Delta-Vector commited on
Commit
7477c43
·
verified ·
1 Parent(s): 34a263e

Training in progress, step 511, checkpoint

Browse files
checkpoint-511/config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 128000,
8
+ "eos_token_id": 128019,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 3072,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 9216,
14
+ "max_position_embeddings": 131072,
15
+ "mlp_bias": false,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 32,
19
+ "num_key_value_heads": 8,
20
+ "pretraining_tp": 1,
21
+ "rms_norm_eps": 1e-05,
22
+ "rope_scaling": {
23
+ "factor": 8.0,
24
+ "high_freq_factor": 4.0,
25
+ "low_freq_factor": 1.0,
26
+ "original_max_position_embeddings": 8192,
27
+ "rope_type": "llama3"
28
+ },
29
+ "rope_theta": 500000.0,
30
+ "tie_word_embeddings": false,
31
+ "torch_dtype": "bfloat16",
32
+ "transformers_version": "4.50.0",
33
+ "use_cache": false,
34
+ "vocab_size": 128256
35
+ }
checkpoint-511/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "do_sample": true,
5
+ "eos_token_id": 128001,
6
+ "transformers_version": "4.50.0"
7
+ }
checkpoint-511/global_step511/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:434a646d3d355668d7148985f92aa87bc9be9ca45e0bac0b8900c69fc3aa3363
3
+ size 6805132103
checkpoint-511/global_step511/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4286eca12bd584b81ea87c2d653b3a49072e515407d71aa91d629028c223cc9c
3
+ size 6805132103
checkpoint-511/global_step511/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f423caded5352ab4faef796ec8689900ec8882311cabd667e80d268f9c987aee
3
+ size 6805132103
checkpoint-511/global_step511/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4d35df24512a8d5f2c2901154e00376c311d599fc21e42867091810878447a2
3
+ size 6805132103
checkpoint-511/global_step511/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e663eedfd1b6b7a5b5ecd646fe1327d05cbc17f8d2bd8ce12d78e535e97e52b7
3
+ size 150245
checkpoint-511/global_step511/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61e6cda842ce761c41fd08f001ecbfd707de3e7f6f010e12ed389ef41a1ea5bf
3
+ size 150245
checkpoint-511/global_step511/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20595f2fba07dadad3ed82d3daedbfe5662281b6764b47189621fffb764ac175
3
+ size 150245
checkpoint-511/global_step511/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e54d15a04cdf1a63f151d4e837552e46fbf02ca99778b8e841ae7e35219cf60
3
+ size 150245
checkpoint-511/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step511
checkpoint-511/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:138fb7ef84c013accb7e68d64a88b9cbb691829a9460f1a73fc83c9ed5281697
3
+ size 4978354640
checkpoint-511/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d9b5ea445292c6331e26f872262d8d6575c7f722fc2fb0233478ea9a28c38e8
3
+ size 4047172128
checkpoint-511/model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 9025492992
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "model.norm.weight": "model-00002-of-00002.safetensors"
297
+ }
298
+ }
checkpoint-511/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36c9044354f826de248840acaaec171f816609c147a664089731a0570deef948
3
+ size 15024
checkpoint-511/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54f4c4013326db4e7267b656aaf72b86570f8aeee91ad39242a416cf8b963191
3
+ size 15024
checkpoint-511/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43e910793831957d8685c316138c33eef8867edf60052477dc9ad6ec0c6da901
3
+ size 15024
checkpoint-511/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cfd0d71ef5a6c58d9f1d46851f4b1e699ca8a50ab3223cfb39668895cffeef2
3
+ size 15024
checkpoint-511/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa3691c5bc10959442507ef0f0d6d98780ec183e008256ca4993b2395bdf68d4
3
+ size 1064
checkpoint-511/special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|im_end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|finetune_right_pad_id|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
checkpoint-511/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:907a7b3b13afcc9d481433f17277a6dd7cf852c6185262597f1a849d2ebeaa45
3
+ size 17209884
checkpoint-511/tokenizer_config.json ADDED
@@ -0,0 +1,2064 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|im_start|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|im_end|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|im_end|>",
2056
+ "extra_special_tokens": {},
2057
+ "model_input_names": [
2058
+ "input_ids",
2059
+ "attention_mask"
2060
+ ],
2061
+ "model_max_length": 131072,
2062
+ "pad_token": "<|finetune_right_pad_id|>",
2063
+ "tokenizer_class": "PreTrainedTokenizer"
2064
+ }
checkpoint-511/trainer_state.json ADDED
@@ -0,0 +1,3723 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 3.5,
6
+ "eval_steps": 37,
7
+ "global_step": 511,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.00684931506849315,
14
+ "grad_norm": 6.781628733365755,
15
+ "learning_rate": 2.0000000000000002e-07,
16
+ "loss": 2.5668,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.00684931506849315,
21
+ "eval_loss": 2.5806074142456055,
22
+ "eval_runtime": 6.5651,
23
+ "eval_samples_per_second": 47.524,
24
+ "eval_steps_per_second": 3.046,
25
+ "step": 1
26
+ },
27
+ {
28
+ "epoch": 0.0136986301369863,
29
+ "grad_norm": 6.86619348498488,
30
+ "learning_rate": 4.0000000000000003e-07,
31
+ "loss": 2.6025,
32
+ "step": 2
33
+ },
34
+ {
35
+ "epoch": 0.02054794520547945,
36
+ "grad_norm": 6.661187717958318,
37
+ "learning_rate": 6.000000000000001e-07,
38
+ "loss": 2.6316,
39
+ "step": 3
40
+ },
41
+ {
42
+ "epoch": 0.0273972602739726,
43
+ "grad_norm": 6.861551727845244,
44
+ "learning_rate": 8.000000000000001e-07,
45
+ "loss": 2.5801,
46
+ "step": 4
47
+ },
48
+ {
49
+ "epoch": 0.03424657534246575,
50
+ "grad_norm": 6.69117874797922,
51
+ "learning_rate": 1.0000000000000002e-06,
52
+ "loss": 2.5335,
53
+ "step": 5
54
+ },
55
+ {
56
+ "epoch": 0.0410958904109589,
57
+ "grad_norm": 5.875380376726272,
58
+ "learning_rate": 1.2000000000000002e-06,
59
+ "loss": 2.5241,
60
+ "step": 6
61
+ },
62
+ {
63
+ "epoch": 0.04794520547945205,
64
+ "grad_norm": 5.7978399687358255,
65
+ "learning_rate": 1.4000000000000001e-06,
66
+ "loss": 2.4675,
67
+ "step": 7
68
+ },
69
+ {
70
+ "epoch": 0.0547945205479452,
71
+ "grad_norm": 3.954765219007858,
72
+ "learning_rate": 1.6000000000000001e-06,
73
+ "loss": 2.5811,
74
+ "step": 8
75
+ },
76
+ {
77
+ "epoch": 0.06164383561643835,
78
+ "grad_norm": 3.8615688857265162,
79
+ "learning_rate": 1.8000000000000001e-06,
80
+ "loss": 2.4886,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.0684931506849315,
85
+ "grad_norm": 3.1019873404806138,
86
+ "learning_rate": 2.0000000000000003e-06,
87
+ "loss": 2.5337,
88
+ "step": 10
89
+ },
90
+ {
91
+ "epoch": 0.07534246575342465,
92
+ "grad_norm": 1.653000190239802,
93
+ "learning_rate": 2.2e-06,
94
+ "loss": 2.493,
95
+ "step": 11
96
+ },
97
+ {
98
+ "epoch": 0.0821917808219178,
99
+ "grad_norm": 1.6653405065701912,
100
+ "learning_rate": 2.4000000000000003e-06,
101
+ "loss": 2.4862,
102
+ "step": 12
103
+ },
104
+ {
105
+ "epoch": 0.08904109589041095,
106
+ "grad_norm": 1.9193066268748051,
107
+ "learning_rate": 2.6e-06,
108
+ "loss": 2.5172,
109
+ "step": 13
110
+ },
111
+ {
112
+ "epoch": 0.0958904109589041,
113
+ "grad_norm": 1.4108595092412395,
114
+ "learning_rate": 2.8000000000000003e-06,
115
+ "loss": 2.4411,
116
+ "step": 14
117
+ },
118
+ {
119
+ "epoch": 0.10273972602739725,
120
+ "grad_norm": 2.0335186868451713,
121
+ "learning_rate": 3e-06,
122
+ "loss": 2.5062,
123
+ "step": 15
124
+ },
125
+ {
126
+ "epoch": 0.1095890410958904,
127
+ "grad_norm": 1.9834579085161663,
128
+ "learning_rate": 3.2000000000000003e-06,
129
+ "loss": 2.406,
130
+ "step": 16
131
+ },
132
+ {
133
+ "epoch": 0.11643835616438356,
134
+ "grad_norm": 1.7772826080066895,
135
+ "learning_rate": 3.4000000000000005e-06,
136
+ "loss": 2.4608,
137
+ "step": 17
138
+ },
139
+ {
140
+ "epoch": 0.1232876712328767,
141
+ "grad_norm": 1.3962245609921142,
142
+ "learning_rate": 3.6000000000000003e-06,
143
+ "loss": 2.3551,
144
+ "step": 18
145
+ },
146
+ {
147
+ "epoch": 0.13013698630136986,
148
+ "grad_norm": 1.190039563451697,
149
+ "learning_rate": 3.8000000000000005e-06,
150
+ "loss": 2.4188,
151
+ "step": 19
152
+ },
153
+ {
154
+ "epoch": 0.136986301369863,
155
+ "grad_norm": 1.0109005845053234,
156
+ "learning_rate": 4.000000000000001e-06,
157
+ "loss": 2.4981,
158
+ "step": 20
159
+ },
160
+ {
161
+ "epoch": 0.14383561643835616,
162
+ "grad_norm": 1.1671978967591745,
163
+ "learning_rate": 4.2000000000000004e-06,
164
+ "loss": 2.319,
165
+ "step": 21
166
+ },
167
+ {
168
+ "epoch": 0.1506849315068493,
169
+ "grad_norm": 1.0658877053683267,
170
+ "learning_rate": 4.4e-06,
171
+ "loss": 2.3067,
172
+ "step": 22
173
+ },
174
+ {
175
+ "epoch": 0.15753424657534246,
176
+ "grad_norm": 1.0578186226484172,
177
+ "learning_rate": 4.600000000000001e-06,
178
+ "loss": 2.4644,
179
+ "step": 23
180
+ },
181
+ {
182
+ "epoch": 0.1643835616438356,
183
+ "grad_norm": 0.9493987331518986,
184
+ "learning_rate": 4.800000000000001e-06,
185
+ "loss": 2.4179,
186
+ "step": 24
187
+ },
188
+ {
189
+ "epoch": 0.17123287671232876,
190
+ "grad_norm": 0.8876721262354197,
191
+ "learning_rate": 5e-06,
192
+ "loss": 2.4548,
193
+ "step": 25
194
+ },
195
+ {
196
+ "epoch": 0.1780821917808219,
197
+ "grad_norm": 0.9016648720831166,
198
+ "learning_rate": 4.999960519285878e-06,
199
+ "loss": 2.4203,
200
+ "step": 26
201
+ },
202
+ {
203
+ "epoch": 0.18493150684931506,
204
+ "grad_norm": 0.8594911221513131,
205
+ "learning_rate": 4.999842078390492e-06,
206
+ "loss": 2.4445,
207
+ "step": 27
208
+ },
209
+ {
210
+ "epoch": 0.1917808219178082,
211
+ "grad_norm": 0.8294185847621298,
212
+ "learning_rate": 4.9996446810547464e-06,
213
+ "loss": 2.4286,
214
+ "step": 28
215
+ },
216
+ {
217
+ "epoch": 0.19863013698630136,
218
+ "grad_norm": 0.829981358086145,
219
+ "learning_rate": 4.999368333513354e-06,
220
+ "loss": 2.3941,
221
+ "step": 29
222
+ },
223
+ {
224
+ "epoch": 0.2054794520547945,
225
+ "grad_norm": 0.8259390860771237,
226
+ "learning_rate": 4.99901304449463e-06,
227
+ "loss": 2.2873,
228
+ "step": 30
229
+ },
230
+ {
231
+ "epoch": 0.21232876712328766,
232
+ "grad_norm": 0.7780493406506134,
233
+ "learning_rate": 4.998578825220228e-06,
234
+ "loss": 2.4414,
235
+ "step": 31
236
+ },
237
+ {
238
+ "epoch": 0.2191780821917808,
239
+ "grad_norm": 0.8139739891431346,
240
+ "learning_rate": 4.9980656894047776e-06,
241
+ "loss": 2.426,
242
+ "step": 32
243
+ },
244
+ {
245
+ "epoch": 0.22602739726027396,
246
+ "grad_norm": 0.7967892569249858,
247
+ "learning_rate": 4.9974736532554525e-06,
248
+ "loss": 2.436,
249
+ "step": 33
250
+ },
251
+ {
252
+ "epoch": 0.2328767123287671,
253
+ "grad_norm": 0.7428657720222388,
254
+ "learning_rate": 4.996802735471461e-06,
255
+ "loss": 2.3185,
256
+ "step": 34
257
+ },
258
+ {
259
+ "epoch": 0.23972602739726026,
260
+ "grad_norm": 0.7499845773485214,
261
+ "learning_rate": 4.996052957243455e-06,
262
+ "loss": 2.4402,
263
+ "step": 35
264
+ },
265
+ {
266
+ "epoch": 0.2465753424657534,
267
+ "grad_norm": 0.7359931004513611,
268
+ "learning_rate": 4.995224342252856e-06,
269
+ "loss": 2.3618,
270
+ "step": 36
271
+ },
272
+ {
273
