeling_phi3.Phi3ForCausalLM",
|
11 |
+
"AutoTokenizer": "Xenova/gpt-4o"
|
12 |
+
},
|
13 |
+
"bos_token_id": 199999,
|
14 |
+
"embd_pdrop": 0.0,
|
15 |
+
"eos_token_id": 199999,
|
16 |
+
"full_attn_mod": 1,
|
17 |
+
"hidden_act": "silu",
|
18 |
+
"hidden_size": 3072,
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"intermediate_size": 8192,
|
21 |
+
"interpolate_factor": 1,
|
22 |
+
"lm_head_bias": false,
|
23 |
+
"max_position_embeddings": 131072,
|
24 |
+
"mlp_bias": false,
|
25 |
+
"model_type": "phi3",
|
26 |
+
"num_attention_heads": 24,
|
27 |
+
"num_hidden_layers": 32,
|
28 |
+
"num_key_value_heads": 8,
|
29 |
+
"original_max_position_embeddings": 4096,
|
30 |
+
"pad_token_id": 199999,
|
31 |
+
"partial_rotary_factor": 0.75,
|
32 |
+
"resid_pdrop": 0.0,
|
33 |
+
"rms_norm_eps": 1e-05,
|
34 |
+
"rope_scaling": {
|
35 |
+
"long_factor": [
|
36 |
+
1,
|
37 |
+
1.118320672,
|
38 |
+
1.250641126,
|
39 |
+
1.398617824,
|
40 |
+
1.564103225,
|
41 |
+
1.74916897,
|
42 |
+
1.956131817,
|
43 |
+
2.187582649,
|
44 |
+
2.446418898,
|
45 |
+
2.735880826,
|
46 |
+
3.059592084,
|
47 |
+
3.421605075,
|
48 |
+
3.826451687,
|
49 |
+
4.279200023,
|
50 |
+
4.785517845,
|
51 |
+
5.351743533,
|
52 |
+
5.984965424,
|
53 |
+
6.693110555,
|
54 |
+
7.485043894,
|
55 |
+
8.370679318,
|
56 |
+
9.36110372,
|
57 |
+
10.4687158,
|
58 |
+
11.70738129,
|
59 |
+
13.09260651,
|
60 |
+
14.64173252,
|
61 |
+
16.37415215,
|
62 |
+
18.31155283,
|
63 |
+
20.47818807,
|
64 |
+
22.90118105,
|
65 |
+
25.61086418,
|
66 |
+
28.64115884,
|
67 |
+
32.03,
|
68 |
+
32.1,
|
69 |
+
32.13,
|
70 |
+
32.23,
|
71 |
+
32.6,
|
72 |
+
32.61,
|
73 |
+
32.64,
|
74 |
+
32.66,
|
75 |
+
32.7,
|
76 |
+
32.71,
|
77 |
+
32.93,
|
78 |
+
32.97,
|
79 |
+
33.28,
|
80 |
+
33.49,
|
81 |
+
33.5,
|
82 |
+
44.16,
|
83 |
+
47.77
|
84 |
+
],
|
85 |
+
"short_factor": [
|
86 |
+
1.0,
|
87 |
+
1.0,
|
88 |
+
1.0,
|
89 |
+
1.0,
|
90 |
+
1.0,
|
91 |
+
1.0,
|
92 |
+
1.0,
|
93 |
+
1.0,
|
94 |
+
1.0,
|
95 |
+
1.0,
|
96 |
+
1.0,
|
97 |
+
1.0,
|
98 |
+
1.0,
|
99 |
+
1.0,
|
100 |
+
1.0,
|
101 |
+
1.0,
|
102 |
+
1.0,
|
103 |
+
1.0,
|
104 |
+
1.0,
|
105 |
+
1.0,
|
106 |
+
1.0,
|
107 |
+
1.0,
|
108 |
+
1.0,
|
109 |
+
1.0,
|
110 |
+
1.0,
|
111 |
+
1.0,
|
112 |
+
1.0,
|
113 |
+
1.0,
|
114 |
+
1.0,
|
115 |
+
1.0,
|
116 |
+
1.0,
|
117 |
+
1.0,
|
118 |
+
1.0,
|
119 |
+
1.0,
|
120 |
+
1.0,
|
121 |
+
1.0,
|
122 |
+
1.0,
|
123 |
+
1.0,
|
124 |
+
1.0,
|
125 |
+
1.0,
|
126 |
+
1.0,
|
127 |
+
1.0,
|
128 |
+
1.0,
|
129 |
+
1.0,
|
130 |
+
1.0,
|
131 |
+
1.0,
|
132 |
+
1.0,
|
133 |
+
1.0
|
134 |
+
],
|
135 |
+
"type": "longrope"
|
136 |
+
},
|
137 |
+
"rope_theta": 10000.0,
|
138 |
+
"sliding_window": 262144,
|
139 |
+
"tie_word_embeddings": true,
|
140 |
+
"torch_dtype": "bfloat16",
|
141 |
+
"transformers_version": "4.51.3",
|
142 |
+
"use_cache": true,
|
143 |
+
"vocab_size": 200064
|
144 |
+
}
|
Phi-4-mini-instruct-int4_asym-ov/generation_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 199999,
|
4 |
+
"eos_token_id": [
|
5 |
+
200020,
|
6 |
+
199999
|
7 |
+
],
|
8 |
+
"pad_token_id": 199999,
|
9 |
+
"transformers_version": "4.51.3"
|
10 |
+
}
|
Phi-4-mini-instruct-int4_asym-ov/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Phi-4-mini-instruct-int4_asym-ov/openvino_detokenizer.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58ec20da66d1d780b298f3cdcf252ccc0e228636fc7bee219163af81f1837e0a
|
3 |
+
size 2998349
|
Phi-4-mini-instruct-int4_asym-ov/openvino_detokenizer.xml
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<net name="detokenizer" version="11">
|
3 |
+
<layers>
|
4 |
+
<layer id="0" name="Parameter_170637" type="Parameter" version="opset1">
|
5 |
+
<data shape="?,?" element_type="i64" />
|
6 |
+
<output>
|
7 |
+
<port id="0" precision="I64" names="Parameter_170637">
|
8 |
+
<dim>-1</dim>
|
9 |
+
<dim>-1</dim>
|
10 |
+
</port>
|
11 |
+
</output>
|
12 |
+
</layer>
|
13 |
+
<layer id="1" name="Convert_170807" type="Convert" version="opset1">
|
14 |
+
<data destination_type="i32" />
|
15 |
+
<input>
|
16 |
+
<port id="0" precision="I64">
|
17 |
+
<dim>-1</dim>
|
18 |
+
<dim>-1</dim>
|
19 |
+
</port>
|
20 |
+
</input>
|
21 |
+
<output>
|
22 |
+
<port id="1" precision="I32">
|
23 |
+
<dim>-1</dim>
|
24 |
+
<dim>-1</dim>
|
25 |
+
</port>
|
26 |
+
</output>
|
27 |
+
</layer>
|
28 |
+
<layer id="2" name="Constant_170639" type="Const" version="opset1">
|
29 |
+
<data element_type="i32" shape="200029" offset="0" size="800116" />
|
30 |
+
<output>
|
31 |
+
<port id="0" precision="I32">
|
32 |
+
<dim>200029</dim>
|
33 |
+
</port>
|
34 |
+
</output>
|
35 |
+
</layer>
|
36 |
+
<layer id="3" name="Constant_170641" type="Const" version="opset1">
|
37 |
+
<data element_type="i32" shape="200029" offset="800116" size="800116" />
|
38 |
+
<output>
|
39 |
+
<port id="0" precision="I32">
|
40 |
+
<dim>200029</dim>
|
41 |
+
</port>
|
42 |
+
</output>
|
43 |
+
</layer>
|
44 |
+
<layer id="4" name="Constant_170643" type="Const" version="opset1">
|
45 |
+
<data element_type="u8" shape="1398089" offset="1600232" size="1398089" />
|
46 |
+
<output>
|
47 |
+
<port id="0" precision="U8">
|
48 |
+
<dim>1398089</dim>
|
49 |
+
</port>
|
50 |
+
</output>
|
51 |
+
</layer>
|
52 |
+
<layer id="5" name="Slice_170648" type="Const" version="opset1">
|
53 |
+
<data element_type="i32" shape="7" offset="2998321" size="28" />
|
54 |
+
<output>
|
55 |
+
<port id="0" precision="I32">
|
56 |
+
<dim>7</dim>
|
57 |
+
</port>
|
58 |
+
</output>
|
59 |
+
</layer>
|
60 |
+
<layer id="6" name="VocabDecoder_170650" type="VocabDecoder" version="extension">
|
61 |
+
<data skip_tokens="" />
|
62 |
+
<input>
|
63 |
+
<port id="0" precision="I32">
|
64 |
+
<dim>-1</dim>
|
65 |
+
<dim>-1</dim>
|
66 |
+
</port>
|
67 |
+
<port id="1" precision="I32">
|
68 |
+
<dim>200029</dim>
|
69 |
+
</port>
|
70 |
+
<port id="2" precision="I32">
|
71 |
+
<dim>200029</dim>
|
72 |
+
</port>
|
73 |
+
<port id="3" precision="U8">
|
74 |
+
<dim>1398089</dim>
|
75 |
+
</port>
|
76 |
+
<port id="4" precision="I32">
|
77 |
+
<dim>7</dim>
|
78 |
+
</port>
|
79 |
+
</input>
|
80 |
+
<output>
|
81 |
+
<port id="5" precision="I32">
|
82 |
+
<dim>-1</dim>
|
83 |
+
</port>
|
84 |
+
<port id="6" precision="I32">
|
85 |
+
<dim>-1</dim>
|
86 |
+
</port>
|
87 |
+
<port id="7" precision="I32">
|
88 |
+
<dim>-1</dim>
|
89 |
+
</port>
|
90 |
+
<port id="8" precision="I32">
|
91 |
+
<dim>-1</dim>
|
92 |
+
</port>
|
93 |
+
<port id="9" precision="U8">
|
94 |
+
<dim>-1</dim>
|
95 |
+
</port>
|
96 |
+
</output>
|
97 |
+
</layer>
|
98 |
+
<layer id="7" name="FuzeRagged_170651" type="FuzeRagged" version="extension">