+ "epoch": 0.2534246575342466,
274
+ "grad_norm": 0.7073950294074208,
275
+ "learning_rate": 4.994316916671115e-06,
276
+ "loss": 2.455,
277
+ "step": 37
278
+ },
279
+ {
280
+ "epoch": 0.2534246575342466,
281
+ "eval_loss": 2.4449844360351562,
282
+ "eval_runtime": 5.9369,
283
+ "eval_samples_per_second": 52.553,
284
+ "eval_steps_per_second": 3.369,
285
+ "step": 37
286
+ },
287
+ {
288
+ "epoch": 0.2602739726027397,
289
+ "grad_norm": 0.6796375355430841,
290
+ "learning_rate": 4.993330709158879e-06,
291
+ "loss": 2.4065,
292
+ "step": 38
293
+ },
294
+ {
295
+ "epoch": 0.2671232876712329,
296
+ "grad_norm": 0.7250510771173403,
297
+ "learning_rate": 4.992265750865091e-06,
298
+ "loss": 2.4527,
299
+ "step": 39
300
+ },
301
+ {
302
+ "epoch": 0.273972602739726,
303
+ "grad_norm": 0.739133472992406,
304
+ "learning_rate": 4.991122075426001e-06,
305
+ "loss": 2.4787,
306
+ "step": 40
307
+ },
308
+ {
309
+ "epoch": 0.2808219178082192,
310
+ "grad_norm": 0.7026481518003141,
311
+ "learning_rate": 4.989899718964108e-06,
312
+ "loss": 2.4464,
313
+ "step": 41
314
+ },
315
+ {
316
+ "epoch": 0.2876712328767123,
317
+ "grad_norm": 0.7034188124515799,
318
+ "learning_rate": 4.988598720087015e-06,
319
+ "loss": 2.4366,
320
+ "step": 42
321
+ },
322
+ {
323
+ "epoch": 0.2945205479452055,
324
+ "grad_norm": 0.7114177997700272,
325
+ "learning_rate": 4.9872191198862166e-06,
326
+ "loss": 2.3954,
327
+ "step": 43
328
+ },
329
+ {
330
+ "epoch": 0.3013698630136986,
331
+ "grad_norm": 0.7489678406861063,
332
+ "learning_rate": 4.985760961935791e-06,
333
+ "loss": 2.4092,
334
+ "step": 44
335
+ },
336
+ {
337
+ "epoch": 0.3082191780821918,
338
+ "grad_norm": 0.721624023056601,
339
+ "learning_rate": 4.984224292291035e-06,
340
+ "loss": 2.395,
341
+ "step": 45
342
+ },
343
+ {
344
+ "epoch": 0.3150684931506849,
345
+ "grad_norm": 0.6976242893548902,
346
+ "learning_rate": 4.982609159486998e-06,
347
+ "loss": 2.3621,
348
+ "step": 46
349
+ },
350
+ {
351
+ "epoch": 0.3219178082191781,
352
+ "grad_norm": 0.6979047705556364,
353
+ "learning_rate": 4.980915614536957e-06,
354
+ "loss": 2.3956,
355
+ "step": 47
356
+ },
357
+ {
358
+ "epoch": 0.3287671232876712,
359
+ "grad_norm": 0.6638188971561942,
360
+ "learning_rate": 4.979143710930805e-06,
361
+ "loss": 2.4447,
362
+ "step": 48
363
+ },
364
+ {
365
+ "epoch": 0.3356164383561644,
366
+ "grad_norm": 0.6550861221813643,
367
+ "learning_rate": 4.977293504633357e-06,
368
+ "loss": 2.3803,
369
+ "step": 49
370
+ },
371
+ {
372
+ "epoch": 0.3424657534246575,
373
+ "grad_norm": 0.6637160251936499,
374
+ "learning_rate": 4.975365054082586e-06,
375
+ "loss": 2.5123,
376
+ "step": 50
377
+ },
378
+ {
379
+ "epoch": 0.3493150684931507,
380
+ "grad_norm": 0.6657032864997552,
381
+ "learning_rate": 4.973358420187776e-06,
382
+ "loss": 2.4373,
383
+ "step": 51
384
+ },
385
+ {
386
+ "epoch": 0.3561643835616438,
387
+ "grad_norm": 0.6671449801461397,
388
+ "learning_rate": 4.971273666327598e-06,
389
+ "loss": 2.4515,
390
+ "step": 52
391
+ },
392
+ {
393
+ "epoch": 0.363013698630137,
394
+ "grad_norm": 0.6574174542409758,
395
+ "learning_rate": 4.969110858348108e-06,
396
+ "loss": 2.3797,
397
+ "step": 53
398
+ },
399
+ {
400
+ "epoch": 0.3698630136986301,
401
+ "grad_norm": 0.7037780907575699,
402
+ "learning_rate": 4.96687006456067e-06,
403
+ "loss": 2.4465,
404
+ "step": 54
405
+ },
406
+ {
407
+ "epoch": 0.3767123287671233,
408
+ "grad_norm": 0.7244746896553337,
409
+ "learning_rate": 4.964551355739796e-06,
410
+ "loss": 2.4265,
411
+ "step": 55
412
+ },
413
+ {
414
+ "epoch": 0.3835616438356164,
415
+ "grad_norm": 0.6581463626850778,
416
+ "learning_rate": 4.962154805120908e-06,
417
+ "loss": 2.4168,
418
+ "step": 56
419
+ },
420
+ {
421
+ "epoch": 0.3904109589041096,
422
+ "grad_norm": 0.6289298559777078,
423
+ "learning_rate": 4.959680488398031e-06,
424
+ "loss": 2.3328,
425
+ "step": 57
426
+ },
427
+ {
428
+ "epoch": 0.3972602739726027,
429
+ "grad_norm": 0.724536921071452,
430
+ "learning_rate": 4.957128483721398e-06,
431
+ "loss": 2.4319,
432
+ "step": 58
433
+ },
434
+ {
435
+ "epoch": 0.4041095890410959,
436
+ "grad_norm": 0.7119106876660016,
437
+ "learning_rate": 4.9544988716949825e-06,
438
+ "loss": 2.4339,
439
+ "step": 59
440
+ },
441
+ {
442
+ "epoch": 0.410958904109589,
443
+ "grad_norm": 0.6561228716087687,
444
+ "learning_rate": 4.951791735373953e-06,
445
+ "loss": 2.4057,
446
+ "step": 60
447
+ },
448
+ {
449
+ "epoch": 0.4178082191780822,
450
+ "grad_norm": 0.7138586667149742,
451
+ "learning_rate": 4.949007160262049e-06,
452
+ "loss": 2.3573,
453
+ "step": 61
454
+ },
455
+ {
456
+ "epoch": 0.4246575342465753,
457
+ "grad_norm": 0.6884519352750037,
458
+ "learning_rate": 4.946145234308884e-06,
459
+ "loss": 2.3747,
460
+ "step": 62
461
+ },
462
+ {
463
+ "epoch": 0.4315068493150685,
464
+ "grad_norm": 0.7403756155139569,
465
+ "learning_rate": 4.943206047907159e-06,
466
+ "loss": 2.2729,
467
+ "step": 63
468
+ },
469
+ {
470
+ "epoch": 0.4383561643835616,
471
+ "grad_norm": 0.6656934708441304,
472
+ "learning_rate": 4.940189693889819e-06,
473
+ "loss": 2.3805,
474
+ "step": 64
475
+ },
476
+ {
477
+ "epoch": 0.4452054794520548,
478
+ "grad_norm": 0.7251476112884715,
479
+ "learning_rate": 4.937096267527111e-06,
480
+ "loss": 2.3104,
481
+ "step": 65
482
+ },
483
+ {
484
+ "epoch": 0.4520547945205479,
485
+ "grad_norm": 0.6921252166237588,
486
+ "learning_rate": 4.9339258665235815e-06,
487
+ "loss": 2.3499,
488
+ "step": 66
489
+ },
490
+ {
491
+ "epoch": 0.4589041095890411,
492
+ "grad_norm": 0.685877730442195,
493
+ "learning_rate": 4.930678591014986e-06,
494
+ "loss": 2.4331,
495
+ "step": 67
496
+ },
497
+ {
498
+ "epoch": 0.4657534246575342,
499
+ "grad_norm": 0.6641111783418014,
500
+ "learning_rate": 4.927354543565131e-06,
501
+ "loss": 2.3789,
502
+ "step": 68
503
+ },
504
+ {
505
+ "epoch": 0.4726027397260274,
506
+ "grad_norm": 0.6657747916085803,
507
+ "learning_rate": 4.9239538291626285e-06,
508
+ "loss": 2.4542,
509
+ "step": 69
510
+ },
511
+ {
512
+ "epoch": 0.4794520547945205,
513
+ "grad_norm": 0.6544468951826022,
514
+ "learning_rate": 4.920476555217586e-06,
515
+ "loss": 2.4277,
516
+ "step": 70
517
+ },
518
+ {
519
+ "epoch": 0.4863013698630137,
520
+ "grad_norm": 0.6670629357129911,
521
+ "learning_rate": 4.91692283155821e-06,
522
+ "loss": 2.3881,
523
+ "step": 71
524
+ },
525
+ {
526
+ "epoch": 0.4931506849315068,
527
+ "grad_norm": 0.6559422824562596,
528
+ "learning_rate": 4.913292770427338e-06,
529
+ "loss": 2.4225,
530
+ "step": 72
531
+ },
532
+ {
533
+ "epoch": 0.5,
534
+ "grad_norm": 0.6786459570539399,
535
+ "learning_rate": 4.909586486478897e-06,
536
+ "loss": 2.4963,
537
+ "step": 73
538
+ },
539
+ {
540
+ "epoch": 0.5068493150684932,
541
+ "grad_norm": 0.6892419553245916,
542
+ "learning_rate": 4.905804096774274e-06,
543
+ "loss": 2.4115,
544
+ "step": 74
545
+ },
546
+ {
547
+ "epoch": 0.5068493150684932,
548
+ "eval_loss": 2.4323267936706543,
549
+ "eval_runtime": 6.0665,
550
+ "eval_samples_per_second": 51.43,
551
+ "eval_steps_per_second": 3.297,
552
+ "step": 74
553
+ },
554
+ {
555
+ "epoch": 0.5136986301369864,
556
+ "grad_norm": 0.6768758807890537,
557
+ "learning_rate": 4.901945720778627e-06,
558
+ "loss": 2.3938,
559
+ "step": 75
560
+ },
561
+ {
562
+ "epoch": 0.5205479452054794,
563
+ "grad_norm": 0.7339799079732157,
564
+ "learning_rate": 4.898011480357109e-06,
565
+ "loss": 2.2883,
566
+ "step": 76
567
+ },
568
+ {
569
+ "epoch": 0.5273972602739726,
570
+ "grad_norm": 0.7397662592480156,
571
+ "learning_rate": 4.894001499771015e-06,
572
+ "loss": 2.4598,
573
+ "step": 77
574
+ },
575
+ {
576
+ "epoch": 0.5342465753424658,
577
+ "grad_norm": 0.6819769884160725,
578
+ "learning_rate": 4.889915905673865e-06,
579
+ "loss": 2.4188,
580
+ "step": 78
581
+ },
582
+ {
583
+ "epoch": 0.541095890410959,
584
+ "grad_norm": 0.6772539201070739,
585
+ "learning_rate": 4.885754827107395e-06,
586
+ "loss": 2.4142,
587
+ "step": 79
588
+ },
589
+ {
590
+ "epoch": 0.547945205479452,
591
+ "grad_norm": 0.659763812226515,
592
+ "learning_rate": 4.88151839549749e-06,
593
+ "loss": 2.298,
594
+ "step": 80
595
+ },
596
+ {
597
+ "epoch": 0.5547945205479452,
598
+ "grad_norm": 0.7286093280405468,
599
+ "learning_rate": 4.877206744650024e-06,
600
+ "loss": 2.3898,
601
+ "step": 81
602
+ },
603
+ {
604
+ "epoch": 0.5616438356164384,
605
+ "grad_norm": 0.6986932306550346,
606
+ "learning_rate": 4.8728200107466415e-06,
607
+ "loss": 2.3598,
608
+ "step": 82
609
+ },
610
+ {
611
+ "epoch": 0.5684931506849316,
612
+ "grad_norm": 0.6842367412456468,
613
+ "learning_rate": 4.868358332340451e-06,
614
+ "loss": 2.3763,
615
+ "step": 83
616
+ },
617
+ {
618
+ "epoch": 0.5753424657534246,
619
+ "grad_norm": 0.6724304892107736,
620
+ "learning_rate": 4.863821850351655e-06,
621
+ "loss": 2.4028,
622
+ "step": 84
623
+ },
624
+ {
625
+ "epoch": 0.5821917808219178,
626
+ "grad_norm": 0.6674281958373836,
627
+ "learning_rate": 4.859210708063091e-06,
628
+ "loss": 2.4226,
629
+ "step": 85
630
+ },
631
+ {
632
+ "epoch": 0.589041095890411,
633
+ "grad_norm": 0.6761850508539816,
634
+ "learning_rate": 4.854525051115711e-06,
635
+ "loss": 2.2755,
636
+ "step": 86
637
+ },
638
+ {
639
+ "epoch": 0.5958904109589042,
640
+ "grad_norm": 0.7049437160925219,
641
+ "learning_rate": 4.8497650275039795e-06,
642
+ "loss": 2.3633,
643
+ "step": 87
644
+ },
645
+ {
646
+ "epoch": 0.6027397260273972,
647
+ "grad_norm": 0.6675473282240035,
648
+ "learning_rate": 4.844930787571204e-06,
649
+ "loss": 2.4161,
650
+ "step": 88
651
+ },
652
+ {
653
+ "epoch": 0.6095890410958904,
654
+ "grad_norm": 0.6893380001896178,
655
+ "learning_rate": 4.84002248400478e-06,
656
+ "loss": 2.3261,
657
+ "step": 89
658
+ },
659
+ {
660
+ "epoch": 0.6164383561643836,
661
+ "grad_norm": 0.6557076444481973,
662
+ "learning_rate": 4.835040271831371e-06,
663
+ "loss": 2.4113,
664
+ "step": 90
665
+ },
666
+ {
667
+ "epoch": 0.6232876712328768,
668
+ "grad_norm": 0.7106326693649547,
669
+ "learning_rate": 4.829984308412011e-06,
670
+ "loss": 2.3468,
671
+ "step": 91
672
+ },
673
+ {
674
+ "epoch": 0.6301369863013698,
675
+ "grad_norm": 0.6780886154634945,
676
+ "learning_rate": 4.82485475343714e-06,
677
+ "loss": 2.4227,
678
+ "step": 92
679
+ },
680
+ {
681
+ "epoch": 0.636986301369863,
682
+ "grad_norm": 0.6848177542457299,
683
+ "learning_rate": 4.819651768921552e-06,
684
+ "loss": 2.4455,
685
+ "step": 93
686
+ },
687
+ {
688
+ "epoch": 0.6438356164383562,
689
+ "grad_norm": 0.6537386212526299,
690
+ "learning_rate": 4.814375519199281e-06,
691
+ "loss": 2.359,
692
+ "step": 94
693
+ },
694
+ {
695
+ "epoch": 0.6506849315068494,
696
+ "grad_norm": 0.692282068736651,
697
+ "learning_rate": 4.809026170918414e-06,
698
+ "loss": 2.4523,
699
+ "step": 95
700
+ },
701
+ {
702
+ "epoch": 0.6575342465753424,
703
+ "grad_norm": 0.6623529936148479,
704
+ "learning_rate": 4.803603893035822e-06,
705
+ "loss": 2.4321,
706
+ "step": 96
707
+ },
708
+ {
709
+ "epoch": 0.6643835616438356,
710
+ "grad_norm": 0.6842008308899095,
711
+ "learning_rate": 4.798108856811828e-06,
712
+ "loss": 2.415,
713
+ "step": 97
714
+ },
715
+ {
716
+ "epoch": 0.6712328767123288,
717
+ "grad_norm": 0.6761407885852002,
718
+ "learning_rate": 4.7925412358047965e-06,
719
+ "loss": 2.4099,
720
+ "step": 98
721
+ },
722
+ {
723
+ "epoch": 0.678082191780822,
724
+ "grad_norm": 0.695106737467069,
725
+ "learning_rate": 4.786901205865647e-06,
726
+ "loss": 2.3944,
727
+ "step": 99
728
+ },
729
+ {
730
+ "epoch": 0.684931506849315,
731
+ "grad_norm": 0.7154498681645167,
732
+ "learning_rate": 4.781188945132311e-06,
733
+ "loss": 2.4261,
734
+ "step": 100
735
+ },
736
+ {
737
+ "epoch": 0.6917808219178082,
738
+ "grad_norm": 0.708416595063437,
739
+ "learning_rate": 4.775404634024093e-06,
740
+ "loss": 2.4236,
741
+ "step": 101
742
+ },
743
+ {
744
+ "epoch": 0.6986301369863014,
745
+ "grad_norm": 0.6561586213988884,
746
+ "learning_rate": 4.769548455235979e-06,
747
+ "loss": 2.2712,
748
+ "step": 102
749
+ },
750
+ {
751
+ "epoch": 0.7054794520547946,
752
+ "grad_norm": 0.710907523788328,
753
+ "learning_rate": 4.763620593732867e-06,
754
+ "loss": 2.3401,
755
+ "step": 103
756
+ },
757
+ {
758
+ "epoch": 0.7123287671232876,
759
+ "grad_norm": 0.6765968692107874,
760
+ "learning_rate": 4.75762123674372e-06,
761
+ "loss": 2.4381,
762
+ "step": 104
763
+ },
764
+ {
765
+ "epoch": 0.7191780821917808,
766
+ "grad_norm": 0.9946667705374828,
767
+ "learning_rate": 4.751550573755658e-06,
768
+ "loss": 2.4825,
769
+ "step": 105
770
+ },
771
+ {
772
+ "epoch": 0.726027397260274,
773
+ "grad_norm": 0.6808703038492471,
774
+ "learning_rate": 4.745408796507968e-06,
775
+ "loss": 2.4417,
776
+ "step": 106
777
+ },
778
+ {
779
+ "epoch": 0.7328767123287672,
780
+ "grad_norm": 0.6511402815615133,
781
+ "learning_rate": 4.73919609898605e-06,
782
+ "loss": 2.412,
783
+ "step": 107
784
+ },
785
+ {
786
+ "epoch": 0.7397260273972602,
787
+ "grad_norm": 0.6806168774586489,
788
+ "learning_rate": 4.7329126774152945e-06,
789
+ "loss": 2.4047,
790
+ "step": 108
791
+ },
792
+ {
793
+ "epoch": 0.7465753424657534,
794
+ "grad_norm": 0.6581235881106364,
795
+ "learning_rate": 4.726558730254876e-06,
796
+ "loss": 2.3624,
797
+ "step": 109
798
+ },
799
+ {
800
+ "epoch": 0.7534246575342466,
801
+ "grad_norm": 0.6858279965463718,
802
+ "learning_rate": 4.720134458191494e-06,
803
+ "loss": 2.4046,
804
+ "step": 110
805
+ },
806
+ {
807
+ "epoch": 0.7602739726027398,
808
+ "grad_norm": 0.7044328584380498,
809
+ "learning_rate": 4.7136400641330245e-06,
810
+ "loss": 2.3298,
811
+ "step": 111
812
+ },
813
+ {
814
+ "epoch": 0.7602739726027398,
815
+ "eval_loss": 2.422318935394287,
816
+ "eval_runtime": 6.1327,
817
+ "eval_samples_per_second": 50.874,
818
+ "eval_steps_per_second": 3.261,
819
+ "step": 111
820
+ },
821
+ {
822
+ "epoch": 0.7671232876712328,
823
+ "grad_norm": 0.6949341182078216,
824
+ "learning_rate": 4.707075753202123e-06,
825
+ "loss": 2.4219,
826
+ "step": 112
827
+ },
828
+ {
829
+ "epoch": 0.773972602739726,
830
+ "grad_norm": 0.6883254066631505,
831
+ "learning_rate": 4.700441732729733e-06,
832
+ "loss": 2.4841,
833
+ "step": 113
834
+ },
835
+ {
836
+ "epoch": 0.7808219178082192,
837
+ "grad_norm": 0.688766337379056,
838
+ "learning_rate": 4.693738212248549e-06,
839
+ "loss": 2.3722,
840
+ "step": 114
841
+ },
842
+ {
843
+ "epoch": 0.7876712328767124,
844
+ "grad_norm": 0.6887580535922757,
845
+ "learning_rate": 4.68696540348639e-06,
846
+ "loss": 2.3637,
847
+ "step": 115
848
+ },
849
+ {
850
+ "epoch": 0.7945205479452054,
851
+ "grad_norm": 0.6719005239018524,
852
+ "learning_rate": 4.68012352035952e-06,
853
+ "loss": 2.4465,
854
+ "step": 116
855
+ },
856
+ {
857
+ "epoch": 0.8013698630136986,
858
+ "grad_norm": 0.6327678432767432,
859
+ "learning_rate": 4.673212778965881e-06,
860
+ "loss": 2.4219,
861
+ "step": 117
862
+ },
863
+ {
864
+ "epoch": 0.8082191780821918,
865
+ "grad_norm": 0.6572338268581427,
866
+ "learning_rate": 4.66623339757828e-06,
867
+ "loss": 2.4384,
868
+ "step": 118
869
+ },
870
+ {
871
+ "epoch": 0.815068493150685,
872
+ "grad_norm": 0.6774201762455547,
873
+ "learning_rate": 4.659185596637485e-06,
874
+ "loss": 2.4289,
875
+ "step": 119
876
+ },
877
+ {
878
+ "epoch": 0.821917808219178,
879
+ "grad_norm": 0.6765522988548955,
880
+ "learning_rate": 4.652069598745267e-06,
881
+ "loss": 2.3849,
882
+ "step": 120
883
+ },
884
+ {
885
+ "epoch": 0.8287671232876712,
886
+ "grad_norm": 0.6553606050310139,
887
+ "learning_rate": 4.644885628657369e-06,
888
+ "loss": 2.3953,
889
+ "step": 121
890
+ },
891
+ {
892
+ "epoch": 0.8356164383561644,
893
+ "grad_norm": 0.6817645269442179,
894
+ "learning_rate": 4.637633913276406e-06,
895
+ "loss": 2.4534,
896
+ "step": 122
897
+ },
898
+ {
899
+ "epoch": 0.8424657534246576,
900
+ "grad_norm": 0.6842353980823837,
901
+ "learning_rate": 4.630314681644701e-06,
902
+ "loss": 2.3376,
903
+ "step": 123
904
+ },
905
+ {
906
+ "epoch": 0.8493150684931506,
907
+ "grad_norm": 0.6938393939968492,
908
+ "learning_rate": 4.622928164937046e-06,
909
+ "loss": 2.3795,
910
+ "step": 124
911
+ },
912
+ {
913
+ "epoch": 0.8561643835616438,
914
+ "grad_norm": 0.6503903813017006,
915
+ "learning_rate": 4.615474596453406e-06,
916
+ "loss": 2.3801,
917
+ "step": 125
918
+ },
919
+ {
920
+ "epoch": 0.863013698630137,
921
+ "grad_norm": 0.6690065166974256,
922
+ "learning_rate": 4.607954211611543e-06,
923
+ "loss": 2.4771,
924
+ "step": 126
925
+ },
926
+ {
927
+ "epoch": 0.8698630136986302,
928
+ "grad_norm": 0.6565369111054283,
929
+ "learning_rate": 4.600367247939592e-06,
930
+ "loss": 2.4468,
931
+ "step": 127
932
+ },
933
+ {
934
+ "epoch": 0.8767123287671232,
935
+ "grad_norm": 0.6590600861747526,
936
+ "learning_rate": 4.5927139450685455e-06,
937
+ "loss": 2.2973,
938
+ "step": 128
939
+ },
940
+ {
941
+ "epoch": 0.8835616438356164,
942
+ "grad_norm": 0.6642768664806619,
943
+ "learning_rate": 4.584994544724695e-06,
944
+ "loss": 2.4463,
945
+ "step": 129
946
+ },
947
+ {
948
+ "epoch": 0.8904109589041096,
949
+ "grad_norm": 0.7254289901639452,
950
+ "learning_rate": 4.577209290721991e-06,
951
+ "loss": 2.2925,
952
+ "step": 130
953
+ },
954
+ {
955
+ "epoch": 0.8972602739726028,
956
+ "grad_norm": 0.6264601593599859,
957
+ "learning_rate": 4.569358428954343e-06,
958
+ "loss": 2.3624,
959
+ "step": 131
960
+ },
961
+ {
962
+ "epoch": 0.9041095890410958,
963
+ "grad_norm": 0.6932555262208767,
964
+ "learning_rate": 4.561442207387854e-06,
965
+ "loss": 2.3315,
966
+ "step": 132
967
+ },
968
+ {
969
+ "epoch": 0.910958904109589,
970
+ "grad_norm": 0.6857220601161248,
971
+ "learning_rate": 4.55346087605299e-06,
972
+ "loss": 2.372,
973
+ "step": 133
974
+ },
975
+ {
976
+ "epoch": 0.9178082191780822,
977
+ "grad_norm": 0.701001912101975,
978
+ "learning_rate": 4.5454146870366775e-06,
979
+ "loss": 2.4026,
980
+ "step": 134
981
+ },
982
+ {
983
+ "epoch": 0.9246575342465754,
984
+ "grad_norm": 0.6340272298295848,
985
+ "learning_rate": 4.537303894474349e-06,
986
+ "loss": 2.4131,
987
+ "step": 135
988
+ },
989
+ {
990
+ "epoch": 0.9315068493150684,
991
+ "grad_norm": 0.6136778043717291,
992
+ "learning_rate": 4.529128754541909e-06,
993
+ "loss": 2.297,
994
+ "step": 136
995
+ },
996
+ {
997
+ "epoch": 0.9383561643835616,
998
+ "grad_norm": 0.6322021005066626,
999
+ "learning_rate": 4.5208895254476495e-06,
1000
+ "loss": 2.4084,
1001
+ "step": 137
1002
+ },
1003
+ {
1004
+ "epoch": 0.9452054794520548,
1005
+ "grad_norm": 0.6445887057946764,
1006
+ "learning_rate": 4.512586467424087e-06,
1007
+ "loss": 2.3645,
1008
+ "step": 138
1009
+ },
1010
+ {
1011
+ "epoch": 0.952054794520548,
1012
+ "grad_norm": 0.7062860383104262,
1013
+ "learning_rate": 4.504219842719752e-06,
1014
+ "loss": 2.3655,
1015
+ "step": 139
1016
+ },
1017
+ {
1018
+ "epoch": 0.958904109589041,
1019
+ "grad_norm": 0.6781212322165483,
1020
+ "learning_rate": 4.4957899155908954e-06,
1021
+ "loss": 2.4285,
1022
+ "step": 140
1023
+ },
1024
+ {
1025
+ "epoch": 0.9657534246575342,
1026
+ "grad_norm": 0.6678298874200482,
1027
+ "learning_rate": 4.487296952293156e-06,
1028
+ "loss": 2.38,
1029
+ "step": 141
1030
+ },
1031
+ {
1032
+ "epoch": 0.9726027397260274,
1033
+ "grad_norm": 0.6575931921755482,
1034
+ "learning_rate": 4.478741221073136e-06,
1035
+ "loss": 2.4094,
1036
+ "step": 142
1037
+ },
1038
+ {
1039
+ "epoch": 0.9794520547945206,
1040
+ "grad_norm": 0.6868011511324458,
1041
+ "learning_rate": 4.470122992159938e-06,
1042
+ "loss": 2.4096,
1043
+ "step": 143
1044
+ },
1045
+ {
1046
+ "epoch": 0.9863013698630136,
1047
+ "grad_norm": 0.6854773154104912,
1048
+ "learning_rate": 4.461442537756629e-06,
1049
+ "loss": 2.4249,
1050
+ "step": 144
1051
+ },
1052
+ {
1053
+ "epoch": 0.9931506849315068,
1054
+ "grad_norm": 0.708510432833667,
1055
+ "learning_rate": 4.452700132031639e-06,
1056
+ "loss": 2.3724,
1057
+ "step": 145
1058
+ },
1059
+ {
1060
+ "epoch": 1.0,
1061
+ "grad_norm": 0.6566297487438831,
1062
+ "learning_rate": 4.443896051110105e-06,
1063
+ "loss": 2.391,
1064
+ "step": 146
1065
+ },
1066
+ {
1067
+ "epoch": 1.0068493150684932,
1068
+ "grad_norm": 0.7629369425964684,
1069
+ "learning_rate": 4.435030573065148e-06,
1070
+ "loss": 2.3448,
1071
+ "step": 147
1072
+ },
1073
+ {
1074
+ "epoch": 1.0136986301369864,
1075
+ "grad_norm": 0.7384812144528767,
1076
+ "learning_rate": 4.426103977909094e-06,
1077
+ "loss": 2.322,
1078
+ "step": 148
1079
+ },
1080
+ {
1081
+ "epoch": 1.0136986301369864,
1082
+ "eval_loss": 2.417771339416504,
1083
+ "eval_runtime": 53.3919,
1084
+ "eval_samples_per_second": 5.844,
1085
+ "eval_steps_per_second": 0.375,
1086
+ "step": 148
1087
+ },
1088
+ {
1089
+ "epoch": 1.0205479452054795,
1090
+ "grad_norm": 0.6662500395219653,
1091
+ "learning_rate": 4.417116547584621e-06,
1092
+ "loss": 2.35,
1093
+ "step": 149
1094
+ },
1095
+ {
1096
+ "epoch": 1.0273972602739727,
1097
+ "grad_norm": 0.6789888617564587,
1098
+ "learning_rate": 4.408068565955864e-06,
1099
+ "loss": 2.3845,
1100
+ "step": 150
1101
+ },
1102
+ {
1103
+ "epoch": 1.0342465753424657,
1104
+ "grad_norm": 0.6998134909721523,
1105
+ "learning_rate": 4.398960318799446e-06,
1106
+ "loss": 2.35,
1107
+ "step": 151
1108
+ },
1109
+ {
1110
+ "epoch": 1.0410958904109588,
1111
+ "grad_norm": 0.7216093013270933,
1112
+ "learning_rate": 4.389792093795444e-06,
1113
+ "loss": 2.3223,
1114
+ "step": 152
1115
+ },
1116
+ {
1117
+ "epoch": 1.047945205479452,
1118
+ "grad_norm": 0.7403493735812074,
1119
+ "learning_rate": 4.380564180518318e-06,
1120
+ "loss": 2.3253,
1121
+ "step": 153
1122
+ },
1123
+ {
1124
+ "epoch": 1.0547945205479452,
1125
+ "grad_norm": 0.7218865625666383,
1126
+ "learning_rate": 4.3712768704277535e-06,
1127
+ "loss": 2.3106,
1128
+ "step": 154
1129
+ },
1130
+ {
1131
+ "epoch": 1.0616438356164384,
1132
+ "grad_norm": 0.7197974746780744,
1133
+ "learning_rate": 4.361930456859455e-06,
1134
+ "loss": 2.3033,
1135
+ "step": 155
1136
+ },
1137
+ {
1138
+ "epoch": 1.0684931506849316,
1139
+ "grad_norm": 0.7249006057182749,
1140
+ "learning_rate": 4.35252523501589e-06,
1141
+ "loss": 2.3888,
1142
+ "step": 156
1143
+ },
1144
+ {
1145
+ "epoch": 1.0753424657534247,
1146
+ "grad_norm": 0.7037919961575326,
1147
+ "learning_rate": 4.343061501956959e-06,
1148
+ "loss": 2.3402,
1149
+ "step": 157
1150
+ },
1151
+ {
1152
+ "epoch": 1.0821917808219177,
1153
+ "grad_norm": 0.6996471940866854,
1154
+ "learning_rate": 4.3335395565906115e-06,
1155
+ "loss": 2.3194,
1156
+ "step": 158
1157
+ },
1158
+ {
1159
+ "epoch": 1.0890410958904109,