|
99 |
+
<input>
|
100 |
+
<port id="0" precision="I32">
|
101 |
+
<dim>-1</dim>
|
102 |
+
</port>
|
103 |
+
<port id="1" precision="I32">
|
104 |
+
<dim>-1</dim>
|
105 |
+
</port>
|
106 |
+
<port id="2" precision="I32">
|
107 |
+
<dim>-1</dim>
|
108 |
+
</port>
|
109 |
+
<port id="3" precision="I32">
|
110 |
+
<dim>-1</dim>
|
111 |
+
</port>
|
112 |
+
</input>
|
113 |
+
<output>
|
114 |
+
<port id="4" precision="I32">
|
115 |
+
<dim>-1</dim>
|
116 |
+
</port>
|
117 |
+
<port id="5" precision="I32">
|
118 |
+
<dim>-1</dim>
|
119 |
+
</port>
|
120 |
+
</output>
|
121 |
+
</layer>
|
122 |
+
<layer id="8" name="UTF8Validate_170652" type="UTF8Validate" version="extension">
|
123 |
+
<data replace_mode="true" />
|
124 |
+
<input>
|
125 |
+
<port id="0" precision="I32">
|
126 |
+
<dim>-1</dim>
|
127 |
+
</port>
|
128 |
+
<port id="1" precision="I32">
|
129 |
+
<dim>-1</dim>
|
130 |
+
</port>
|
131 |
+
<port id="2" precision="U8">
|
132 |
+
<dim>-1</dim>
|
133 |
+
</port>
|
134 |
+
</input>
|
135 |
+
<output>
|
136 |
+
<port id="3" precision="I32">
|
137 |
+
<dim>-1</dim>
|
138 |
+
</port>
|
139 |
+
<port id="4" precision="I32">
|
140 |
+
<dim>-1</dim>
|
141 |
+
</port>
|
142 |
+
<port id="5" precision="U8">
|
143 |
+
<dim>-1</dim>
|
144 |
+
</port>
|
145 |
+
</output>
|
146 |
+
</layer>
|
147 |
+
<layer id="9" name="StringTensorPack_170653" type="StringTensorPack" version="opset15">
|
148 |
+
<input>
|
149 |
+
<port id="0" precision="I32">
|
150 |
+
<dim>-1</dim>
|
151 |
+
</port>
|
152 |
+
<port id="1" precision="I32">
|
153 |
+
<dim>-1</dim>
|
154 |
+
</port>
|
155 |
+
<port id="2" precision="U8">
|
156 |
+
<dim>-1</dim>
|
157 |
+
</port>
|
158 |
+
</input>
|
159 |
+
<output>
|
160 |
+
<port id="3" precision="STRING" names="Result_170654,string_output">
|
161 |
+
<dim>-1</dim>
|
162 |
+
</port>
|
163 |
+
</output>
|
164 |
+
</layer>
|
165 |
+
<layer id="10" name="Result_170654" type="Result" version="opset1" output_names="Result_170654,string_output">
|
166 |
+
<input>
|
167 |
+
<port id="0" precision="STRING">
|
168 |
+
<dim>-1</dim>
|
169 |
+
</port>
|
170 |
+
</input>
|
171 |
+
</layer>
|
172 |
+
</layers>
|
173 |
+
<edges>
|
174 |
+
<edge from-layer="0" from-port="0" to-layer="1" to-port="0" />
|
175 |
+
<edge from-layer="1" from-port="1" to-layer="6" to-port="0" />
|
176 |
+
<edge from-layer="2" from-port="0" to-layer="6" to-port="1" />
|
177 |
+
<edge from-layer="3" from-port="0" to-layer="6" to-port="2" />
|
178 |
+
<edge from-layer="4" from-port="0" to-layer="6" to-port="3" />
|
179 |
+
<edge from-layer="5" from-port="0" to-layer="6" to-port="4" />
|
180 |
+
<edge from-layer="6" from-port="7" to-layer="7" to-port="2" />
|
181 |
+
<edge from-layer="6" from-port="9" to-layer="8" to-port="2" />
|
182 |
+
<edge from-layer="6" from-port="8" to-layer="7" to-port="3" />
|
183 |
+
<edge from-layer="6" from-port="6" to-layer="7" to-port="1" />
|
184 |
+
<edge from-layer="6" from-port="5" to-layer="7" to-port="0" />
|
185 |
+
<edge from-layer="7" from-port="4" to-layer="8" to-port="0" />
|
186 |
+
<edge from-layer="7" from-port="5" to-layer="8" to-port="1" />
|
187 |
+
<edge from-layer="8" from-port="3" to-layer="9" to-port="0" />
|
188 |
+
<edge from-layer="8" from-port="4" to-layer="9" to-port="1" />
|
189 |
+
<edge from-layer="8" from-port="5" to-layer="9" to-port="2" />
|
190 |
+
<edge from-layer="9" from-port="3" to-layer="10" to-port="0" />
|
191 |
+
</edges>
|
192 |
+
<rt_info>
|
193 |
+
<add_attention_mask value="True" />
|
194 |
+
<add_prefix_space />
|
195 |
+
<add_special_tokens value="True" />
|
196 |
+
<bos_token_id value="199999" />
|
197 |
+
<chat_template value="{% for message in messages %}{% if message['role'] == 'system' and 'tools' in message and message['tools'] is not none %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|tool|>' + message['tools'] + '<|/tool|>' + '<|end|>' }}{% else %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|end|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>' }}{% else %}{{ eos_token }}{% endif %}" />
|
198 |
+
<clean_up_tokenization_spaces />
|
199 |
+
<detokenizer_input_type value="i64" />
|
200 |
+
<eos_token_id value="199999" />
|
201 |
+
<handle_special_tokens_with_re />
|
202 |
+
<max_length />
|
203 |
+
<number_of_inputs value="1" />
|
204 |
+
<openvino_tokenizers_version value="2025.1.0.0-523-710ddf14de8" />
|
205 |
+
<openvino_version value="2025.1.0-18503-6fec06580ab-releases/2025/1" />
|
206 |
+
<original_tokenizer_class value="<class 'transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast'>" />
|
207 |
+
<pad_token_id value="199999" />
|
208 |
+
<sentencepiece_version value="0.2.0" />
|
209 |
+
<skip_special_tokens value="True" />
|
210 |
+
<streaming_detokenizer value="False" />
|
211 |
+
<tokenizer_output_type value="i64" />
|
212 |
+
<tokenizers_version value="0.21.1" />
|
213 |
+
<transformers_version value="4.51.3" />
|
214 |
+
<use_max_padding value="False" />
|
215 |
+
<use_sentencepiece_backend value="False" />
|
216 |
+
<utf8_replace_mode value="replace" />
|
217 |
+
<with_detokenizer value="True" />
|
218 |
+
</rt_info>
|
219 |
+
</net>
|
Phi-4-mini-instruct-int4_asym-ov/openvino_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ce3052af973c2ad5f159c75e4c8e221fe003f625d403cd37fd70118541f7f32
|
3 |
+
size 2289523372
|
Phi-4-mini-instruct-int4_asym-ov/openvino_model.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Phi-4-mini-instruct-int4_asym-ov/openvino_tokenizer.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:818537d6633196e2f45e51017a6320010ca3c06120460c14028a6c325f92f477
|
3 |
+
size 7602768
|
Phi-4-mini-instruct-int4_asym-ov/openvino_tokenizer.xml
ADDED
@@ -0,0 +1,685 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0"?>
|
2 |
+
<net name="tokenizer" version="11">
|
3 |
+
<layers>
|
4 |
+
<layer id="0" name="Parameter_170519" type="Parameter" version="opset1">
|
5 |
+
<data shape="?" element_type="string" />
|
6 |
+
<output>
|
7 |
+
<port id="0" precision="STRING" names="Parameter_170519">
|
8 |
+
<dim>-1</dim>
|
9 |
+
</port>
|
10 |
+
</output>
|
11 |
+
</layer>
|
12 |
+
<layer id="1" name="Constant_170525" type="Const" version="opset1">
|
13 |
+
<data element_type="i64" shape="" offset="0" size="8" />
|
14 |
+
<output>
|
15 |
+
<port id="0" precision="I64" />
|
16 |
+
</output>
|
17 |
+
</layer>
|
18 |
+
<layer id="2" name="StringTensorUnpack_170520" type="StringTensorUnpack" version="opset15">
|
19 |
+
<input>
|
20 |
+
<port id="0" precision="STRING">
|
21 |
+
<dim>-1</dim>
|
22 |
+
</port>
|
23 |
+
</input>
|
24 |
+
<output>
|
25 |
+
<port id="1" precision="I32">
|
26 |
+
<dim>-1</dim>
|
27 |
+
</port>
|
28 |
+
<port id="2" precision="I32">
|
29 |
+
<dim>-1</dim>
|
30 |
+
</port>
|
31 |
+
<port id="3" precision="U8">
|
32 |
+
<dim>-1</dim>
|
33 |
+
</port>
|
34 |
+
</output>
|
35 |
+
</layer>
|
36 |
+
<layer id="3" name="ShapeOf_170521" type="ShapeOf" version="opset3">
|
37 |
+
<data output_type="i64" />
|
38 |
+
<input>
|
39 |
+
<port id="0" precision="I32">
|
40 |
+
<dim>-1</dim>
|
41 |
+
</port>
|
42 |
+
</input>
|
43 |
+
<output>
|
44 |
+
<port id="1" precision="I64">
|
45 |
+
<dim>1</dim>
|
46 |
+
</port>
|
47 |
+
</output>
|
48 |
+
</layer>
|
49 |
+
<layer id="4" name="Constant_170522" type="Const" version="opset1">
|
50 |
+
<data element_type="i64" shape="" offset="0" size="8" />
|
51 |
+
<output>
|
52 |
+
<port id="0" precision="I64" />
|
53 |
+
</output>
|
54 |
+
</layer>
|
55 |
+
<layer id="5" name="Constant_170523" type="Const" version="opset1">
|
56 |
+
<data element_type="i64" shape="" offset="0" size="8" />
|
57 |
+
<output>
|
58 |
+
<port id="0" precision="I64" />
|
59 |
+
</output>
|
60 |
+
</layer>
|
61 |
+
<layer id="6" name="Gather_170524" type="Gather" version="opset8">
|
62 |
+
<data batch_dims="0" />
|
63 |
+
<input>
|
64 |
+
<port id="0" precision="I64">
|
65 |
+
<dim>1</dim>
|
66 |
+
</port>
|
67 |
+
<port id="1" precision="I64" />
|
68 |
+
<port id="2" precision="I64" />
|
69 |
+
</input>
|
70 |
+
<output>
|
71 |
+
<port id="3" precision="I64" />
|
72 |
+
</output>
|
73 |
+
</layer>
|
74 |
+
<layer id="7" name="Constant_170526" type="Const" version="opset1">
|
75 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
76 |
+
<output>
|
77 |
+
<port id="0" precision="I64" />
|
78 |
+
</output>
|
79 |
+
</layer>
|
80 |
+
<layer id="8" name="Range_170527" type="Range" version="opset4">
|
81 |
+
<data output_type="i32" />
|
82 |
+
<input>
|
83 |
+
<port id="0" precision="I64" />
|
84 |
+
<port id="1" precision="I64" />
|
85 |
+
<port id="2" precision="I64" />
|
86 |
+
</input>
|
87 |
+
<output>
|
88 |
+
<port id="3" precision="I32">
|
89 |
+
<dim>-1</dim>
|
90 |
+
</port>
|
91 |
+
</output>
|
92 |
+
</layer>
|
93 |
+
<layer id="9" name="Constant_170528" type="Const" version="opset1">
|
94 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
95 |
+
<output>
|
96 |
+
<port id="0" precision="I64" />
|
97 |
+
</output>
|
98 |
+
</layer>
|
99 |
+
<layer id="10" name="Constant_170529" type="Const" version="opset1">
|
100 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
101 |
+
<output>
|
102 |
+
<port id="0" precision="I64" />
|
103 |
+
</output>
|
104 |
+
</layer>
|
105 |
+
<layer id="11" name="Add_170530" type="Add" version="opset1">
|
106 |
+
<data auto_broadcast="numpy" />
|
107 |
+
<input>
|
108 |
+
<port id="0" precision="I64" />
|
109 |
+
<port id="1" precision="I64" />
|
110 |
+
</input>
|
111 |
+
<output>
|
112 |
+
<port id="2" precision="I64" />
|
113 |
+
</output>
|
114 |
+
</layer>
|
115 |
+
<layer id="12" name="Constant_170531" type="Const" version="opset1">
|
116 |
+
<data element_type="i64" shape="" offset="8" size="8" />
|
117 |
+
<output>
|
118 |
+
<port id="0" precision="I64" />
|
119 |
+
</output>
|
120 |
+
</layer>
|
121 |
+
<layer id="13" name="Range_170532" type="Range" version="opset4">
|
122 |
+
<data output_type="i32" />
|
123 |
+
<input>
|
124 |
+
<port id="0" precision="I64" />
|
125 |
+
<port id="1" precision="I64" />
|
126 |
+
<port id="2" precision="I64" />
|
127 |
+
</input>
|
128 |
+
<output>
|
129 |
+
<port id="3" precision="I32">
|
130 |
+
<dim>-1</dim>
|
131 |
+
</port>
|
132 |
+
</output>
|
133 |
+
</layer>
|
134 |
+
<layer id="14" name="Constant_170594" type="Const" version="opset1">
|
135 |
+
<data element_type="u8" shape="289" offset="16" size="289" />
|
136 |
+
<output>
|
137 |
+
<port id="0" precision="U8">
|
138 |
+
<dim>289</dim>
|
139 |
+
</port>
|
140 |
+
</output>
|
141 |
+
</layer>
|
142 |
+
<layer id="15" name="SpecialTokensSplit_170595" type="SpecialTokensSplit" version="extension">
|
143 |
+
<input>
|
144 |
+
<port id="0" precision="I32">
|
145 |
+
<dim>-1</dim>
|
146 |
+
</port>
|
147 |
+
<port id="1" precision="I32">
|
148 |
+
<dim>-1</dim>
|
149 |
+
</port>
|
150 |
+
<port id="2" precision="I32">
|
151 |
+
<dim>-1</dim>
|
152 |
+
</port>
|
153 |
+
<port id="3" precision="I32">
|
154 |
+
<dim>-1</dim>
|
155 |
+
</port>
|
156 |
+
<port id="4" precision="U8">
|
157 |
+
<dim>-1</dim>
|
158 |
+
</port>
|
159 |
+
<port id="5" precision="U8">
|
160 |
+
<dim>289</dim>
|
161 |
+
</port>
|
162 |
+
</input>
|
163 |
+
<output>
|
164 |
+
<port id="6" precision="I32">
|
165 |
+
<dim>-1</dim>
|
166 |
+
</port>
|
167 |
+
<port id="7" precision="I32">
|
168 |
+
<dim>-1</dim>
|
169 |
+
</port>
|
170 |
+
<port id="8" precision="I32">
|
171 |
+
<dim>-1</dim>
|
172 |
+
</port>
|
173 |
+
<port id="9" precision="I32">
|
174 |
+
<dim>-1</dim>
|
175 |
+
</port>
|
176 |
+
<port id="10" precision="U8">
|
177 |
+
<dim>-1</dim>
|
178 |
+
</port>
|
179 |
+
<port id="11" precision="BOOL">
|
180 |
+
<dim>-1</dim>
|
181 |
+
</port>
|
182 |
+
</output>
|
183 |
+
</layer>
|
184 |
+
<layer id="16" name="Constant_170597" type="Const" version="opset1">
|
185 |
+
<data element_type="u8" shape="274" offset="305" size="274" />
|
186 |
+
<output>
|
187 |
+
<port id="0" precision="U8">
|
188 |
+
<dim>274</dim>
|
189 |
+
</port>
|
190 |
+
</output>
|
191 |
+
</layer>
|
192 |
+
<layer id="17" name="RegexSplit_170598" type="RegexSplit" version="extension">
|
193 |
+
<data behaviour="remove" invert="true" max_splits="-1" />
|
194 |
+
<input>
|
195 |
+
<port id="0" precision="I32">
|
196 |
+
<dim>-1</dim>
|
197 |
+
</port>
|
198 |
+
<port id="1" precision="I32">
|
199 |
+
<dim>-1</dim>
|
200 |
+
</port>
|
201 |
+
<port id="2" precision="I32">
|
202 |
+
<dim>-1</dim>
|
203 |
+
</port>
|
204 |
+
<port id="3" precision="I32">
|
205 |
+
<dim>-1</dim>
|
206 |
+
</port>
|
207 |
+
<port id="4" precision="U8">
|
208 |
+
<dim>-1</dim>
|
209 |
+
</port>
|
210 |
+
<port id="5" precision="BOOL">
|
211 |
+
<dim>-1</dim>
|
212 |
+
</port>
|
213 |
+
<port id="6" precision="U8">
|
214 |
+
<dim>274</dim>
|
215 |
+
</port>
|
216 |
+
</input>
|
217 |
+
<output>
|
218 |
+
<port id="7" precision="I32">
|
219 |
+
<dim>-1</dim>
|
220 |
+
</port>
|
221 |
+
<port id="8" precision="I32">
|
222 |
+
<dim>-1</dim>
|
223 |
+
</port>
|
224 |
+
<port id="9" precision="I32">
|
225 |
+
<dim>-1</dim>
|
226 |
+
</port>
|
227 |
+
<port id="10" precision="I32">
|
228 |
+
<dim>-1</dim>
|
229 |
+
</port>
|
230 |
+
<port id="11" precision="U8">
|
231 |
+
<dim>-1</dim>
|
232 |
+
</port>
|
233 |
+