1160
+ "grad_norm": 0.717826362193492,
1161
+ "learning_rate": 4.323959699663412e-06,
1162
+ "loss": 2.3852,
1163
+ "step": 159
1164
+ },
1165
+ {
1166
+ "epoch": 1.095890410958904,
1167
+ "grad_norm": 0.708765230517044,
1168
+ "learning_rate": 4.314322233751034e-06,
1169
+ "loss": 2.3206,
1170
+ "step": 160
1171
+ },
1172
+ {
1173
+ "epoch": 1.1027397260273972,
1174
+ "grad_norm": 0.6776217729604187,
1175
+ "learning_rate": 4.304627463248706e-06,
1176
+ "loss": 2.3081,
1177
+ "step": 161
1178
+ },
1179
+ {
1180
+ "epoch": 1.1095890410958904,
1181
+ "grad_norm": 0.6853081994090057,
1182
+ "learning_rate": 4.294875694361599e-06,
1183
+ "loss": 2.3176,
1184
+ "step": 162
1185
+ },
1186
+ {
1187
+ "epoch": 1.1164383561643836,
1188
+ "grad_norm": 0.6830768891525606,
1189
+ "learning_rate": 4.285067235095152e-06,
1190
+ "loss": 2.3364,
1191
+ "step": 163
1192
+ },
1193
+ {
1194
+ "epoch": 1.1232876712328768,
1195
+ "grad_norm": 0.7089445206356011,
1196
+ "learning_rate": 4.275202395245346e-06,
1197
+ "loss": 2.3418,
1198
+ "step": 164
1199
+ },
1200
+ {
1201
+ "epoch": 1.13013698630137,
1202
+ "grad_norm": 0.7823709313759815,
1203
+ "learning_rate": 4.26528148638892e-06,
1204
+ "loss": 2.3798,
1205
+ "step": 165
1206
+ },
1207
+ {
1208
+ "epoch": 1.1369863013698631,
1209
+ "grad_norm": 0.6709932434280309,
1210
+ "learning_rate": 4.255304821873526e-06,
1211
+ "loss": 2.2267,
1212
+ "step": 166
1213
+ },
1214
+ {
1215
+ "epoch": 1.143835616438356,
1216
+ "grad_norm": 0.6628107638339615,
1217
+ "learning_rate": 4.245272716807834e-06,
1218
+ "loss": 2.3308,
1219
+ "step": 167
1220
+ },
1221
+ {
1222
+ "epoch": 1.1506849315068493,
1223
+ "grad_norm": 0.7184114487855815,
1224
+ "learning_rate": 4.2351854880515856e-06,
1225
+ "loss": 2.3017,
1226
+ "step": 168
1227
+ },
1228
+ {
1229
+ "epoch": 1.1575342465753424,
1230
+ "grad_norm": 0.7166834764618115,
1231
+ "learning_rate": 4.225043454205573e-06,
1232
+ "loss": 2.3551,
1233
+ "step": 169
1234
+ },
1235
+ {
1236
+ "epoch": 1.1643835616438356,
1237
+ "grad_norm": 0.7234116110718222,
1238
+ "learning_rate": 4.2148469356015895e-06,
1239
+ "loss": 2.3205,
1240
+ "step": 170
1241
+ },
1242
+ {
1243
+ "epoch": 1.1712328767123288,
1244
+ "grad_norm": 0.6873414003582445,
1245
+ "learning_rate": 4.204596254292303e-06,
1246
+ "loss": 2.3675,
1247
+ "step": 171
1248
+ },
1249
+ {
1250
+ "epoch": 1.178082191780822,
1251
+ "grad_norm": 0.7161572137012578,
1252
+ "learning_rate": 4.194291734041088e-06,
1253
+ "loss": 2.2708,
1254
+ "step": 172
1255
+ },
1256
+ {
1257
+ "epoch": 1.1849315068493151,
1258
+ "grad_norm": 0.7142712637206968,
1259
+ "learning_rate": 4.183933700311801e-06,
1260
+ "loss": 2.2617,
1261
+ "step": 173
1262
+ },
1263
+ {
1264
+ "epoch": 1.191780821917808,
1265
+ "grad_norm": 0.698584695168926,
1266
+ "learning_rate": 4.173522480258494e-06,
1267
+ "loss": 2.3686,
1268
+ "step": 174
1269
+ },
1270
+ {
1271
+ "epoch": 1.1986301369863013,
1272
+ "grad_norm": 0.7275575279831493,
1273
+ "learning_rate": 4.163058402715092e-06,
1274
+ "loss": 2.3088,
1275
+ "step": 175
1276
+ },
1277
+ {
1278
+ "epoch": 1.2054794520547945,
1279
+ "grad_norm": 0.7066892597231554,
1280
+ "learning_rate": 4.152541798184995e-06,
1281
+ "loss": 2.3273,
1282
+ "step": 176
1283
+ },
1284
+ {
1285
+ "epoch": 1.2123287671232876,
1286
+ "grad_norm": 0.6692377666271583,
1287
+ "learning_rate": 4.141972998830651e-06,
1288
+ "loss": 2.368,
1289
+ "step": 177
1290
+ },
1291
+ {
1292
+ "epoch": 1.2191780821917808,
1293
+ "grad_norm": 0.7519738253706634,
1294
+ "learning_rate": 4.1313523384630565e-06,
1295
+ "loss": 2.2878,
1296
+ "step": 178
1297
+ },
1298
+ {
1299
+ "epoch": 1.226027397260274,
1300
+ "grad_norm": 0.7029718569317863,
1301
+ "learning_rate": 4.120680152531214e-06,
1302
+ "loss": 2.2833,
1303
+ "step": 179
1304
+ },
1305
+ {
1306
+ "epoch": 1.2328767123287672,
1307
+ "grad_norm": 0.7334026090190444,
1308
+ "learning_rate": 4.109956778111544e-06,
1309
+ "loss": 2.3322,
1310
+ "step": 180
1311
+ },
1312
+ {
1313
+ "epoch": 1.2397260273972603,
1314
+ "grad_norm": 0.6951014303600972,
1315
+ "learning_rate": 4.099182553897228e-06,
1316
+ "loss": 2.2781,
1317
+ "step": 181
1318
+ },
1319
+ {
1320
+ "epoch": 1.2465753424657535,
1321
+ "grad_norm": 0.6885637550568241,
1322
+ "learning_rate": 4.088357820187521e-06,
1323
+ "loss": 2.2814,
1324
+ "step": 182
1325
+ },
1326
+ {
1327
+ "epoch": 1.2534246575342465,
1328
+ "grad_norm": 0.6917922559068629,
1329
+ "learning_rate": 4.077482918876995e-06,
1330
+ "loss": 2.378,
1331
+ "step": 183
1332
+ },
1333
+ {
1334
+ "epoch": 1.2602739726027397,
1335
+ "grad_norm": 0.6912354421485389,
1336
+ "learning_rate": 4.066558193444746e-06,
1337
+ "loss": 2.3087,
1338
+ "step": 184
1339
+ },
1340
+ {
1341
+ "epoch": 1.2671232876712328,
1342
+ "grad_norm": 0.7423647896303166,
1343
+ "learning_rate": 4.0555839889435444e-06,
1344
+ "loss": 2.2661,
1345
+ "step": 185
1346
+ },
1347
+ {
1348
+ "epoch": 1.2671232876712328,
1349
+ "eval_loss": 2.4178218841552734,
1350
+ "eval_runtime": 5.9059,
1351
+ "eval_samples_per_second": 52.828,
1352
+ "eval_steps_per_second": 3.386,
1353
+ "step": 185
1354
+ },
1355
+ {
1356
+ "epoch": 1.273972602739726,
1357
+ "grad_norm": 0.7478496634954042,
1358
+ "learning_rate": 4.044560651988933e-06,
1359
+ "loss": 2.3361,
1360
+ "step": 186
1361
+ },
1362
+ {
1363
+ "epoch": 1.2808219178082192,
1364
+ "grad_norm": 0.7065399264251201,
1365
+ "learning_rate": 4.033488530748285e-06,
1366
+ "loss": 2.2644,
1367
+ "step": 187
1368
+ },
1369
+ {
1370
+ "epoch": 1.2876712328767124,
1371
+ "grad_norm": 0.726480536340863,
1372
+ "learning_rate": 4.022367974929803e-06,
1373
+ "loss": 2.1882,
1374
+ "step": 188
1375
+ },
1376
+ {
1377
+ "epoch": 1.2945205479452055,
1378
+ "grad_norm": 0.6827946001097096,
1379
+ "learning_rate": 4.0111993357714755e-06,
1380
+ "loss": 2.2887,
1381
+ "step": 189
1382
+ },
1383
+ {
1384
+ "epoch": 1.3013698630136985,
1385
+ "grad_norm": 0.6814103107109724,
1386
+ "learning_rate": 3.999982966029981e-06,
1387
+ "loss": 2.3315,
1388
+ "step": 190
1389
+ },
1390
+ {
1391
+ "epoch": 1.308219178082192,
1392
+ "grad_norm": 0.65846390651437,
1393
+ "learning_rate": 3.98871921996955e-06,
1394
+ "loss": 2.2595,
1395
+ "step": 191
1396
+ },
1397
+ {
1398
+ "epoch": 1.3150684931506849,
1399
+ "grad_norm": 0.6664034822825207,
1400
+ "learning_rate": 3.977408453350774e-06,
1401
+ "loss": 2.3524,
1402
+ "step": 192
1403
+ },
1404
+ {
1405
+ "epoch": 1.321917808219178,
1406
+ "grad_norm": 0.7146251642801748,
1407
+ "learning_rate": 3.966051023419366e-06,
1408
+ "loss": 2.3562,
1409
+ "step": 193
1410
+ },
1411
+ {
1412
+ "epoch": 1.3287671232876712,
1413
+ "grad_norm": 0.7013378563213172,
1414
+ "learning_rate": 3.9546472888948825e-06,
1415
+ "loss": 2.2865,
1416
+ "step": 194
1417
+ },
1418
+ {
1419
+ "epoch": 1.3356164383561644,
1420
+ "grad_norm": 0.6884022789569789,
1421
+ "learning_rate": 3.943197609959389e-06,
1422
+ "loss": 2.3293,
1423
+ "step": 195
1424
+ },
1425
+ {
1426
+ "epoch": 1.3424657534246576,
1427
+ "grad_norm": 0.7263022758504937,
1428
+ "learning_rate": 3.931702348246087e-06,
1429
+ "loss": 2.2485,
1430
+ "step": 196
1431
+ },
1432
+ {
1433
+ "epoch": 1.3493150684931507,
1434
+ "grad_norm": 0.6879494874948079,
1435
+ "learning_rate": 3.92016186682789e-06,
1436
+ "loss": 2.2652,
1437
+ "step": 197
1438
+ },
1439
+ {
1440
+ "epoch": 1.356164383561644,
1441
+ "grad_norm": 0.7035221618072612,
1442
+ "learning_rate": 3.9085765302059556e-06,
1443
+ "loss": 2.3413,
1444
+ "step": 198
1445
+ },
1446
+ {
1447
+ "epoch": 1.3630136986301369,
1448
+ "grad_norm": 0.7042222964511125,
1449
+ "learning_rate": 3.8969467042981725e-06,
1450
+ "loss": 2.3202,
1451
+ "step": 199
1452
+ },
1453
+ {
1454
+ "epoch": 1.36986301369863,
1455
+ "grad_norm": 0.6961599428087603,
1456
+ "learning_rate": 3.885272756427609e-06,
1457
+ "loss": 2.2134,
1458
+ "step": 200
1459
+ },
1460
+ {
1461
+ "epoch": 1.3767123287671232,
1462
+ "grad_norm": 0.7445990308351226,
1463
+ "learning_rate": 3.873555055310902e-06,
1464
+ "loss": 2.3083,
1465
+ "step": 201
1466
+ },
1467
+ {
1468
+ "epoch": 1.3835616438356164,
1469
+ "grad_norm": 0.7272556327744341,
1470
+ "learning_rate": 3.86179397104662e-06,
1471
+ "loss": 2.2611,
1472
+ "step": 202
1473
+ },
1474
+ {
1475
+ "epoch": 1.3904109589041096,
1476
+ "grad_norm": 0.6734004584059651,
1477
+ "learning_rate": 3.849989875103566e-06,
1478
+ "loss": 2.3396,
1479
+ "step": 203
1480
+ },
1481
+ {
1482
+ "epoch": 1.3972602739726028,
1483
+ "grad_norm": 0.702149629138006,
1484
+ "learning_rate": 3.83814314030905e-06,
1485
+ "loss": 2.2206,
1486
+ "step": 204
1487
+ },
1488
+ {
1489
+ "epoch": 1.404109589041096,
1490
+ "grad_norm": 0.7668660946577405,
1491
+ "learning_rate": 3.826254140837111e-06,
1492
+ "loss": 2.3745,
1493
+ "step": 205
1494
+ },
1495
+ {
1496
+ "epoch": 1.410958904109589,
1497
+ "grad_norm": 0.6972264397617832,
1498
+ "learning_rate": 3.8143232521967023e-06,
1499
+ "loss": 2.2376,
1500
+ "step": 206
1501
+ },
1502
+ {
1503
+ "epoch": 1.4178082191780823,
1504
+ "grad_norm": 0.6802719750908277,
1505
+ "learning_rate": 3.802350851219826e-06,
1506
+ "loss": 2.3348,
1507
+ "step": 207
1508
+ },
1509
+ {
1510
+ "epoch": 1.4246575342465753,
1511
+ "grad_norm": 0.679939282001721,
1512
+ "learning_rate": 3.7903373160496342e-06,
1513
+ "loss": 2.3184,
1514
+ "step": 208
1515
+ },
1516
+ {
1517
+ "epoch": 1.4315068493150684,
1518
+ "grad_norm": 0.708335225525305,
1519
+ "learning_rate": 3.778283026128485e-06,
1520
+ "loss": 2.2065,
1521
+ "step": 209
1522
+ },
1523
+ {
1524
+ "epoch": 1.4383561643835616,
1525
+ "grad_norm": 0.6821337057973484,
1526
+ "learning_rate": 3.7661883621859584e-06,
1527
+ "loss": 2.3815,
1528
+ "step": 210
1529
+ },
1530
+ {
1531
+ "epoch": 1.4452054794520548,
1532
+ "grad_norm": 0.6864170898125791,
1533
+ "learning_rate": 3.754053706226829e-06,
1534
+ "loss": 2.2901,
1535
+ "step": 211
1536
+ },
1537
+ {
1538
+ "epoch": 1.452054794520548,
1539
+ "grad_norm": 0.690989555098226,
1540
+ "learning_rate": 3.741879441519004e-06,
1541
+ "loss": 2.3053,
1542
+ "step": 212
1543
+ },
1544
+ {
1545
+ "epoch": 1.4589041095890412,
1546
+ "grad_norm": 0.7326752735961912,
1547
+ "learning_rate": 3.729665952581415e-06,
1548
+ "loss": 2.2915,
1549
+ "step": 213
1550
+ },
1551
+ {
1552
+ "epoch": 1.4657534246575343,
1553
+ "grad_norm": 0.6795313294527453,
1554
+ "learning_rate": 3.7174136251718735e-06,
1555
+ "loss": 2.3548,
1556
+ "step": 214
1557
+ },
1558
+ {
1559
+ "epoch": 1.4726027397260273,
1560
+ "grad_norm": 0.7026030269068815,
1561
+ "learning_rate": 3.705122846274889e-06,
1562
+ "loss": 2.339,
1563
+ "step": 215
1564
+ },
1565
+ {
1566
+ "epoch": 1.4794520547945205,
1567
+ "grad_norm": 0.6968149329541087,
1568
+ "learning_rate": 3.6927940040894427e-06,
1569
+ "loss": 2.324,
1570
+ "step": 216
1571
+ },
1572
+ {
1573
+ "epoch": 1.4863013698630136,
1574
+ "grad_norm": 0.681949385138759,
1575
+ "learning_rate": 3.680427488016731e-06,
1576
+ "loss": 2.2522,
1577
+ "step": 217
1578
+ },
1579
+ {
1580
+ "epoch": 1.4931506849315068,
1581
+ "grad_norm": 0.7101393810809886,
1582
+ "learning_rate": 3.6680236886478627e-06,
1583
+ "loss": 2.3273,
1584
+ "step": 218
1585
+ },
1586
+ {
1587
+ "epoch": 1.5,
1588
+ "grad_norm": 0.681265285699898,
1589
+ "learning_rate": 3.6555829977515213e-06,
1590
+ "loss": 2.3807,
1591
+ "step": 219
1592
+ },
1593
+ {
1594
+ "epoch": 1.5068493150684932,
1595
+ "grad_norm": 0.6714546516939787,
1596
+ "learning_rate": 3.6431058082615966e-06,
1597
+ "loss": 2.3566,
1598
+ "step": 220
1599
+ },
1600
+ {
1601
+ "epoch": 1.5136986301369864,
1602
+ "grad_norm": 0.677995114165458,
1603
+ "learning_rate": 3.6305925142647704e-06,
1604
+ "loss": 2.3523,
1605
+ "step": 221
1606
+ },
1607
+ {
1608
+ "epoch": 1.5205479452054793,
1609
+ "grad_norm": 0.6347599230305153,
1610
+ "learning_rate": 3.6180435109880677e-06,
1611
+ "loss": 2.2482,
1612
+ "step": 222
1613
+ },
1614
+ {
1615
+ "epoch": 1.5205479452054793,
1616
+ "eval_loss": 2.4155406951904297,
1617
+ "eval_runtime": 5.9256,
1618
+ "eval_samples_per_second": 52.653,
1619
+ "eval_steps_per_second": 3.375,
1620
+ "step": 222
1621
+ },
1622
+ {
1623
+ "epoch": 1.5273972602739727,
1624
+ "grad_norm": 0.7076904051784869,
1625
+ "learning_rate": 3.6054591947863782e-06,
1626
+ "loss": 2.3036,
1627
+ "step": 223
1628
+ },
1629
+ {
1630
+ "epoch": 1.5342465753424657,
1631
+ "grad_norm": 0.6907845815242056,
1632
+ "learning_rate": 3.592839963129934e-06,
1633
+ "loss": 2.3765,
1634
+ "step": 224
1635
+ },
1636
+ {
1637
+ "epoch": 1.541095890410959,
1638
+ "grad_norm": 0.698669011142619,
1639
+ "learning_rate": 3.5801862145917565e-06,
1640
+ "loss": 2.3535,
1641
+ "step": 225
1642
+ },
1643
+ {
1644
+ "epoch": 1.547945205479452,
1645
+ "grad_norm": 0.6660369882110091,
1646
+ "learning_rate": 3.5674983488350695e-06,
1647
+ "loss": 2.3089,
1648
+ "step": 226
1649
+ },
1650
+ {
1651
+ "epoch": 1.5547945205479452,
1652
+ "grad_norm": 0.6870900476918825,
1653
+ "learning_rate": 3.5547767666006735e-06,
1654
+ "loss": 2.1687,
1655
+ "step": 227
1656
+ },
1657
+ {
1658
+ "epoch": 1.5616438356164384,
1659
+ "grad_norm": 0.6973754014334647,
1660
+ "learning_rate": 3.542021869694289e-06,
1661
+ "loss": 2.3408,
1662
+ "step": 228
1663
+ },
1664
+ {
1665
+ "epoch": 1.5684931506849316,
1666
+ "grad_norm": 0.6883965513486622,
1667
+ "learning_rate": 3.5292340609738667e-06,
1668
+ "loss": 2.2992,
1669
+ "step": 229
1670
+ },
1671
+ {
1672
+ "epoch": 1.5753424657534247,
1673
+ "grad_norm": 0.6818556003782501,
1674
+ "learning_rate": 3.516413744336863e-06,
1675
+ "loss": 2.3865,
1676
+ "step": 230
1677
+ },
1678
+ {
1679
+ "epoch": 1.5821917808219177,
1680
+ "grad_norm": 0.702979144019098,
1681
+ "learning_rate": 3.503561324707484e-06,
1682
+ "loss": 2.2278,
1683
+ "step": 231
1684
+ },
1685
+ {
1686
+ "epoch": 1.589041095890411,
1687
+ "grad_norm": 0.6806404665338951,
1688
+ "learning_rate": 3.4906772080238925e-06,
1689
+ "loss": 2.3231,
1690
+ "step": 232
1691
+ },
1692
+ {
1693
+ "epoch": 1.595890410958904,
1694
+ "grad_norm": 0.685606147526874,
1695
+ "learning_rate": 3.47776180122539e-06,
1696
+ "loss": 2.3128,
1697
+ "step": 233
1698
+ },
1699
+ {
1700
+ "epoch": 1.6027397260273972,
1701
+ "grad_norm": 0.6332716110587268,
1702
+ "learning_rate": 3.4648155122395653e-06,
1703
+ "loss": 2.3087,
1704
+ "step": 234
1705
+ },
1706
+ {
1707
+ "epoch": 1.6095890410958904,
1708
+ "grad_norm": 0.7202386902926047,
1709
+ "learning_rate": 3.4518387499694038e-06,
1710
+ "loss": 2.3599,
1711
+ "step": 235
1712
+ },
1713
+ {
1714
+ "epoch": 1.6164383561643836,
1715
+ "grad_norm": 0.6832286968858357,
1716
+ "learning_rate": 3.438831924280381e-06,
1717
+ "loss": 2.335,
1718
+ "step": 236
1719
+ },
1720
+ {
1721
+ "epoch": 1.6232876712328768,
1722
+ "grad_norm": 0.6520482069071943,
1723
+ "learning_rate": 3.425795445987508e-06,
1724
+ "loss": 2.3355,
1725
+ "step": 237
1726
+ },
1727
+ {
1728
+ "epoch": 1.6301369863013697,
1729
+ "grad_norm": 0.7019446668563534,
1730
+ "learning_rate": 3.4127297268423637e-06,
1731
+ "loss": 2.3111,
1732
+ "step": 238
1733
+ },
1734
+ {
1735
+ "epoch": 1.6369863013698631,
1736
+ "grad_norm": 0.677088641753582,
1737
+ "learning_rate": 3.3996351795200865e-06,
1738
+ "loss": 2.3463,
1739
+ "step": 239
1740
+ },
1741
+ {
1742
+ "epoch": 1.643835616438356,
1743
+ "grad_norm": 0.7234982640691922,
1744
+ "learning_rate": 3.386512217606339e-06,
1745
+ "loss": 2.3195,
1746
+ "step": 240
1747
+ },
1748
+ {
1749
+ "epoch": 1.6506849315068495,
1750
+ "grad_norm": 0.6944442709324709,
1751
+ "learning_rate": 3.373361255584249e-06,
1752
+ "loss": 2.4005,
1753
+ "step": 241
1754
+ },
1755
+ {
1756
+ "epoch": 1.6575342465753424,
1757
+ "grad_norm": 0.7269476410749787,
1758
+ "learning_rate": 3.3601827088213124e-06,
1759
+ "loss": 2.2849,
1760
+ "step": 242
1761
+ },
1762
+ {
1763
+ "epoch": 1.6643835616438356,
1764
+ "grad_norm": 0.6933396138061356,
1765
+ "learning_rate": 3.3469769935562798e-06,
1766
+ "loss": 2.3302,
1767
+ "step": 243
1768
+ },
1769
+ {
1770
+ "epoch": 1.6712328767123288,
1771
+ "grad_norm": 0.6951788312862931,
1772
+ "learning_rate": 3.3337445268860065e-06,
1773
+ "loss": 2.3419,
1774
+ "step": 244
1775
+ },
1776
+ {
1777
+ "epoch": 1.678082191780822,
1778
+ "grad_norm": 0.7102864990853207,
1779
+ "learning_rate": 3.3204857267522782e-06,
1780
+ "loss": 2.2889,
1781
+ "step": 245
1782
+ },
1783
+ {
1784
+ "epoch": 1.6849315068493151,
1785
+ "grad_norm": 0.6734448441851548,
1786
+ "learning_rate": 3.3072010119286156e-06,
1787
+ "loss": 2.3191,
1788
+ "step": 246
1789
+ },
1790
+ {
1791
+ "epoch": 1.691780821917808,
1792
+ "grad_norm": 0.710004987174813,
1793
+ "learning_rate": 3.2938908020070403e-06,
1794
+ "loss": 2.2627,
1795
+ "step": 247
1796
+ },
1797
+ {
1798
+ "epoch": 1.6986301369863015,
1799
+ "grad_norm": 0.7011446050991217,
1800
+ "learning_rate": 3.280555517384825e-06,
1801
+ "loss": 2.3647,
1802
+ "step": 248
1803
+ },
1804
+ {
1805
+ "epoch": 1.7054794520547945,
1806
+ "grad_norm": 0.7319541321421087,
1807
+ "learning_rate": 3.267195579251219e-06,
1808
+ "loss": 2.3177,
1809
+ "step": 249
1810
+ },
1811
+ {
1812
+ "epoch": 1.7123287671232876,
1813
+ "grad_norm": 0.6626335956989253,
1814
+ "learning_rate": 3.2538114095741412e-06,
1815
+ "loss": 2.3775,
1816
+ "step": 250
1817
+ },
1818
+ {
1819
+ "epoch": 1.7191780821917808,
1820
+ "grad_norm": 0.6662336469102511,
1821
+ "learning_rate": 3.2404034310868524e-06,
1822
+ "loss": 2.3887,
1823
+ "step": 251
1824
+ },
1825
+ {
1826
+ "epoch": 1.726027397260274,
1827
+ "grad_norm": 0.6904872645618079,
1828
+ "learning_rate": 3.2269720672746045e-06,
1829
+ "loss": 2.2411,
1830
+ "step": 252
1831
+ },
1832
+ {
1833
+ "epoch": 1.7328767123287672,
1834
+ "grad_norm": 0.6786858149868691,
1835
+ "learning_rate": 3.2135177423612668e-06,
1836
+ "loss": 2.3343,
1837
+ "step": 253
1838
+ },
1839
+ {
1840
+ "epoch": 1.7397260273972601,
1841
+ "grad_norm": 0.8070210101589392,
1842
+ "learning_rate": 3.200040881295922e-06,
1843
+ "loss": 2.3579,
1844
+ "step": 254
1845
+ },
1846
+ {
1847
+ "epoch": 1.7465753424657535,
1848
+ "grad_norm": 0.6859306383539353,
1849
+ "learning_rate": 3.186541909739452e-06,
1850
+ "loss": 2.371,
1851
+ "step": 255
1852
+ },
1853
+ {
1854
+ "epoch": 1.7534246575342465,
1855
+ "grad_norm": 0.6853782148050659,
1856
+ "learning_rate": 3.1730212540510835e-06,
1857
+ "loss": 2.117,
1858
+ "step": 256
1859
+ },
1860
+ {
1861
+ "epoch": 1.7602739726027399,
1862
+ "grad_norm": 0.9960196249104211,
1863
+ "learning_rate": 3.1594793412749316e-06,
1864
+ "loss": 2.3843,
1865
+ "step": 257
1866
+ },
1867
+ {
1868
+ "epoch": 1.7671232876712328,
1869
+ "grad_norm": 0.6757685094130473,
1870
+ "learning_rate": 3.145916599126506e-06,
1871
+ "loss": 2.3745,
1872
+ "step": 258
1873
+ },
1874
+ {
1875
+ "epoch": 1.773972602739726,
1876
+ "grad_norm": 0.7253543893242833,
1877
+ "learning_rate": 3.132333455979202e-06,
1878
+ "loss": 2.3707,
1879
+ "step": 259
1880
+ },
1881
+ {
1882
+ "epoch": 1.773972602739726,
1883
+ "eval_loss": 2.4115374088287354,
1884
+ "eval_runtime": 6.1962,
1885
+ "eval_samples_per_second": 50.354,
1886
+ "eval_steps_per_second": 3.228,
1887
+ "step": 259
1888
+ },
1889
+ {
1890
+ "epoch": 1.7808219178082192,
1891
+ "grad_norm": 0.6634255128578609,
1892
+ "learning_rate": 3.118730340850774e-06,
1893
+ "loss": 2.2806,
1894
+ "step": 260
1895
+ },
1896
+ {
1897
+ "epoch": 1.7876712328767124,
1898
+ "grad_norm": 0.6969726139618965,
1899
+ "learning_rate": 3.1051076833897814e-06,
1900
+ "loss": 2.3148,
1901
+ "step": 261
1902
+ },
1903
+ {
1904
+ "epoch": 1.7945205479452055,
1905
+ "grad_norm": 0.7393377224615634,
1906
+ "learning_rate": 3.091465913862019e-06,
1907
+ "loss": 2.3359,
1908
+ "step": 262
1909
+ },
1910
+ {
1911
+ "epoch": 1.8013698630136985,
1912
+ "grad_norm": 0.6900014881921968,
1913
+ "learning_rate": 3.077805463136931e-06,
1914
+ "loss": 2.2974,
1915
+ "step": 263
1916
+ },
1917
+ {
1918
+ "epoch": 1.808219178082192,
1919
+ "grad_norm": 0.6902244001587043,
1920
+ "learning_rate": 3.0641267626739946e-06,
1921
+ "loss": 2.3219,
1922
+ "step": 264
1923
+ },
1924
+ {
1925
+ "epoch": 1.8150684931506849,
1926
+ "grad_norm": 0.6810057389366492,
1927
+ "learning_rate": 3.050430244509103e-06,
1928
+ "loss": 2.3185,
1929
+ "step": 265
1930
+ },
1931
+ {
1932
+ "epoch": 1.821917808219178,
1933
+ "grad_norm": 0.7557527768095192,
1934
+ "learning_rate": 3.0367163412409084e-06,
1935
+ "loss": 2.2613,
1936
+ "step": 266
1937
+ },
1938
+ {
1939
+ "epoch": 1.8287671232876712,
1940
+ "grad_norm": 0.7085704364858588,
1941
+ "learning_rate": 3.0229854860171666e-06,
1942
+ "loss": 2.3049,
1943
+ "step": 267
1944
+ },
1945
+ {
1946
+ "epoch": 1.8356164383561644,
1947
+ "grad_norm": 0.7044887748838028,
1948
+ "learning_rate": 3.009238112521054e-06,
1949
+ "loss": 2.3123,
1950
+ "step": 268
1951
+ },
1952
+ {
1953
+ "epoch": 1.8424657534246576,
1954
+ "grad_norm": 0.6900781076774555,
1955
+ "learning_rate": 2.9954746549574696e-06,
1956
+ "loss": 2.2775,
1957
+ "step": 269
1958
+ },
1959
+ {
1960
+ "epoch": 1.8493150684931505,
1961
+ "grad_norm": 0.71668864808382,
1962
+ "learning_rate": 2.981695548039319e-06,
1963
+ "loss": 2.3295,
1964
+ "step": 270
1965
+ },
1966
+ {
1967
+ "epoch": 1.856164383561644,
1968
+ "grad_norm": 0.667887574033749,
1969
+ "learning_rate": 2.967901226973787e-06,
1970
+ "loss": 2.3287,
1971
+ "step": 271
1972
+ },
1973
+ {
1974
+ "epoch": 1.8630136986301369,
1975
+ "grad_norm": 0.6819433212131332,
1976
+ "learning_rate": 2.9540921274485913e-06,
1977
+ "loss": 2.3693,
1978
+ "step": 272
1979
+ },
1980
+ {
1981
+ "epoch": 1.8698630136986303,
1982
+ "grad_norm": 0.9698629158570198,
1983
+ "learning_rate": 2.9402686856182204e-06,
1984
+ "loss": 2.2706,
1985
+ "step": 273
1986
+ },
1987
+ {
1988
+ "epoch": 1.8767123287671232,
1989
+ "grad_norm": 0.6898650487034594,
1990
+ "learning_rate": 2.9264313380901586e-06,
1991
+ "loss": 2.3726,
1992
+ "step": 274
1993
+ },
1994
+ {
1995
+ "epoch": 1.8835616438356164,
1996
+ "grad_norm": 0.6770885016618345,
1997
+ "learning_rate": 2.912580521911095e-06,
1998
+ "loss": 2.3218,
1999
+ "step": 275
2000
+ },
2001
+ {
2002
+ "epoch": 1.8904109589041096,
2003
+ "grad_norm": 0.697939657290891,
2004
+ "learning_rate": 2.898716674553121e-06,
2005
+ "loss": 2.4074,
2006
+ "step": 276
2007
+ },
2008
+ {
2009
+ "epoch": 1.8972602739726028,
2010
+ "grad_norm": 0.7048161669777684,
2011
+ "learning_rate": 2.8848402338999116e-06,
2012
+ "loss": 2.3547,
2013
+ "step": 277