<port id="12" precision="BOOL">
|
234 |
+
<dim>-1</dim>
|
235 |
+
</port>
|
236 |
+
</output>
|
237 |
+
</layer>
|
238 |
+
<layer id="18" name="Constant_170600" type="Const" version="opset1">
|
239 |
+
<data element_type="i32" shape="200029" offset="579" size="800116" />
|
240 |
+
<output>
|
241 |
+
<port id="0" precision="I32">
|
242 |
+
<dim>200029</dim>
|
243 |
+
</port>
|
244 |
+
</output>
|
245 |
+
</layer>
|
246 |
+
<layer id="19" name="Constant_170602" type="Const" version="opset1">
|
247 |
+
<data element_type="i32" shape="200029" offset="800695" size="800116" />
|
248 |
+
<output>
|
249 |
+
<port id="0" precision="I32">
|
250 |
+
<dim>200029</dim>
|
251 |
+
</port>
|
252 |
+
</output>
|
253 |
+
</layer>
|
254 |
+
<layer id="20" name="Constant_170604" type="Const" version="opset1">
|
255 |
+
<data element_type="u8" shape="1398109" offset="1600811" size="1398109" />
|
256 |
+
<output>
|
257 |
+
<port id="0" precision="U8">
|
258 |
+
<dim>1398109</dim>
|
259 |
+
</port>
|
260 |
+
</output>
|
261 |
+
</layer>
|
262 |
+
<layer id="21" name="Constant_170612" type="Const" version="opset1">
|
263 |
+
<data element_type="i32" shape="199742" offset="2998920" size="798968" />
|
264 |
+
<output>
|
265 |
+
<port id="0" precision="I32">
|
266 |
+
<dim>199742</dim>
|
267 |
+
</port>
|
268 |
+
</output>
|
269 |
+
</layer>
|
270 |
+
<layer id="22" name="Constant_170614" type="Const" version="opset1">
|
271 |
+
<data element_type="i32" shape="199742" offset="3797888" size="798968" />
|
272 |
+
<output>
|
273 |
+
<port id="0" precision="I32">
|
274 |
+
<dim>199742</dim>
|
275 |
+
</port>
|
276 |
+
</output>
|
277 |
+
</layer>
|
278 |
+
<layer id="23" name="Constant_170616" type="Const" version="opset1">
|
279 |
+
<data element_type="u8" shape="718313" offset="4596856" size="718313" />
|
280 |
+
<output>
|
281 |
+
<port id="0" precision="U8">
|
282 |
+
<dim>718313</dim>
|
283 |
+
</port>
|
284 |
+
</output>
|
285 |
+
</layer>
|
286 |
+
<layer id="24" name="Constant_170618" type="Const" version="opset1">
|
287 |
+
<data element_type="i32" shape="199742" offset="5315169" size="798968" />
|
288 |
+
<output>
|
289 |
+
<port id="0" precision="I32">
|
290 |
+
<dim>199742</dim>
|
291 |
+
</port>
|
292 |
+
</output>
|
293 |
+
</layer>
|
294 |
+
<layer id="25" name="Constant_170620" type="Const" version="opset1">
|
295 |
+
<data element_type="i32" shape="199742" offset="6114137" size="798968" />
|
296 |
+
<output>
|
297 |
+
<port id="0" precision="I32">
|
298 |
+
<dim>199742</dim>
|
299 |
+
</port>
|
300 |
+
</output>
|
301 |
+
</layer>
|
302 |
+
<layer id="26" name="Constant_170622" type="Const" version="opset1">
|
303 |
+
<data element_type="u8" shape="679101" offset="6913105" size="679101" />
|
304 |
+
<output>
|
305 |
+
<port id="0" precision="U8">
|
306 |
+
<dim>679101</dim>
|
307 |
+
</port>
|
308 |
+
</output>
|
309 |
+
</layer>
|
310 |
+
<layer id="27" name="Constant_170606" type="Const" version="opset1">
|
311 |
+
<data element_type="i32" shape="432" offset="7592206" size="1728" />
|
312 |
+
<output>
|
313 |
+
<port id="0" precision="I32">
|
314 |
+
<dim>432</dim>
|
315 |
+
</port>
|
316 |
+
</output>
|
317 |
+
</layer>
|
318 |
+
<layer id="28" name="Constant_170608" type="Const" version="opset1">
|
319 |
+
<data element_type="i32" shape="432" offset="7593934" size="1728" />
|
320 |
+
<output>
|
321 |
+
<port id="0" precision="I32">
|
322 |
+
<dim>432</dim>
|
323 |
+
</port>
|
324 |
+
</output>
|
325 |
+
</layer>
|
326 |
+
<layer id="29" name="Constant_170610" type="Const" version="opset1">
|
327 |
+
<data element_type="u8" shape="5366" offset="7595662" size="5366" />
|
328 |
+
<output>
|
329 |
+
<port id="0" precision="U8">
|
330 |
+
<dim>5366</dim>
|
331 |
+
</port>
|
332 |
+
</output>
|
333 |
+
</layer>
|
334 |
+
<layer id="30" name="Constant_170623" type="Const" version="opset1">
|
335 |
+
<data element_type="i32" shape="432" offset="7601028" size="1728" />
|
336 |
+
<output>
|
337 |
+
<port id="0" precision="I32">
|
338 |
+
<dim>432</dim>
|
339 |
+
</port>
|
340 |
+
</output>
|
341 |
+
</layer>
|
342 |
+
<layer id="31" name="BPETokenizer_170624" type="BPETokenizer" version="extension">
|
343 |
+
<data unk_token="" fuse_unk="false" suffix_indicator="" end_suffix="" byte_fallback="false" cache_capacity="40003" />
|
344 |
+
<input>
|
345 |
+
<port id="0" precision="I32">
|
346 |
+
<dim>-1</dim>
|
347 |
+
</port>
|
348 |
+
<port id="1" precision="I32">
|
349 |
+
<dim>-1</dim>
|
350 |
+
</port>
|
351 |
+
<port id="2" precision="I32">
|
352 |
+
<dim>-1</dim>
|
353 |
+
</port>
|
354 |
+
<port id="3" precision="I32">
|
355 |
+
<dim>-1</dim>
|
356 |
+
</port>
|
357 |
+
<port id="4" precision="U8">
|
358 |
+
<dim>-1</dim>
|
359 |
+
</port>
|
360 |
+
<port id="5" precision="I32">
|
361 |
+
<dim>200029</dim>
|
362 |
+
</port>
|
363 |
+
<port id="6" precision="I32">
|
364 |
+
<dim>200029</dim>
|
365 |
+
</port>
|
366 |
+
<port id="7" precision="U8">
|
367 |
+
<dim>1398109</dim>
|
368 |
+
</port>
|
369 |
+
<port id="8" precision="I32">
|
370 |
+
<dim>199742</dim>
|
371 |
+
</port>
|
372 |
+
<port id="9" precision="I32">
|
373 |
+
<dim>199742</dim>
|
374 |
+
</port>
|
375 |
+
<port id="10" precision="U8">
|
376 |
+
<dim>718313</dim>
|
377 |
+
</port>
|
378 |
+
<port id="11" precision="I32">
|
379 |
+
<dim>199742</dim>
|
380 |
+
</port>
|
381 |
+
<port id="12" precision="I32">
|
382 |
+
<dim>199742</dim>
|
383 |
+
</port>
|
384 |
+
<port id="13" precision="U8">
|
385 |
+
<dim>679101</dim>
|
386 |
+
</port>
|
387 |
+
<port id="14" precision="I32">
|
388 |
+
<dim>432</dim>
|
389 |
+
</port>
|
390 |
+
<port id="15" precision="I32">
|
391 |
+
<dim>432</dim>
|
392 |
+
</port>
|
393 |
+
<port id="16" precision="U8">
|
394 |
+
<dim>5366</dim>
|
395 |
+
</port>
|
396 |
+
<port id="17" precision="I32">
|
397 |
+
<dim>432</dim>
|
398 |
+
</port>
|
399 |
+
</input>
|
400 |
+
<output>
|
401 |
+
<port id="18" precision="I32">
|
402 |
+
<dim>-1</dim>
|
403 |
+
</port>
|
404 |
+
<port id="19" precision="I32">
|
405 |
+
<dim>-1</dim>
|
406 |
+
</port>
|
407 |
+
<port id="20" precision="I32">
|
408 |
+
<dim>-1</dim>
|
409 |
+
</port>
|
410 |
+
</output>
|
411 |
+
</layer>
|
412 |
+
<layer id="32" name="Subtract_170625" type="Subtract" version="opset1">
|
413 |
+
<data auto_broadcast="numpy" />
|
414 |
+
<input>
|
415 |
+
<port id="0" precision="I32">
|
416 |
+
<dim>-1</dim>
|
417 |
+
</port>
|
418 |
+
<port id="1" precision="I32">
|
419 |
+
<dim>-1</dim>
|
420 |
+
</port>
|
421 |
+
</input>
|
422 |
+
<output>
|
423 |
+
<port id="2" precision="I32">
|
424 |
+
<dim>-1</dim>
|
425 |
+
</port>
|
426 |
+
</output>
|
427 |
+
</layer>
|
428 |
+
<layer id="33" name="Constant_170626" type="Const" version="opset1">
|
429 |
+
<data element_type="i32" shape="" offset="7602756" size="4" />
|
430 |
+
<output>
|
431 |
+
<port id="0" precision="I32" />
|
432 |
+
</output>
|
433 |
+
</layer>
|
434 |
+
<layer id="34" name="Minimum_170627" type="Minimum" version="opset1">
|
435 |
+
<data auto_broadcast="numpy" />
|
436 |
+
<input>
|
437 |
+
<port id="0" precision="I32">
|
438 |
+
<dim>-1</dim>
|
439 |
+
</port>
|
440 |
+
<port id="1" precision="I32" />
|
441 |
+
</input>
|
442 |
+
<output>
|
443 |
+
<port id="2" precision="I32">
|
444 |
+
<dim>-1</dim>
|
445 |
+
</port>
|
446 |
+
</output>
|
447 |
+
</layer>
|
448 |
+
<layer id="35" name="Subtract_170628" type="Subtract" version="opset1">
|
449 |
+
<data auto_broadcast="numpy" />
|
450 |
+
<input>
|
451 |
+
<port id="0" precision="I32">
|
452 |
+
<dim>-1</dim>
|
453 |
+
</port>
|
454 |
+
<port id="1" precision="I32">
|
455 |
+
<dim>-1</dim>
|
456 |
+
</port>
|
457 |
+
</input>
|
458 |
+
<output>
|
459 |
+
<port id="2" precision="I32">
|
460 |
+
<dim>-1</dim>
|
461 |
+
</port>
|
462 |
+
</output>
|
463 |
+
</layer>
|
464 |
+
<layer id="36" name="Subtract_170629" type="Subtract" version="opset1">
|
465 |
+
<data auto_broadcast="numpy" />
|
466 |
+
<input>
|
467 |
+
<port id="0" precision="I32">
|
468 |
+
<dim>-1</dim>
|
469 |
+
</port>
|
470 |
+
<port id="1" precision="I32">
|
471 |
+
<dim>-1</dim>
|
472 |
+
</port>
|
473 |
+
</input>
|
474 |
+
<output>
|
475 |
+
<port id="2" precision="I32">
|
476 |
+
<dim>-1</dim>
|
477 |
+
</port>
|
478 |
+
</output>
|
479 |
+
</layer>
|
480 |
+
<layer id="37" name="Constant_170630" type="Const" version="opset1">
|
481 |
+
<data element_type="i32" shape="" offset="7602760" size="4" />
|
482 |
+
<output>
|
483 |
+
<port id="0" precision="I32" />
|
484 |
+
</output>
|
485 |
+
</layer>
|
486 |
+
<layer id="38" name="ReduceMax_170631" type="ReduceMax" version="opset1">
|
487 |
+
<data keep_dims="false" />
|
488 |
+
<input>
|
489 |
+
<port id="0" precision="I32">
|
490 |
+
<dim>-1</dim>
|
491 |
+
</port>
|
492 |
+
<port id="1" precision="I32" />
|
493 |
+
</input>
|
494 |
+
<output>
|
495 |
+
<port id="2" precision="I32" />
|
496 |
+
</output>
|
497 |
+
</layer>
|
498 |
+
<layer id="39" name="Constant_170632" type="Const" version="opset1">
|
499 |
+
<data element_type="i32" shape="" offset="7602764" size="4" />
|
500 |
+
<output>
|
501 |
+
<port id="0" precision="I32" />
|
502 |
+
</output>
|
503 |
+
</layer>
|
504 |
+
<layer id="40" name="RaggedToDense_170633" type="RaggedToDense" version="extension">
|
505 |
+
<data pad_right="false" m_pad_max_length="false" />
|
506 |
+
<input>
|
507 |
+
<port id="0" precision="I32">
|
508 |
+
<dim>-1</dim>
|
509 |
+
</port>
|
510 |
+
<port id="1" precision="I32">
|
511 |
+
<dim>-1</dim>
|
512 |
+
</port>
|
513 |
+
<port id="2" precision="I32">
|
514 |
+
<dim>-1</dim>
|
515 |
+
</port>
|
516 |
+
<port id="3" precision="I32" />
|
517 |
+
<port id="4" precision="I32" />
|
518 |
+
</input>
|
519 |
+
<output>
|
520 |
+
<port id="5" precision="I32">
|
521 |
+
<dim>-1</dim>
|
522 |
+
<dim>-1</dim>
|
523 |
+
</port>
|
524 |
+
<port id="6" precision="BOOL">
|
525 |
+
<dim>-1</dim>
|
526 |
+
<dim>-1</dim>
|
527 |
+
</port>
|
528 |
+
</output>
|
529 |
+
</layer>
|
530 |
+
<layer id="41" name="Convert_170634" type="Convert" version="opset1">
|
531 |
+
<data destination_type="i32" />
|
532 |
+
<input>
|
533 |
+
<port id="0" precision="BOOL">
|
534 |
+
<dim>-1</dim>
|
535 |
+
<dim>-1</dim>
|
536 |
+
</port>
|
537 |
+
</input>
|
538 |
+
<output>
|
539 |
+
<port id="1" precision="I32">
|
540 |
+
<dim>-1</dim>
|
541 |
+
<dim>-1</dim>
|
542 |
+
</port>
|
543 |
+
</output>
|
544 |
+
</layer>
|
545 |
+
<layer id="42" name="Convert_170634.0" type="Convert" version="opset1">
|
546 |
+
<data destination_type="i64" />
|
547 |
+
<input>
|
548 |
+
<port id="0" precision="I32">
|
549 |
+
<dim>-1</dim>
|
550 |
+
<dim>-1</dim>
|
551 |
+
</port>
|
552 |
+
</input>
|
553 |
+
<output>
|
554 |
+
<port id="1" precision="I64" names="attention_mask">
|
555 |
+
<dim>-1</dim>
|
556 |
+
<dim>-1</dim>
|
557 |
+
</port>
|
558 |
+
</output>
|
559 |
+
</layer>
|
560 |
+
<layer id="44" name="RaggedToDense_170633.0" type="Convert" version="opset1">
|
561 |
+
<data destination_type="i64" />
|
562 |
+
<input>
|
563 |
+
<port id="0" precision="I32">
|
564 |
+
<dim>-1</dim>
|
565 |
+
<dim>-1</dim>
|
566 |
+
</port>
|
567 |
+
</input>
|
568 |
+
<output>
|
569 |
+
<port id="1" precision="I64" names="input_ids">
|
570 |
+
<dim>-1</dim>
|
571 |
+
<dim>-1</dim>
|
572 |
+
</port>
|
573 |
+
</output>
|
574 |
+
</layer>
|
575 |
+
<layer id="45" name="Result_170635" type="Result" version="opset1" output_names="input_ids">
|
576 |
+
<input>
|
577 |
+
<port id="0" precision="I64">
|
578 |
+
<dim>-1</dim>
|
579 |
+
<dim>-1</dim>
|
580 |
+
</port>
|
581 |
+
</input>
|
582 |
+
</layer>
|
583 |
+
<layer id="43" name="Result_170636" type="Result" version="opset1" output_names="attention_mask">
|
584 |
+
<input>
|
585 |
+
<port id="0" precision="I64">
|
586 |
+
<dim>-1</dim>
|
587 |
+
<dim>-1</dim>
|
588 |
+
</port>
|
589 |
+
</input>
|
590 |
+
</layer>
|
591 |
+
</layers>
|
592 |
+
<edges>
|
593 |
+
<edge from-layer="0" from-port="0" to-layer="2" to-port="0" />
|
594 |
+
<edge from-layer="1" from-port="0" to-layer="8" to-port="0" />
|
595 |
+
<edge from-layer="2" from-port="2" to-layer="15" to-port="3" />
|
596 |
+
<edge from-layer="2" from-port="3" to-layer="15" to-port="4" />
|
597 |
+
<edge from-layer="2" from-port="1" to-layer="15" to-port="2" />
|
598 |
+
<edge from-layer="2" from-port="1" to-layer="3" to-port="0" />
|
599 |
+
<edge from-layer="3" from-port="1" to-layer="6" to-port="0" />
|
600 |
+
<edge from-layer="4" from-port="0" to-layer="6" to-port="1" />
|
601 |
+
<edge from-layer="5" from-port="0" to-layer="6" to-port="2" />
|
602 |
+
<edge from-layer="6" from-port="3" to-layer="8" to-port="1" />
|
603 |
+
<edge from-layer="6" from-port="3" to-layer="11" to-port="0" />
|
604 |
+
<edge from-layer="7" from-port="0" to-layer="8" to-port="2" />
|
605 |
+
<edge from-layer="8" from-port="3" to-layer="15" to-port="0" />
|
606 |
+
<edge from-layer="9" from-port="0" to-layer="13" to-port="0" />
|
607 |
+
<edge from-layer="10" from-port="0" to-layer="11" to-port="1" />
|
608 |
+
<edge from-layer="11" from-port="2" to-layer="13" to-port="1" />
|
609 |
+
<edge from-layer="12" from-port="0" to-layer="13" to-port="2" />
|
610 |
+
<edge from-layer="13" from-port="3" to-layer="15" to-port="1" />
|
611 |