2014
+ },
2015
+ {
2016
+ "epoch": 1.904109589041096,
2017
+ "grad_norm": 0.7550887476234565,
2018
+ "learning_rate": 2.870951638232896e-06,
2019
+ "loss": 2.3242,
2020
+ "step": 278
2021
+ },
2022
+ {
2023
+ "epoch": 1.910958904109589,
2024
+ "grad_norm": 0.674336958631372,
2025
+ "learning_rate": 2.8570513262174155e-06,
2026
+ "loss": 2.3511,
2027
+ "step": 279
2028
+ },
2029
+ {
2030
+ "epoch": 1.9178082191780823,
2031
+ "grad_norm": 0.7168968714166564,
2032
+ "learning_rate": 2.843139736888864e-06,
2033
+ "loss": 2.3232,
2034
+ "step": 280
2035
+ },
2036
+ {
2037
+ "epoch": 1.9246575342465753,
2038
+ "grad_norm": 0.7236665241621988,
2039
+ "learning_rate": 2.829217309638828e-06,
2040
+ "loss": 2.3281,
2041
+ "step": 281
2042
+ },
2043
+ {
2044
+ "epoch": 1.9315068493150684,
2045
+ "grad_norm": 0.6931721284135243,
2046
+ "learning_rate": 2.8152844842012034e-06,
2047
+ "loss": 2.3643,
2048
+ "step": 282
2049
+ },
2050
+ {
2051
+ "epoch": 1.9383561643835616,
2052
+ "grad_norm": 0.6928469669838125,
2053
+ "learning_rate": 2.8013417006383078e-06,
2054
+ "loss": 2.2855,
2055
+ "step": 283
2056
+ },
2057
+ {
2058
+ "epoch": 1.9452054794520548,
2059
+ "grad_norm": 0.6982709588867243,
2060
+ "learning_rate": 2.787389399326984e-06,
2061
+ "loss": 2.2552,
2062
+ "step": 284
2063
+ },
2064
+ {
2065
+ "epoch": 1.952054794520548,
2066
+ "grad_norm": 0.6890157309338247,
2067
+ "learning_rate": 2.773428020944687e-06,
2068
+ "loss": 2.1769,
2069
+ "step": 285
2070
+ },
2071
+ {
2072
+ "epoch": 1.958904109589041,
2073
+ "grad_norm": 0.6890167227071454,
2074
+ "learning_rate": 2.7594580064555664e-06,
2075
+ "loss": 2.2975,
2076
+ "step": 286
2077
+ },
2078
+ {
2079
+ "epoch": 1.9657534246575343,
2080
+ "grad_norm": 0.6603722163357953,
2081
+ "learning_rate": 2.745479797096543e-06,
2082
+ "loss": 2.3294,
2083
+ "step": 287
2084
+ },
2085
+ {
2086
+ "epoch": 1.9726027397260273,
2087
+ "grad_norm": 0.673631868721191,
2088
+ "learning_rate": 2.7314938343633656e-06,
2089
+ "loss": 2.3338,
2090
+ "step": 288
2091
+ },
2092
+ {
2093
+ "epoch": 1.9794520547945207,
2094
+ "grad_norm": 0.6838024849491231,
2095
+ "learning_rate": 2.717500559996672e-06,
2096
+ "loss": 2.2469,
2097
+ "step": 289
2098
+ },
2099
+ {
2100
+ "epoch": 1.9863013698630136,
2101
+ "grad_norm": 0.6915378189577142,
2102
+ "learning_rate": 2.7035004159680332e-06,
2103
+ "loss": 2.3446,
2104
+ "step": 290
2105
+ },
2106
+ {
2107
+ "epoch": 1.9931506849315068,
2108
+ "grad_norm": 0.7308967059013186,
2109
+ "learning_rate": 2.6894938444659972e-06,
2110
+ "loss": 2.3048,
2111
+ "step": 291
2112
+ },
2113
+ {
2114
+ "epoch": 2.0,
2115
+ "grad_norm": 0.6670727912036851,
2116
+ "learning_rate": 2.675481287882121e-06,
2117
+ "loss": 2.3657,
2118
+ "step": 292
2119
+ },
2120
+ {
2121
+ "epoch": 2.006849315068493,
2122
+ "grad_norm": 0.7842325057992966,
2123
+ "learning_rate": 2.661463188796996e-06,
2124
+ "loss": 2.2781,
2125
+ "step": 293
2126
+ },
2127
+ {
2128
+ "epoch": 2.0136986301369864,
2129
+ "grad_norm": 0.7703049180632918,
2130
+ "learning_rate": 2.647439989966272e-06,
2131
+ "loss": 2.2511,
2132
+ "step": 294
2133
+ },
2134
+ {
2135
+ "epoch": 2.0205479452054793,
2136
+ "grad_norm": 0.7618588659706208,
2137
+ "learning_rate": 2.633412134306672e-06,
2138
+ "loss": 2.3002,
2139
+ "step": 295
2140
+ },
2141
+ {
2142
+ "epoch": 2.0273972602739727,
2143
+ "grad_norm": 0.7698611238860366,
2144
+ "learning_rate": 2.6193800648820056e-06,
2145
+ "loss": 2.293,
2146
+ "step": 296
2147
+ },
2148
+ {
2149
+ "epoch": 2.0273972602739727,
2150
+ "eval_loss": 2.413179397583008,
2151
+ "eval_runtime": 5.9465,
2152
+ "eval_samples_per_second": 52.468,
2153
+ "eval_steps_per_second": 3.363,
2154
+ "step": 296
2155
+ },
2156
+ {
2157
+ "epoch": 2.0342465753424657,
2158
+ "grad_norm": 0.744217752384927,
2159
+ "learning_rate": 2.605344224889167e-06,
2160
+ "loss": 2.2864,
2161
+ "step": 297
2162
+ },
2163
+ {
2164
+ "epoch": 2.041095890410959,
2165
+ "grad_norm": 0.7308267298605848,
2166
+ "learning_rate": 2.591305057644148e-06,
2167
+ "loss": 2.2549,
2168
+ "step": 298
2169
+ },
2170
+ {
2171
+ "epoch": 2.047945205479452,
2172
+ "grad_norm": 0.7364683383887598,
2173
+ "learning_rate": 2.5772630065680247e-06,
2174
+ "loss": 2.2634,
2175
+ "step": 299
2176
+ },
2177
+ {
2178
+ "epoch": 2.0547945205479454,
2179
+ "grad_norm": 0.6947110181620351,
2180
+ "learning_rate": 2.563218515172962e-06,
2181
+ "loss": 2.2756,
2182
+ "step": 300
2183
+ },
2184
+ {
2185
+ "epoch": 2.0616438356164384,
2186
+ "grad_norm": 0.7441894255170367,
2187
+ "learning_rate": 2.5491720270481995e-06,
2188
+ "loss": 2.2196,
2189
+ "step": 301
2190
+ },
2191
+ {
2192
+ "epoch": 2.0684931506849313,
2193
+ "grad_norm": 0.7308523751420212,
2194
+ "learning_rate": 2.5351239858460425e-06,
2195
+ "loss": 2.1325,
2196
+ "step": 302
2197
+ },
2198
+ {
2199
+ "epoch": 2.0753424657534247,
2200
+ "grad_norm": 0.723559375401077,
2201
+ "learning_rate": 2.521074835267851e-06,
2202
+ "loss": 2.2826,
2203
+ "step": 303
2204
+ },
2205
+ {
2206
+ "epoch": 2.0821917808219177,
2207
+ "grad_norm": 0.7107824928376044,
2208
+ "learning_rate": 2.507025019050022e-06,
2209
+ "loss": 2.3009,
2210
+ "step": 304
2211
+ },
2212
+ {
2213
+ "epoch": 2.089041095890411,
2214
+ "grad_norm": 0.7407695595687628,
2215
+ "learning_rate": 2.4929749809499788e-06,
2216
+ "loss": 2.294,
2217
+ "step": 305
2218
+ },
2219
+ {
2220
+ "epoch": 2.095890410958904,
2221
+ "grad_norm": 0.9861121146811986,
2222
+ "learning_rate": 2.4789251647321498e-06,
2223
+ "loss": 2.3456,
2224
+ "step": 306
2225
+ },
2226
+ {
2227
+ "epoch": 2.1027397260273974,
2228
+ "grad_norm": 0.7154622282506935,
2229
+ "learning_rate": 2.464876014153958e-06,
2230
+ "loss": 2.3047,
2231
+ "step": 307
2232
+ },
2233
+ {
2234
+ "epoch": 2.1095890410958904,
2235
+ "grad_norm": 0.764573333314849,
2236
+ "learning_rate": 2.4508279729518013e-06,
2237
+ "loss": 2.2963,
2238
+ "step": 308
2239
+ },
2240
+ {
2241
+ "epoch": 2.1164383561643834,
2242
+ "grad_norm": 0.7200447494905048,
2243
+ "learning_rate": 2.4367814848270386e-06,
2244
+ "loss": 2.3017,
2245
+ "step": 309
2246
+ },
2247
+ {
2248
+ "epoch": 2.1232876712328768,
2249
+ "grad_norm": 0.7331208423596353,
2250
+ "learning_rate": 2.422736993431976e-06,
2251
+ "loss": 2.2193,
2252
+ "step": 310
2253
+ },
2254
+ {
2255
+ "epoch": 2.1301369863013697,
2256
+ "grad_norm": 0.7181268238018352,
2257
+ "learning_rate": 2.408694942355853e-06,
2258
+ "loss": 2.2816,
2259
+ "step": 311
2260
+ },
2261
+ {
2262
+ "epoch": 2.136986301369863,
2263
+ "grad_norm": 0.71696981098615,
2264
+ "learning_rate": 2.3946557751108333e-06,
2265
+ "loss": 2.2556,
2266
+ "step": 312
2267
+ },
2268
+ {
2269
+ "epoch": 2.143835616438356,
2270
+ "grad_norm": 0.7496868820684847,
2271
+ "learning_rate": 2.3806199351179948e-06,
2272
+ "loss": 2.2647,
2273
+ "step": 313
2274
+ },
2275
+ {
2276
+ "epoch": 2.1506849315068495,
2277
+ "grad_norm": 0.7170898258087575,
2278
+ "learning_rate": 2.3665878656933285e-06,
2279
+ "loss": 2.2258,
2280
+ "step": 314
2281
+ },
2282
+ {
2283
+ "epoch": 2.1575342465753424,
2284
+ "grad_norm": 0.7349227307009416,
2285
+ "learning_rate": 2.3525600100337294e-06,
2286
+ "loss": 2.3019,
2287
+ "step": 315
2288
+ },
2289
+ {
2290
+ "epoch": 2.1643835616438354,
2291
+ "grad_norm": 0.7339023774015392,
2292
+ "learning_rate": 2.3385368112030054e-06,
2293
+ "loss": 2.2243,
2294
+ "step": 316
2295
+ },
2296
+ {
2297
+ "epoch": 2.171232876712329,
2298
+ "grad_norm": 0.7094170245428788,
2299
+ "learning_rate": 2.3245187121178804e-06,
2300
+ "loss": 2.2296,
2301
+ "step": 317
2302
+ },
2303
+ {
2304
+ "epoch": 2.1780821917808217,
2305
+ "grad_norm": 0.7201765979542566,
2306
+ "learning_rate": 2.310506155534003e-06,
2307
+ "loss": 2.3034,
2308
+ "step": 318
2309
+ },
2310
+ {
2311
+ "epoch": 2.184931506849315,
2312
+ "grad_norm": 0.6843911581159334,
2313
+ "learning_rate": 2.296499584031967e-06,
2314
+ "loss": 2.3191,
2315
+ "step": 319
2316
+ },
2317
+ {
2318
+ "epoch": 2.191780821917808,
2319
+ "grad_norm": 0.715427807427916,
2320
+ "learning_rate": 2.282499440003329e-06,
2321
+ "loss": 2.2465,
2322
+ "step": 320
2323
+ },
2324
+ {
2325
+ "epoch": 2.1986301369863015,
2326
+ "grad_norm": 0.7344624489275093,
2327
+ "learning_rate": 2.268506165636635e-06,
2328
+ "loss": 2.2288,
2329
+ "step": 321
2330
+ },
2331
+ {
2332
+ "epoch": 2.2054794520547945,
2333
+ "grad_norm": 0.7296105473696515,
2334
+ "learning_rate": 2.254520202903458e-06,
2335
+ "loss": 2.237,
2336
+ "step": 322
2337
+ },
2338
+ {
2339
+ "epoch": 2.212328767123288,
2340
+ "grad_norm": 0.7740678634111837,
2341
+ "learning_rate": 2.240541993544434e-06,
2342
+ "loss": 2.2005,
2343
+ "step": 323
2344
+ },
2345
+ {
2346
+ "epoch": 2.219178082191781,
2347
+ "grad_norm": 0.6876899720253623,
2348
+ "learning_rate": 2.2265719790553147e-06,
2349
+ "loss": 2.0113,
2350
+ "step": 324
2351
+ },
2352
+ {
2353
+ "epoch": 2.2260273972602738,
2354
+ "grad_norm": 0.7385389732044396,
2355
+ "learning_rate": 2.212610600673017e-06,
2356
+ "loss": 2.2027,
2357
+ "step": 325
2358
+ },
2359
+ {
2360
+ "epoch": 2.232876712328767,
2361
+ "grad_norm": 0.7237738352415183,
2362
+ "learning_rate": 2.1986582993616926e-06,
2363
+ "loss": 2.3329,
2364
+ "step": 326
2365
+ },
2366
+ {
2367
+ "epoch": 2.23972602739726,
2368
+ "grad_norm": 0.7224811508262542,
2369
+ "learning_rate": 2.1847155157987975e-06,
2370
+ "loss": 2.3061,
2371
+ "step": 327
2372
+ },
2373
+ {
2374
+ "epoch": 2.2465753424657535,
2375
+ "grad_norm": 0.7141960930180122,
2376
+ "learning_rate": 2.170782690361173e-06,
2377
+ "loss": 2.249,
2378
+ "step": 328
2379
+ },
2380
+ {
2381
+ "epoch": 2.2534246575342465,
2382
+ "grad_norm": 0.7210265725669223,
2383
+ "learning_rate": 2.1568602631111362e-06,
2384
+ "loss": 2.3222,
2385
+ "step": 329
2386
+ },
2387
+ {
2388
+ "epoch": 2.26027397260274,
2389
+ "grad_norm": 0.7622124004386663,
2390
+ "learning_rate": 2.1429486737825857e-06,
2391
+ "loss": 2.2205,
2392
+ "step": 330
2393
+ },
2394
+ {
2395
+ "epoch": 2.267123287671233,
2396
+ "grad_norm": 0.7131919831150063,
2397
+ "learning_rate": 2.129048361767104e-06,
2398
+ "loss": 2.2562,
2399
+ "step": 331
2400
+ },
2401
+ {
2402
+ "epoch": 2.2739726027397262,
2403
+ "grad_norm": 0.716232761563867,
2404
+ "learning_rate": 2.1151597661000884e-06,
2405
+ "loss": 2.1547,
2406
+ "step": 332
2407
+ },
2408
+ {
2409
+ "epoch": 2.280821917808219,
2410
+ "grad_norm": 0.7370885639371628,
2411
+ "learning_rate": 2.1012833254468803e-06,
2412
+ "loss": 2.3085,
2413
+ "step": 333
2414
+ },
2415
+ {
2416
+ "epoch": 2.280821917808219,
2417
+ "eval_loss": 2.413699150085449,
2418
+ "eval_runtime": 5.9363,
2419
+ "eval_samples_per_second": 52.558,
2420
+ "eval_steps_per_second": 3.369,
2421
+ "step": 333
2422
+ },
2423
+ {
2424
+ "epoch": 2.287671232876712,
2425
+ "grad_norm": 0.6858773863616128,
2426
+ "learning_rate": 2.087419478088906e-06,
2427
+ "loss": 2.1914,
2428
+ "step": 334
2429
+ },
2430
+ {
2431
+ "epoch": 2.2945205479452055,
2432
+ "grad_norm": 0.7071367211538865,
2433
+ "learning_rate": 2.073568661909842e-06,
2434
+ "loss": 2.2382,
2435
+ "step": 335
2436
+ },
2437
+ {
2438
+ "epoch": 2.3013698630136985,
2439
+ "grad_norm": 0.7099731184047182,
2440
+ "learning_rate": 2.0597313143817804e-06,
2441