+
<edge from-layer="14" from-port="0" to-layer="15" to-port="5" />
|
612 |
+
<edge from-layer="15" from-port="6" to-layer="17" to-port="0" />
|
613 |
+
<edge from-layer="15" from-port="7" to-layer="17" to-port="1" />
|
614 |
+
<edge from-layer="15" from-port="8" to-layer="17" to-port="2" />
|
615 |
+
<edge from-layer="15" from-port="9" to-layer="17" to-port="3" />
|
616 |
+
<edge from-layer="15" from-port="10" to-layer="17" to-port="4" />
|
617 |
+
<edge from-layer="15" from-port="11" to-layer="17" to-port="5" />
|
618 |
+
<edge from-layer="16" from-port="0" to-layer="17" to-port="6" />
|
619 |
+
<edge from-layer="17" from-port="7" to-layer="31" to-port="0" />
|
620 |
+
<edge from-layer="17" from-port="8" to-layer="31" to-port="1" />
|
621 |
+
<edge from-layer="17" from-port="9" to-layer="31" to-port="2" />
|
622 |
+
<edge from-layer="17" from-port="10" to-layer="31" to-port="3" />
|
623 |
+
<edge from-layer="17" from-port="11" to-layer="31" to-port="4" />
|
624 |
+
<edge from-layer="18" from-port="0" to-layer="31" to-port="5" />
|
625 |
+
<edge from-layer="19" from-port="0" to-layer="31" to-port="6" />
|
626 |
+
<edge from-layer="20" from-port="0" to-layer="31" to-port="7" />
|
627 |
+
<edge from-layer="21" from-port="0" to-layer="31" to-port="8" />
|
628 |
+
<edge from-layer="22" from-port="0" to-layer="31" to-port="9" />
|
629 |
+
<edge from-layer="23" from-port="0" to-layer="31" to-port="10" />
|
630 |
+
<edge from-layer="24" from-port="0" to-layer="31" to-port="11" />
|
631 |
+
<edge from-layer="25" from-port="0" to-layer="31" to-port="12" />
|
632 |
+
<edge from-layer="26" from-port="0" to-layer="31" to-port="13" />
|
633 |
+
<edge from-layer="27" from-port="0" to-layer="31" to-port="14" />
|
634 |
+
<edge from-layer="28" from-port="0" to-layer="31" to-port="15" />
|
635 |
+
<edge from-layer="29" from-port="0" to-layer="31" to-port="16" />
|
636 |
+
<edge from-layer="30" from-port="0" to-layer="31" to-port="17" />
|
637 |
+
<edge from-layer="31" from-port="19" to-layer="35" to-port="0" />
|
638 |
+
<edge from-layer="31" from-port="20" to-layer="40" to-port="2" />
|
639 |
+
<edge from-layer="31" from-port="19" to-layer="40" to-port="1" />
|
640 |
+
<edge from-layer="31" from-port="19" to-layer="36" to-port="0" />
|
641 |
+
<edge from-layer="31" from-port="18" to-layer="32" to-port="1" />
|
642 |
+
<edge from-layer="31" from-port="19" to-layer="32" to-port="0" />
|
643 |
+
<edge from-layer="32" from-port="2" to-layer="34" to-port="0" />
|
644 |
+
<edge from-layer="33" from-port="0" to-layer="34" to-port="1" />
|
645 |
+
<edge from-layer="34" from-port="2" to-layer="35" to-port="1" />
|
646 |
+
<edge from-layer="35" from-port="2" to-layer="36" to-port="1" />
|
647 |
+
<edge from-layer="35" from-port="2" to-layer="40" to-port="0" />
|
648 |
+
<edge from-layer="36" from-port="2" to-layer="38" to-port="0" />
|
649 |
+
<edge from-layer="37" from-port="0" to-layer="38" to-port="1" />
|
650 |
+
<edge from-layer="38" from-port="2" to-layer="40" to-port="3" />
|
651 |
+
<edge from-layer="39" from-port="0" to-layer="40" to-port="4" />
|
652 |
+
<edge from-layer="40" from-port="6" to-layer="41" to-port="0" />
|
653 |
+
<edge from-layer="40" from-port="5" to-layer="44" to-port="0" />
|
654 |
+
<edge from-layer="41" from-port="1" to-layer="42" to-port="0" />
|
655 |
+
<edge from-layer="42" from-port="1" to-layer="43" to-port="0" />
|
656 |
+
<edge from-layer="44" from-port="1" to-layer="45" to-port="0" />
|
657 |
+
</edges>
|
658 |
+
<rt_info>
|
659 |
+
<add_attention_mask value="True" />
|
660 |
+
<add_prefix_space />
|
661 |
+
<add_special_tokens value="True" />
|
662 |
+
<bos_token_id value="199999" />
|
663 |
+
<chat_template value="{% for message in messages %}{% if message['role'] == 'system' and 'tools' in message and message['tools'] is not none %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|tool|>' + message['tools'] + '<|/tool|>' + '<|end|>' }}{% else %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|end|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>' }}{% else %}{{ eos_token }}{% endif %}" />
|
664 |
+
<clean_up_tokenization_spaces />
|
665 |
+
<detokenizer_input_type value="i64" />
|
666 |
+
<eos_token_id value="199999" />
|
667 |
+
<handle_special_tokens_with_re />
|
668 |
+
<max_length />
|
669 |
+
<number_of_inputs value="1" />
|
670 |
+
<openvino_tokenizers_version value="2025.1.0.0-523-710ddf14de8" />
|
671 |
+
<openvino_version value="2025.1.0-18503-6fec06580ab-releases/2025/1" />
|
672 |
+
<original_tokenizer_class value="<class 'transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast'>" />
|
673 |
+
<pad_token_id value="199999" />
|
674 |
+
<sentencepiece_version value="0.2.0" />
|
675 |
+
<skip_special_tokens value="True" />
|
676 |
+
<streaming_detokenizer value="False" />
|
677 |
+
<tokenizer_output_type value="i64" />
|
678 |
+
<tokenizers_version value="0.21.1" />
|
679 |
+
<transformers_version value="4.51.3" />
|
680 |
+
<use_max_padding value="False" />
|
681 |
+
<use_sentencepiece_backend value="False" />
|
682 |
+
<utf8_replace_mode value="replace" />
|
683 |
+
<with_detokenizer value="True" />
|
684 |
+
</rt_info>
|
685 |
+
</net>
|
Phi-4-mini-instruct-int4_asym-ov/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<|endoftext|>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
Phi-4-mini-instruct-int4_asym-ov/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:382cc235b56c725945e149cc25f191da667c836655efd0857b004320e90e91ea
|
3 |
+
size 15524095
|
Phi-4-mini-instruct-int4_asym-ov/tokenizer_config.json
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": false,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"199999": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"200018": {
|
15 |
+
"content": "<|endofprompt|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"200019": {
|
23 |
+
"content": "<|assistant|>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": true,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
},
|
30 |
+
"200020": {
|
31 |
+
"content": "<|end|>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": true,
|
35 |
+
"single_word": false,
|
36 |
+
"special": true
|
37 |
+
},
|
38 |
+
"200021": {
|
39 |
+
"content": "<|user|>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": false,
|
42 |
+
"rstrip": true,
|
43 |
+
"single_word": false,
|
44 |
+
"special": true
|
45 |
+
},
|
46 |
+
"200022": {
|
47 |
+
"content": "<|system|>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": false,
|
50 |
+
"rstrip": true,
|
51 |
+
"single_word": false,
|
52 |
+
"special": true
|
53 |
+
},
|
54 |
+
"200023": {
|
55 |
+
"content": "<|tool|>",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": false,
|
58 |
+
"rstrip": true,
|
59 |
+
"single_word": false,
|
60 |
+
"special": false
|
61 |
+
},
|
62 |
+
"200024": {
|
63 |
+
"content": "<|/tool|>",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": false,
|
66 |
+
"rstrip": true,
|
67 |
+
"single_word": false,
|
68 |
+
"special": false
|
69 |
+
},
|
70 |
+
"200025": {
|
71 |
+
"content": "<|tool_call|>",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": false,
|
74 |
+
"rstrip": true,
|
75 |
+
"single_word": false,
|
76 |
+
"special": false
|
77 |
+
},
|
78 |
+
"200026": {
|
79 |
+
"content": "<|/tool_call|>",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": false,
|
82 |
+
"rstrip": true,
|
83 |
+
"single_word": false,
|
84 |
+
"special": false
|
85 |
+
},
|
86 |
+
"200027": {
|
87 |
+
"content": "<|tool_response|>",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": false,
|
90 |
+
"rstrip": true,
|
91 |
+
"single_word": false,
|
92 |
+
"special": false
|
93 |
+
},
|
94 |
+
"200028": {
|
95 |
+
"content": "<|tag|>",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": false,
|
98 |
+
"rstrip": true,
|
99 |
+
"single_word": false,
|
100 |
+
"special": true
|
101 |
+
}
|
102 |
+
},
|
103 |
+
"bos_token": "<|endoftext|>",
|
104 |
+
"chat_template": "{% for message in messages %}{% if message['role'] == 'system' and 'tools' in message and message['tools'] is not none %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|tool|>' + message['tools'] + '<|/tool|>' + '<|end|>' }}{% else %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|end|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>' }}{% else %}{{ eos_token }}{% endif %}",
|
105 |
+
"clean_up_tokenization_spaces": false,
|
106 |
+
"eos_token": "<|endoftext|>",
|
107 |
+
"extra_special_tokens": {},
|
108 |
+
"model_max_length": 131072,
|
109 |
+
"pad_token": "<|endoftext|>",
|
110 |
+
"tokenizer_class": "GPT2Tokenizer",
|
111 |
+
"unk_token": "<|endoftext|>"
|
112 |
+
}
|
Phi-4-mini-instruct-int4_asym-ov/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Phi-4-mini-instruct-int8_asym-ov/added_tokens.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|/tool_call|>": 200026,
|
3 |
+
"<|/tool|>": 200024,
|
4 |
+
"<|assistant|>": 200019,
|
5 |
+
"<|end|>": 200020,
|
6 |
+
"<|system|>": 200022,
|
7 |
+
"<|tag|>": 200028,
|
8 |
+
"<|tool_call|>": 200025,
|
9 |
+
"<|tool_response|>": 200027,
|
10 |
+
"<|tool|>": 200023,
|
11 |
+
"<|user|>": 200021
|
12 |
+
}
|
Phi-4-mini-instruct-int8_asym-ov/config.json
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_attn_implementation_autoset": true,
|
3 |
+
"architectures": [
|
4 |
+
"Phi3ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_phi3.Phi3Config",
|
10 |
+
"AutoModelForCausalLM": "modeling_phi3.Phi3ForCausalLM",
|
11 |
+
"AutoTokenizer": "Xenova/gpt-4o"
|
12 |
+
},
|
13 |
+
"bos_token_id": 199999,
|
14 |
+
"embd_pdrop": 0.0,
|
15 |
+
"eos_token_id": 199999,
|
16 |
+
"full_attn_mod": 1,
|
17 |
+
"hidden_act": "silu",
|
18 |
+
"hidden_size": 3072,
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"intermediate_size": 8192,
|
21 |
+
"interpolate_factor": 1,
|
22 |
+
"lm_head_bias": false,
|
23 |
+
"max_position_embeddings": 131072,
|
24 |
+
"mlp_bias": false,
|
25 |
+
"model_type": "phi3",
|
26 |
+
"num_attention_heads": 24,
|
27 |
+
"num_hidden_layers": 32,
|
28 |
+
"num_key_value_heads": 8,
|
29 |
+
"original_max_position_embeddings": 4096,
|
30 |
+
"pad_token_id": 199999,
|
31 |
+
"partial_rotary_factor": 0.75,
|
32 |
+
"resid_pdrop": 0.0,
|
33 |
+
"rms_norm_eps": 1e-05,
|
34 |
+
"rope_scaling": {
|
35 |
+
"long_factor": [
|
36 |
+
1,
|
37 |
+
1.118320672,
|
38 |
+
1.250641126,
|
39 |
+
1.398617824,
|
40 |
+
1.564103225,
|
41 |
+
1.74916897,
|
42 |
+
1.956131817,
|
43 |
+
2.187582649,
|
44 |
+
2.446418898,
|
45 |
+
2.735880826,
|
46 |
+
3.059592084,
|
47 |
+
3.421605075,
|
48 |
+
3.826451687,
|
49 |
+
4.279200023,
|
50 |
+
4.785517845,
|
51 |
+
5.351743533,
|
52 |
+
5.984965424,
|
53 |
+
6.693110555,
|
54 |
+
7.485043894,
|
55 |
+
8.370679318,
|
56 |
+
9.36110372,
|
57 |
+
10.4687158,
|
58 |
+
11.70738129,
|
59 |
+
13.09260651,
|
60 |
+
14.64173252,
|
61 |
+
16.37415215,
|
62 |
+
18.31155283,
|
63 |
+
20.47818807,
|
64 |
+
22.90118105,
|
65 |
+
25.61086418,
|
66 |
+
28.64115884,
|
67 |
+
32.03,
|
68 |
+
32.1,
|
69 |
+
32.13,
|
70 |
+
32.23,
|
71 |
+
32.6,
|
72 |
+
32.61,
|
73 |
+
32.64,
|
74 |
+
32.66,
|
75 |
+
32.7,
|
76 |
+
32.71,
|
77 |
+
32.93,
|
78 |
+
32.97,
|
79 |
+
33.28,
|
80 |
+
33.49,
|
81 |
+
33.5,
|
82 |
+
44.16,
|
83 |
+
47.77
|
84 |
+
],
|
85 |
+
"short_factor": [
|
86 |
+
1.0,
|
87 |
+
1.0,
|
88 |
+
1.0,
|
89 |
+
1.0,
|
90 |
+
1.0,
|
91 |
+
1.0,
|
92 |
+
1.0,
|
93 |
+
1.0,
|
94 |
+
1.0,
|
95 |
+
1.0,
|
96 |
+
1.0,
|
97 |
+
1.0,
|
98 |
+
1.0,
|
99 |
+
1.0,
|
100 |
+
1.0,
|
101 |
+
1.0,
|
102 |
+
1.0,
|
103 |
+
1.0,
|
104 |
+
1.0,
|
105 |
+
1.0,
|
106 |
+
1.0,
|
107 |
+
1.0,
|
108 |
+
1.0,
|
109 |
+
1.0,
|
110 |
+
1.0,
|
111 |
+
1.0,
|
112 |
+
1.0,
|
113 |
+
1.0,
|
114 |
+
1.0,
|
115 |
+
1.0,
|
116 |
+
1.0,
|
117 |
+
1.0,
|
118 |
+
1.0,
|
119 |
+
1.0,
|
120 |
+
1.0,
|
121 |
+
1.0,
|
122 |
+
1.0,
|
123 |
+
1.0,
|
124 |
+
1.0,
|
125 |
+
1.0,
|
126 |
+
1.0,
|
127 |
+
1.0,
|
128 |
+
1.0,
|
129 |
+
1.0,
|
130 |
+
1.0,
|
131 |
+
1.0,
|
132 |
+
1.0,
|
133 |
+
1.0
|
134 |
+
],
|
135 |
+
"type": "longrope"
|
136 |
+
},
|
137 |
+
"rope_theta": 10000.0,
|
138 |
+
"sliding_window": 262144,
|
139 |
+
"tie_word_embeddings": true,
|
140 |
+
"torch_dtype": "bfloat16",
|
141 |
+
"transformers_version": "4.51.3",
|
142 |
+
"use_cache": true,
|
143 |
+
"vocab_size": 200064
|
144 |
+
}
|
Phi-4-mini-instruct-int8_asym-ov/configuration_phi3.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""Phi-3 model configuration"""
|
17 |
+
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
class Phi3Config(PretrainedConfig):
|
26 |
+
r"""
|
27 |
+
This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
|
28 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
29 |
+
defaults will yield a similar configuration to that of the
|
30 |
+
[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
|
31 |
+
|
32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
33 |
+
documentation from [`PretrainedConfig`] for more information.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
vocab_size (`int`, *optional*, defaults to 32064):
|
37 |
+
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
|
38 |
+
`inputs_ids` passed when calling [`Phi3Model`].