+ "loss": 2.2705,
2442
+ "step": 336
2443
+ },
2444
+ {
2445
+ "epoch": 2.308219178082192,
2446
+ "grad_norm": 0.7132760269247956,
2447
+ "learning_rate": 2.045907872551409e-06,
2448
+ "loss": 2.2967,
2449
+ "step": 337
2450
+ },
2451
+ {
2452
+ "epoch": 2.315068493150685,
2453
+ "grad_norm": 0.7026265666695738,
2454
+ "learning_rate": 2.0320987730262136e-06,
2455
+ "loss": 2.1903,
2456
+ "step": 338
2457
+ },
2458
+ {
2459
+ "epoch": 2.3219178082191783,
2460
+ "grad_norm": 0.7121256173220049,
2461
+ "learning_rate": 2.018304451960682e-06,
2462
+ "loss": 2.2352,
2463
+ "step": 339
2464
+ },
2465
+ {
2466
+ "epoch": 2.328767123287671,
2467
+ "grad_norm": 0.716016616197666,
2468
+ "learning_rate": 2.0045253450425308e-06,
2469
+ "loss": 2.2246,
2470
+ "step": 340
2471
+ },
2472
+ {
2473
+ "epoch": 2.3356164383561646,
2474
+ "grad_norm": 0.702268794797935,
2475
+ "learning_rate": 1.9907618874789463e-06,
2476
+ "loss": 2.1513,
2477
+ "step": 341
2478
+ },
2479
+ {
2480
+ "epoch": 2.3424657534246576,
2481
+ "grad_norm": 0.7211508092099944,
2482
+ "learning_rate": 1.9770145139828334e-06,
2483
+ "loss": 2.2313,
2484
+ "step": 342
2485
+ },
2486
+ {
2487
+ "epoch": 2.3493150684931505,
2488
+ "grad_norm": 0.6875475522410895,
2489
+ "learning_rate": 1.963283658759093e-06,
2490
+ "loss": 2.1937,
2491
+ "step": 343
2492
+ },
2493
+ {
2494
+ "epoch": 2.356164383561644,
2495
+ "grad_norm": 0.7100032015503472,
2496
+ "learning_rate": 1.9495697554908984e-06,
2497
+ "loss": 2.2032,
2498
+ "step": 344
2499
+ },
2500
+ {
2501
+ "epoch": 2.363013698630137,
2502
+ "grad_norm": 0.7090312927179646,
2503
+ "learning_rate": 1.935873237326006e-06,
2504
+ "loss": 2.3233,
2505
+ "step": 345
2506
+ },
2507
+ {
2508
+ "epoch": 2.3698630136986303,
2509
+ "grad_norm": 0.7321348941655884,
2510
+ "learning_rate": 1.9221945368630703e-06,
2511
+ "loss": 2.3082,
2512
+ "step": 346
2513
+ },
2514
+ {
2515
+ "epoch": 2.3767123287671232,
2516
+ "grad_norm": 0.7176395955608619,
2517
+ "learning_rate": 1.9085340861379815e-06,
2518
+ "loss": 2.2542,
2519
+ "step": 347
2520
+ },
2521
+ {
2522
+ "epoch": 2.383561643835616,
2523
+ "grad_norm": 0.7470287281593275,
2524
+ "learning_rate": 1.8948923166102192e-06,
2525
+ "loss": 2.2732,
2526
+ "step": 348
2527
+ },
2528
+ {
2529
+ "epoch": 2.3904109589041096,
2530
+ "grad_norm": 0.7438948749235669,
2531
+ "learning_rate": 1.8812696591492265e-06,
2532
+ "loss": 2.2342,
2533
+ "step": 349
2534
+ },
2535
+ {
2536
+ "epoch": 2.3972602739726026,
2537
+ "grad_norm": 0.7307563711082086,
2538
+ "learning_rate": 1.8676665440207982e-06,
2539
+ "loss": 2.3099,
2540
+ "step": 350
2541
+ },
2542
+ {
2543
+ "epoch": 2.404109589041096,
2544
+ "grad_norm": 0.7505670286099257,
2545
+ "learning_rate": 1.8540834008734944e-06,
2546
+ "loss": 2.1853,
2547
+ "step": 351
2548
+ },
2549
+ {
2550
+ "epoch": 2.410958904109589,
2551
+ "grad_norm": 0.7136239479111697,
2552
+ "learning_rate": 1.840520658725069e-06,
2553
+ "loss": 2.2143,
2554
+ "step": 352
2555
+ },
2556
+ {
2557
+ "epoch": 2.4178082191780823,
2558
+ "grad_norm": 0.7027371598115614,
2559
+ "learning_rate": 1.8269787459489174e-06,
2560
+ "loss": 2.2046,
2561
+ "step": 353
2562
+ },
2563
+ {
2564
+ "epoch": 2.4246575342465753,
2565
+ "grad_norm": 0.707254420656309,
2566
+ "learning_rate": 1.8134580902605491e-06,
2567
+ "loss": 2.29,
2568
+ "step": 354
2569
+ },
2570
+ {
2571
+ "epoch": 2.4315068493150687,
2572
+ "grad_norm": 0.7170888804392873,
2573
+ "learning_rate": 1.7999591187040782e-06,
2574
+ "loss": 2.2643,
2575
+ "step": 355
2576
+ },
2577
+ {
2578
+ "epoch": 2.4383561643835616,
2579
+ "grad_norm": 0.6639457176222473,
2580
+ "learning_rate": 1.786482257638734e-06,
2581
+ "loss": 2.2946,
2582
+ "step": 356
2583
+ },
2584
+ {
2585
+ "epoch": 2.4452054794520546,
2586
+ "grad_norm": 0.6791585701285383,
2587
+ "learning_rate": 1.7730279327253964e-06,
2588
+ "loss": 2.3087,
2589
+ "step": 357
2590
+ },
2591
+ {
2592
+ "epoch": 2.452054794520548,
2593
+ "grad_norm": 0.6825147247611417,
2594
+ "learning_rate": 1.7595965689131484e-06,
2595
+ "loss": 2.2252,
2596
+ "step": 358
2597
+ },
2598
+ {
2599
+ "epoch": 2.458904109589041,
2600
+ "grad_norm": 0.7066098521292989,
2601
+ "learning_rate": 1.7461885904258592e-06,
2602
+ "loss": 2.2848,
2603
+ "step": 359
2604
+ },
2605
+ {
2606
+ "epoch": 2.4657534246575343,
2607
+ "grad_norm": 0.7168260488520454,
2608
+ "learning_rate": 1.732804420748781e-06,
2609
+ "loss": 2.2381,
2610
+ "step": 360
2611
+ },
2612
+ {
2613
+ "epoch": 2.4726027397260273,
2614
+ "grad_norm": 0.6940716557572651,
2615
+ "learning_rate": 1.7194444826151753e-06,
2616
+ "loss": 2.229,
2617
+ "step": 361
2618
+ },
2619
+ {
2620
+ "epoch": 2.4794520547945207,
2621
+ "grad_norm": 0.6907305923666783,
2622
+ "learning_rate": 1.7061091979929611e-06,
2623
+ "loss": 2.2814,
2624
+ "step": 362
2625
+ },
2626
+ {
2627
+ "epoch": 2.4863013698630136,
2628
+ "grad_norm": 0.7177474380488151,
2629
+ "learning_rate": 1.6927989880713852e-06,
2630
+ "loss": 2.2602,
2631
+ "step": 363
2632
+ },
2633
+ {
2634
+ "epoch": 2.493150684931507,
2635
+ "grad_norm": 0.7581488681368201,
2636
+ "learning_rate": 1.6795142732477222e-06,
2637
+ "loss": 2.317,
2638
+ "step": 364
2639
+ },
2640
+ {
2641
+ "epoch": 2.5,
2642
+ "grad_norm": 0.7320361051298075,
2643
+ "learning_rate": 1.6662554731139945e-06,
2644
+ "loss": 2.2549,
2645
+ "step": 365
2646
+ },
2647
+ {
2648
+ "epoch": 2.506849315068493,
2649
+ "grad_norm": 0.686393513195622,
2650
+ "learning_rate": 1.6530230064437213e-06,
2651
+ "loss": 2.2856,
2652
+ "step": 366
2653
+ },
2654
+ {
2655
+ "epoch": 2.5136986301369864,
2656
+ "grad_norm": 0.7545957049643752,
2657
+ "learning_rate": 1.6398172911786883e-06,
2658
+ "loss": 2.2899,
2659
+ "step": 367
2660
+ },
2661
+ {
2662
+ "epoch": 2.5205479452054793,
2663
+ "grad_norm": 0.7106340176915894,
2664
+ "learning_rate": 1.6266387444157519e-06,
2665
+ "loss": 2.2894,
2666
+ "step": 368
2667
+ },
2668
+ {
2669
+ "epoch": 2.5273972602739727,
2670
+ "grad_norm": 0.7389989197034765,
2671
+ "learning_rate": 1.613487782393661e-06,
2672
+ "loss": 2.2875,
2673
+ "step": 369
2674
+ },
2675
+ {
2676
+ "epoch": 2.5342465753424657,
2677
+ "grad_norm": 0.7649624949493309,
2678
+ "learning_rate": 1.600364820479914e-06,
2679
+ "loss": 2.1902,
2680
+ "step": 370
2681
+ },
2682
+ {
2683
+ "epoch": 2.5342465753424657,
2684
+ "eval_loss": 2.4123480319976807,
2685
+ "eval_runtime": 6.0173,
2686
+ "eval_samples_per_second": 51.85,
2687
+ "eval_steps_per_second": 3.324,
2688
+ "step": 370
2689
+ },
2690
+ {
2691
+ "epoch": 2.541095890410959,
2692
+ "grad_norm": 0.7223441929466774,
2693
+ "learning_rate": 1.5872702731576374e-06,
2694
+ "loss": 2.269,
2695
+ "step": 371
2696
+ },
2697
+ {
2698
+ "epoch": 2.547945205479452,
2699
+ "grad_norm": 0.7067038601638844,
2700
+ "learning_rate": 1.5742045540124932e-06,
2701
+ "loss": 2.2439,
2702
+ "step": 372
2703
+ },
2704
+ {
2705
+ "epoch": 2.5547945205479454,
2706
+ "grad_norm": 0.7198264845513052,
2707
+ "learning_rate": 1.5611680757196198e-06,
2708
+ "loss": 2.3084,
2709
+ "step": 373
2710
+ },
2711
+ {
2712
+ "epoch": 2.5616438356164384,
2713
+ "grad_norm": 0.7048209878339,
2714
+ "learning_rate": 1.5481612500305964e-06,
2715
+ "loss": 2.2518,
2716
+ "step": 374
2717
+ },
2718
+ {
2719
+ "epoch": 2.5684931506849313,
2720
+ "grad_norm": 0.7345257609929702,
2721
+ "learning_rate": 1.5351844877604356e-06,
2722
+ "loss": 2.2796,
2723
+ "step": 375
2724
+ },
2725
+ {
2726
+ "epoch": 2.5753424657534247,
2727
+ "grad_norm": 0.713666987740628,
2728
+ "learning_rate": 1.5222381987746104e-06,
2729
+ "loss": 2.2713,
2730
+ "step": 376
2731
+ },
2732
+ {
2733
+ "epoch": 2.5821917808219177,
2734
+ "grad_norm": 0.7150783105673093,
2735
+ "learning_rate": 1.5093227919761084e-06,
2736
+ "loss": 2.2099,
2737
+ "step": 377
2738
+ },
2739
+ {
2740
+ "epoch": 2.589041095890411,
2741
+ "grad_norm": 0.704487566383048,
2742
+ "learning_rate": 1.4964386752925165e-06,
2743
+ "loss": 2.3054,
2744
+ "step": 378
2745
+ },
2746
+ {
2747
+ "epoch": 2.595890410958904,
2748
+ "grad_norm": 0.7522139473067558,
2749
+ "learning_rate": 1.4835862556631369e-06,
2750
+ "loss": 2.2186,
2751
+ "step": 379
2752
+ },
2753
+ {
2754
+ "epoch": 2.602739726027397,
2755
+ "grad_norm": 0.6891880183627714,
2756
+ "learning_rate": 1.4707659390261337e-06,
2757
+ "loss": 2.3112,
2758
+ "step": 380
2759
+ },
2760
+ {
2761
+ "epoch": 2.6095890410958904,
2762
+ "grad_norm": 0.7087422764378963,
2763
+ "learning_rate": 1.4579781303057123e-06,
2764
+ "loss": 2.2926,
2765
+ "step": 381
2766
+ },
2767
+ {
2768
+ "epoch": 2.616438356164384,
2769
+ "grad_norm": 0.8486535470180528,
2770
+ "learning_rate": 1.4452232333993272e-06,
2771
+ "loss": 2.2778,
2772
+ "step": 382
2773
+ },
2774
+ {
2775
+ "epoch": 2.6232876712328768,
2776
+ "grad_norm": 0.7768366805945564,
2777
+ "learning_rate": 1.4325016511649315e-06,
2778
+ "loss": 2.2441,
2779
+ "step": 383
2780
+ },
2781
+ {
2782
+ "epoch": 2.6301369863013697,
2783
+ "grad_norm": 0.759828305906503,
2784
+ "learning_rate": 1.4198137854082443e-06,
2785
+ "loss": 2.2788,
2786
+ "step": 384
2787
+ },
2788
+ {
2789
+ "epoch": 2.636986301369863,
2790
+ "grad_norm": 0.6859934839331832,
2791
+ "learning_rate": 1.4071600368700669e-06,
2792
+ "loss": 2.2792,
2793
+ "step": 385
2794
+ },
2795
+ {
2796
+ "epoch": 2.643835616438356,
2797
+ "grad_norm": 0.7385417901666564,
2798
+ "learning_rate": 1.3945408052136222e-06,
2799
+ "loss": 2.2977,
2800
+ "step": 386
2801
+ },
2802
+ {
2803
+ "epoch": 2.6506849315068495,
2804
+ "grad_norm": 0.7287504655916882,
2805
+ "learning_rate": 1.3819564890119325e-06,
2806
+ "loss": 2.2535,
2807
+ "step": 387
2808
+ },
2809
+ {
2810
+ "epoch": 2.6575342465753424,
2811
+ "grad_norm": 0.6590047061716495,
2812
+ "learning_rate": 1.3694074857352306e-06,
2813
+ "loss": 2.2968,
2814
+ "step": 388
2815
+ },
2816
+ {
2817
+ "epoch": 2.6643835616438354,
2818
+ "grad_norm": 0.6943988283660237,
2819
+ "learning_rate": 1.3568941917384038e-06,
2820
+ "loss": 2.2821,
2821
+ "step": 389
2822
+ },
2823
+ {
2824
+ "epoch": 2.671232876712329,
2825
+ "grad_norm": 0.715573529250739,
2826
+ "learning_rate": 1.3444170022484803e-06,
2827
+ "loss": 2.2114,
2828
+ "step": 390
2829
+ },
2830
+ {
2831
+ "epoch": 2.678082191780822,
2832
+ "grad_norm": 0.7016875788114846,
2833
+ "learning_rate": 1.331976311352139e-06,
2834
+ "loss": 2.2775,
2835
+ "step": 391
2836
+ },
2837
+ {
2838
+ "epoch": 2.684931506849315,
2839
+ "grad_norm": 0.7436040372608549,
2840
+ "learning_rate": 1.3195725119832693e-06,
2841
+ "loss": 2.1983,
2842
+ "step": 392
2843
+ },
2844
+ {
2845
+ "epoch": 2.691780821917808,
2846
+ "grad_norm": 0.6959008156370489,
2847
+ "learning_rate": 1.307205995910557e-06,
2848
+ "loss": 2.2541,
2849
+ "step": 393
2850
+ },
2851
+ {
2852
+ "epoch": 2.6986301369863015,
2853
+ "grad_norm": 0.6701075429596892,
2854
+ "learning_rate": 1.294877153725112e-06,
2855
+ "loss": 2.2895,
2856
+ "step": 394
2857
+ },
2858
+ {
2859
+ "epoch": 2.7054794520547945,
2860
+ "grad_norm": 0.7133265486183699,
2861
+ "learning_rate": 1.2825863748281269e-06,
2862
+ "loss": 2.311,
2863
+ "step": 395
2864
+ },
2865
+ {
2866
+ "epoch": 2.712328767123288,
2867
+ "grad_norm": 0.731649203575663,
2868
+ "learning_rate": 1.2703340474185856e-06,