|
39 |
+
hidden_size (`int`, *optional*, defaults to 3072):
|
40 |
+
Dimension of the hidden representations.
|
41 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
42 |
+
Dimension of the MLP representations.
|
43 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
44 |
+
Number of hidden layers in the Transformer decoder.
|
45 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
46 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
47 |
+
num_key_value_heads (`int`, *optional*):
|
48 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
49 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
50 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
51 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
52 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
53 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
54 |
+
`num_attention_heads`.
|
55 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
56 |
+
Dropout probability for mlp outputs.
|
57 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
58 |
+
The dropout ratio for the embeddings.
|
59 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
60 |
+
The dropout ratio after computing the attention scores.
|
61 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
62 |
+
The non-linear activation function (function or string) in the decoder.
|
63 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
64 |
+
The maximum sequence length that this model might ever be used with.
|
65 |
+
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
|
66 |
+
The maximum sequence length that this model was trained with. This is used to determine the size of the
|
67 |
+
original RoPE embeddings when using long scaling.
|
68 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
69 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
70 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
71 |
+
The epsilon value used for the RMSNorm.
|
72 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
73 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
74 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
75 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
76 |
+
Whether to tie weight embeddings
|
77 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
78 |
+
The base period of the RoPE embeddings.
|
79 |
+
rope_scaling (`dict`, *optional*):
|
80 |
+
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
|
81 |
+
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
|
82 |
+
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
|
83 |
+
divided by the number of attention heads divided by 2.
|
84 |
+
partial_rotary_factor (`float`, *optional*, defaults to 1.0):
|
85 |
+
Percentage of the query and keys which will have rotary embedding. Must be between 0.0 and 1.0.
|
86 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
87 |
+
The id of the "beginning-of-sequence" token.
|
88 |
+
eos_token_id (`int`, *optional*, defaults to 32000):
|
89 |
+
The id of the "end-of-sequence" token.
|
90 |
+
pad_token_id (`int`, *optional*, defaults to 32000):
|
91 |
+
The id of the padding token.
|
92 |
+
sliding_window (`int`, *optional*):
|
93 |
+
Sliding window attention window size. If `None`, no sliding window is applied.
|
94 |
+
|
95 |
+
Example:
|
96 |
+
|
97 |
+
```python
|
98 |
+
>>> from transformers import Phi3Model, Phi3Config
|
99 |
+
|
100 |
+
>>> # Initializing a Phi-3 style configuration
|
101 |
+
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
102 |
+
|
103 |
+
>>> # Initializing a model from the configuration
|
104 |
+
>>> model = Phi3Model(configuration)
|
105 |
+
|
106 |
+
>>> # Accessing the model configuration
|
107 |
+
>>> configuration = model.config
|
108 |
+
```"""
|
109 |
+
|
110 |
+
model_type = "phi3"
|
111 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
112 |
+
|
113 |
+
def __init__(
|
114 |
+
self,
|
115 |
+
vocab_size=32064,
|
116 |
+
hidden_size=3072,
|
117 |
+
intermediate_size=8192,
|
118 |
+
num_hidden_layers=32,
|
119 |
+
num_attention_heads=32,
|
120 |
+
num_key_value_heads=None,
|
121 |
+
resid_pdrop=0.0,
|
122 |
+
embd_pdrop=0.0,
|
123 |
+
attention_dropout=0.0,
|
124 |
+
hidden_act="silu",
|
125 |
+
max_position_embeddings=4096,
|
126 |
+
original_max_position_embeddings=4096,
|
127 |
+
initializer_range=0.02,
|
128 |
+
rms_norm_eps=1e-5,
|
129 |
+
use_cache=True,
|
130 |
+
tie_word_embeddings=False,
|
131 |
+
rope_theta=10000.0,
|
132 |
+
rope_scaling=None,
|
133 |
+
partial_rotary_factor=1.0,
|
134 |
+
bos_token_id=1,
|
135 |
+
eos_token_id=32000,
|
136 |
+
pad_token_id=32000,
|
137 |
+
sliding_window=None,
|
138 |
+
**kwargs,
|
139 |
+
):
|
140 |
+
self.vocab_size = vocab_size
|
141 |
+
self.hidden_size = hidden_size
|
142 |
+
self.intermediate_size = intermediate_size
|
143 |
+
self.num_hidden_layers = num_hidden_layers
|
144 |
+
self.num_attention_heads = num_attention_heads
|
145 |
+
|
146 |
+
if num_key_value_heads is None:
|
147 |
+
num_key_value_heads = num_attention_heads
|
148 |
+
|
149 |
+
self.num_key_value_heads = num_key_value_heads
|
150 |
+
self.resid_pdrop = resid_pdrop
|
151 |
+
self.embd_pdrop = embd_pdrop
|
152 |
+
self.attention_dropout = attention_dropout
|
153 |
+
self.hidden_act = hidden_act
|
154 |
+
self.max_position_embeddings = max_position_embeddings
|
155 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
156 |
+
self.initializer_range = initializer_range
|
157 |
+
self.rms_norm_eps = rms_norm_eps
|
158 |
+
self.use_cache = use_cache
|
159 |
+
self.rope_theta = rope_theta
|
160 |
+
self.rope_scaling = rope_scaling
|
161 |
+
self.partial_rotary_factor = partial_rotary_factor
|
162 |
+
self._rope_scaling_adjustment()
|
163 |
+
self._rope_scaling_validation()
|
164 |
+
self.sliding_window = sliding_window
|
165 |
+
|
166 |
+
super().__init__(
|
167 |
+
bos_token_id=bos_token_id,
|
168 |
+
eos_token_id=eos_token_id,
|
169 |
+
pad_token_id=pad_token_id,
|
170 |
+
tie_word_embeddings=tie_word_embeddings,
|
171 |
+
**kwargs,
|
172 |
+
)
|
173 |
+
|
174 |
+
def _rope_scaling_adjustment(self):
|
175 |
+
"""
|
176 |
+
Adjust the `type` of the `rope_scaling` configuration for backward compatibility.
|
177 |
+
"""
|
178 |
+
if self.rope_scaling is None:
|
179 |
+
return
|
180 |
+
|
181 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
182 |
+
|
183 |
+
# For backward compatibility if previous version used "su" or "yarn"
|
184 |
+
if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]:
|
185 |
+
self.rope_scaling["type"] = "longrope"
|
186 |
+
|
187 |
+
def _rope_scaling_validation(self):
|
188 |
+
"""
|
189 |
+
Validate the `rope_scaling` configuration.
|
190 |
+
"""
|
191 |
+
if self.rope_scaling is None:
|
192 |
+
return
|
193 |
+
|
194 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
|
195 |
+
raise ValueError(
|
196 |
+
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
|
197 |
+
f"got {self.rope_scaling}"
|
198 |
+
)
|
199 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
200 |
+
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
|
201 |
+
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
|
202 |
+
if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
|
203 |
+
raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
|
204 |
+
if not (
|
205 |
+
isinstance(rope_scaling_short_factor, list)
|
206 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
|
207 |
+
):
|
208 |
+
raise ValueError(
|
209 |
+
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
|
210 |
+
)
|
211 |
+
rotary_ndims = int(self.hidden_size // self.num_attention_heads * self.partial_rotary_factor)
|
212 |
+
if not len(rope_scaling_short_factor) == rotary_ndims // 2:
|
213 |
+
raise ValueError(
|
214 |
+
f"`rope_scaling`'s short_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_short_factor)}"
|
215 |
+
)
|
216 |
+
if not (
|
217 |
+
isinstance(rope_scaling_long_factor, list)
|
218 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
|
219 |
+
):
|
220 |
+
raise ValueError(
|
221 |
+
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
|
222 |
+
)
|
223 |
+
if not len(rope_scaling_long_factor) == rotary_ndims // 2:
|
224 |
+
raise ValueError(
|
225 |
+
f"`rope_scaling`'s long_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_long_factor)}"
|
226 |
+
)
|
Phi-4-mini-instruct-int8_asym-ov/generation_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 199999,
|
4 |
+
"eos_token_id": [
|
5 |
+
200020,
|
6 |
+
199999
|
7 |
+
],
|
8 |
+
"pad_token_id": 199999,
|
9 |
+
"transformers_version": "4.51.3"
|
10 |
+
}
|