2869
+ "loss": 2.214,
2870
+ "step": 396
2871
+ },
2872
+ {
2873
+ "epoch": 2.719178082191781,
2874
+ "grad_norm": 0.6951302895005032,
2875
+ "learning_rate": 1.258120558480996e-06,
2876
+ "loss": 2.2798,
2877
+ "step": 397
2878
+ },
2879
+ {
2880
+ "epoch": 2.7260273972602738,
2881
+ "grad_norm": 0.7342864394765313,
2882
+ "learning_rate": 1.245946293773171e-06,
2883
+ "loss": 2.2428,
2884
+ "step": 398
2885
+ },
2886
+ {
2887
+ "epoch": 2.732876712328767,
2888
+ "grad_norm": 0.6748430142696247,
2889
+ "learning_rate": 1.2338116378140424e-06,
2890
+ "loss": 2.1684,
2891
+ "step": 399
2892
+ },
2893
+ {
2894
+ "epoch": 2.73972602739726,
2895
+ "grad_norm": 0.706147657425132,
2896
+ "learning_rate": 1.2217169738715162e-06,
2897
+ "loss": 2.2685,
2898
+ "step": 400
2899
+ },
2900
+ {
2901
+ "epoch": 2.7465753424657535,
2902
+ "grad_norm": 0.7029833217334348,
2903
+ "learning_rate": 1.2096626839503666e-06,
2904
+ "loss": 2.257,
2905
+ "step": 401
2906
+ },
2907
+ {
2908
+ "epoch": 2.7534246575342465,
2909
+ "grad_norm": 0.6915579514085184,
2910
+ "learning_rate": 1.1976491487801747e-06,
2911
+ "loss": 2.3553,
2912
+ "step": 402
2913
+ },
2914
+ {
2915
+ "epoch": 2.76027397260274,
2916
+ "grad_norm": 0.6935009825915379,
2917
+ "learning_rate": 1.1856767478032978e-06,
2918
+ "loss": 2.3177,
2919
+ "step": 403
2920
+ },
2921
+ {
2922
+ "epoch": 2.767123287671233,
2923
+ "grad_norm": 0.776510135143567,
2924
+ "learning_rate": 1.1737458591628898e-06,
2925
+ "loss": 2.1945,
2926
+ "step": 404
2927
+ },
2928
+ {
2929
+ "epoch": 2.7739726027397262,
2930
+ "grad_norm": 0.6785739385871513,
2931
+ "learning_rate": 1.1618568596909514e-06,
2932
+ "loss": 2.3425,
2933
+ "step": 405
2934
+ },
2935
+ {
2936
+ "epoch": 2.780821917808219,
2937
+ "grad_norm": 0.7244494372149703,
2938
+ "learning_rate": 1.150010124896435e-06,
2939
+ "loss": 2.3191,
2940
+ "step": 406
2941
+ },
2942
+ {
2943
+ "epoch": 2.787671232876712,
2944
+ "grad_norm": 0.723165620037459,
2945
+ "learning_rate": 1.1382060289533805e-06,
2946
+ "loss": 2.216,
2947
+ "step": 407
2948
+ },
2949
+ {
2950
+ "epoch": 2.787671232876712,
2951
+ "eval_loss": 2.4112062454223633,
2952
+ "eval_runtime": 6.0106,
2953
+ "eval_samples_per_second": 51.908,
2954
+ "eval_steps_per_second": 3.327,
2955
+ "step": 407
2956
+ },
2957
+ {
2958
+ "epoch": 2.7945205479452055,
2959
+ "grad_norm": 0.716573732956154,
2960
+ "learning_rate": 1.1264449446890976e-06,
2961
+ "loss": 2.3031,
2962
+ "step": 408
2963
+ },
2964
+ {
2965
+ "epoch": 2.8013698630136985,
2966
+ "grad_norm": 0.6990575425388178,
2967
+ "learning_rate": 1.114727243572392e-06,
2968
+ "loss": 2.2865,
2969
+ "step": 409
2970
+ },
2971
+ {
2972
+ "epoch": 2.808219178082192,
2973
+ "grad_norm": 0.7033064610318523,
2974
+ "learning_rate": 1.1030532957018288e-06,
2975
+ "loss": 2.2547,
2976
+ "step": 410
2977
+ },
2978
+ {
2979
+ "epoch": 2.815068493150685,
2980
+ "grad_norm": 0.7066376790442048,
2981
+ "learning_rate": 1.0914234697940465e-06,
2982
+ "loss": 2.2383,
2983
+ "step": 411
2984
+ },
2985
+ {
2986
+ "epoch": 2.821917808219178,
2987
+ "grad_norm": 0.7220557474397004,
2988
+ "learning_rate": 1.079838133172111e-06,
2989
+ "loss": 2.18,
2990
+ "step": 412
2991
+ },
2992
+ {
2993
+ "epoch": 2.828767123287671,
2994
+ "grad_norm": 0.710206848234572,
2995
+ "learning_rate": 1.068297651753913e-06,
2996
+ "loss": 2.2733,
2997
+ "step": 413
2998
+ },
2999
+ {
3000
+ "epoch": 2.8356164383561646,
3001
+ "grad_norm": 0.7327379146961583,
3002
+ "learning_rate": 1.0568023900406108e-06,
3003
+ "loss": 2.1961,
3004
+ "step": 414
3005
+ },
3006
+ {
3007
+ "epoch": 2.8424657534246576,
3008
+ "grad_norm": 0.6842961302424317,
3009
+ "learning_rate": 1.0453527111051183e-06,
3010
+ "loss": 2.1984,
3011
+ "step": 415
3012
+ },
3013
+ {
3014
+ "epoch": 2.8493150684931505,
3015
+ "grad_norm": 0.7658479578627203,
3016
+ "learning_rate": 1.0339489765806347e-06,
3017
+ "loss": 2.2618,
3018
+ "step": 416
3019
+ },
3020
+ {
3021
+ "epoch": 2.856164383561644,
3022
+ "grad_norm": 0.6961196544731081,
3023
+ "learning_rate": 1.0225915466492268e-06,
3024
+ "loss": 2.2644,
3025
+ "step": 417
3026
+ },
3027
+ {
3028
+ "epoch": 2.863013698630137,
3029
+ "grad_norm": 0.6960320474171482,
3030
+ "learning_rate": 1.0112807800304499e-06,
3031
+ "loss": 2.1823,
3032
+ "step": 418
3033
+ },
3034
+ {
3035
+ "epoch": 2.8698630136986303,
3036
+ "grad_norm": 0.7327958977392377,
3037
+ "learning_rate": 1.00001703397002e-06,
3038
+ "loss": 2.2894,
3039
+ "step": 419
3040
+ },
3041
+ {
3042
+ "epoch": 2.8767123287671232,
3043
+ "grad_norm": 0.7175112056018497,
3044
+ "learning_rate": 9.888006642285255e-07,
3045
+ "loss": 2.3192,
3046
+ "step": 420
3047
+ },
3048
+ {
3049
+ "epoch": 2.883561643835616,
3050
+ "grad_norm": 0.6951758710131047,
3051
+ "learning_rate": 9.776320250701983e-07,
3052
+ "loss": 2.2736,
3053
+ "step": 421
3054
+ },
3055
+ {
3056
+ "epoch": 2.8904109589041096,
3057
+ "grad_norm": 0.8651114201507224,
3058
+ "learning_rate": 9.665114692517157e-07,
3059
+ "loss": 2.1695,
3060
+ "step": 422
3061
+ },
3062
+ {
3063
+ "epoch": 2.897260273972603,
3064
+ "grad_norm": 0.7095105670222126,
3065
+ "learning_rate": 9.554393480110678e-07,
3066
+ "loss": 2.3053,
3067
+ "step": 423
3068
+ },
3069
+ {
3070
+ "epoch": 2.904109589041096,
3071
+ "grad_norm": 0.721617667719065,
3072
+ "learning_rate": 9.444160110564563e-07,
3073
+ "loss": 2.2036,
3074
+ "step": 424
3075
+ },
3076
+ {
3077
+ "epoch": 2.910958904109589,
3078
+ "grad_norm": 0.7086651454995305,
3079
+ "learning_rate": 9.334418065552539e-07,
3080
+ "loss": 2.3177,
3081
+ "step": 425
3082
+ },
3083
+ {
3084
+ "epoch": 2.9178082191780823,
3085
+ "grad_norm": 0.725835606196638,
3086
+ "learning_rate": 9.225170811230058e-07,
3087
+ "loss": 2.3067,
3088
+ "step": 426
3089
+ },
3090
+ {
3091
+ "epoch": 2.9246575342465753,
3092
+ "grad_norm": 0.6776112672757169,
3093
+ "learning_rate": 9.116421798124794e-07,
3094
+ "loss": 2.2832,
3095
+ "step": 427
3096
+ },
3097
+ {
3098
+ "epoch": 2.9315068493150687,
3099
+ "grad_norm": 0.7033324367359345,
3100
+ "learning_rate": 9.008174461027724e-07,
3101
+ "loss": 2.1292,
3102
+ "step": 428
3103
+ },
3104
+ {
3105
+ "epoch": 2.9383561643835616,
3106
+ "grad_norm": 0.6838016967986851,
3107
+ "learning_rate": 8.900432218884567e-07,
3108
+ "loss": 2.2064,
3109
+ "step": 429
3110
+ },
3111
+ {
3112
+ "epoch": 2.9452054794520546,
3113
+ "grad_norm": 0.7010714046350294,
3114
+ "learning_rate": 8.793198474687861e-07,
3115
+ "loss": 2.2926,
3116
+ "step": 430
3117
+ },
3118
+ {
3119
+ "epoch": 2.952054794520548,
3120
+ "grad_norm": 0.7329321374936051,
3121
+ "learning_rate": 8.686476615369452e-07,
3122
+ "loss": 2.1508,
3123
+ "step": 431
3124
+ },
3125
+ {
3126
+ "epoch": 2.958904109589041,
3127
+ "grad_norm": 0.7131247907500139,
3128
+ "learning_rate": 8.580270011693498e-07,
3129
+ "loss": 2.2816,
3130
+ "step": 432
3131
+ },
3132
+ {
3133
+ "epoch": 2.9657534246575343,
3134
+ "grad_norm": 0.7307979149023858,
3135
+ "learning_rate": 8.474582018150054e-07,
3136
+ "loss": 2.2547,
3137
+ "step": 433
3138
+ },
3139
+ {
3140
+ "epoch": 2.9726027397260273,
3141
+ "grad_norm": 0.72846919982668,
3142
+ "learning_rate": 8.369415972849087e-07,
3143
+ "loss": 2.2389,
3144
+ "step": 434
3145
+ },
3146
+ {
3147
+ "epoch": 2.9794520547945207,
3148
+ "grad_norm": 0.7303659540542966,
3149
+ "learning_rate": 8.264775197415054e-07,
3150
+ "loss": 2.2541,
3151
+ "step": 435
3152
+ },
3153
+ {
3154
+ "epoch": 2.9863013698630136,
3155
+ "grad_norm": 0.7122425099335468,
3156
+ "learning_rate": 8.160662996881996e-07,
3157
+ "loss": 2.1782,
3158
+ "step": 436
3159
+ },
3160
+ {
3161
+ "epoch": 2.993150684931507,
3162
+ "grad_norm": 0.7278886861085458,
3163
+ "learning_rate": 8.057082659589116e-07,
3164
+ "loss": 2.2729,
3165
+ "step": 437
3166
+ },
3167
+ {
3168
+ "epoch": 3.0,
3169
+ "grad_norm": 0.6862919290272542,
3170
+ "learning_rate": 7.95403745707698e-07,
3171
+ "loss": 2.26,
3172
+ "step": 438
3173
+ },
3174
+ {
3175
+ "epoch": 3.006849315068493,
3176
+ "grad_norm": 0.7049119587815889,
3177
+ "learning_rate": 7.851530643984112e-07,
3178
+ "loss": 2.2465,
3179
+ "step": 439
3180
+ },
3181
+ {
3182
+ "epoch": 3.0136986301369864,
3183
+ "grad_norm": 0.7526125166918066,
3184
+ "learning_rate": 7.749565457944274e-07,
3185
+ "loss": 2.2431,
3186
+ "step": 440
3187
+ },
3188
+ {
3189
+ "epoch": 3.0205479452054793,
3190
+ "grad_norm": 0.723575654733539,
3191
+ "learning_rate": 7.648145119484152e-07,
3192
+ "loss": 2.2098,
3193
+ "step": 441
3194
+ },
3195
+ {
3196
+ "epoch": 3.0273972602739727,
3197
+ "grad_norm": 0.7289118780284567,
3198
+ "learning_rate": 7.547272831921665e-07,
3199
+ "loss": 2.1957,
3200
+ "step": 442
3201
+ },
3202
+ {
3203
+ "epoch": 3.0342465753424657,
3204
+ "grad_norm": 0.6949718275268681,
3205
+ "learning_rate": 7.446951781264755e-07,
3206
+ "loss": 2.2454,
3207
+ "step": 443
3208
+ },
3209
+ {
3210
+ "epoch": 3.041095890410959,
3211
+ "grad_norm": 0.7196631653126768,
3212
+ "learning_rate": 7.347185136110808e-07,
3213
+ "loss": 2.3081,
3214
+ "step": 444
3215
+ },
3216
+ {
3217
+ "epoch": 3.041095890410959,
3218
+ "eval_loss": 2.41233491897583,
3219
+ "eval_runtime": 6.0379,
3220
+ "eval_samples_per_second": 51.673,
3221
+ "eval_steps_per_second": 3.312,
3222
+ "step": 444
3223
+ },
3224
+ {
3225
+ "epoch": 3.047945205479452,
3226
+ "grad_norm": 0.7112349059017333,
3227
+ "learning_rate": 7.24797604754654e-07,
3228
+ "loss": 2.2418,
3229
+ "step": 445
3230
+ },
3231
+ {
3232
+ "epoch": 3.0547945205479454,
3233
+ "grad_norm": 0.6958734173109298,
3234
+ "learning_rate": 7.149327649048482e-07,
3235
+ "loss": 2.1848,
3236
+ "step": 446
3237
+ },
3238
+ {
3239
+ "epoch": 3.0616438356164384,
3240
+ "grad_norm": 0.6860159935805402,
3241
+ "learning_rate": 7.051243056384016e-07,
3242
+ "loss": 2.2345,
3243
+ "step": 447
3244
+ },
3245
+ {
3246
+ "epoch": 3.0684931506849313,
3247
+ "grad_norm": 0.6960027631751124,
3248
+ "learning_rate": 6.953725367512951e-07,
3249
+ "loss": 2.1578,
3250
+ "step": 448
3251
+ },
3252
+ {
3253
+ "epoch": 3.0753424657534247,
3254
+ "grad_norm": 0.7250494251501289,
3255
+ "learning_rate": 6.856777662489669e-07,
3256
+ "loss": 2.2682,
3257
+ "step": 449
3258
+ },
3259
+ {
3260
+ "epoch": 3.0821917808219177,
3261
+ "grad_norm": 0.7329529785743732,
3262
+ "learning_rate": 6.760403003365884e-07,
3263
+ "loss": 2.2279,
3264
+ "step": 450
3265
+ },
3266
+ {
3267
+ "epoch": 3.089041095890411,
3268
+ "grad_norm": 0.7376472824938267,
3269
+ "learning_rate": 6.664604434093886e-07,
3270
+ "loss": 2.227,
3271
+ "step": 451
3272
+ },
3273
+ {
3274
+ "epoch": 3.095890410958904,
3275
+ "grad_norm": 0.7566044596383341,
3276
+ "learning_rate": 6.569384980430416e-07,
3277
+ "loss": 2.205,
3278
+ "step": 452
3279
+ },
3280
+ {
3281
+ "epoch": 3.1027397260273974,
3282
+ "grad_norm": 0.7292054250308317,
3283
+ "learning_rate": 6.474747649841104e-07,
3284
+ "loss": 2.206,
3285
+ "step": 453
3286
+ },
3287
+ {
3288
+ "epoch": 3.1095890410958904,
3289
+ "grad_norm": 0.712518081107752,
3290
+ "learning_rate": 6.380695431405453e-07,
3291
+ "loss": 2.205,
3292
+ "step": 454
3293
+ },
3294
+ {
3295
+ "epoch": 3.1164383561643834,
3296
+ "grad_norm": 0.7536284239063324,
3297
+ "learning_rate": 6.28723129572247e-07,
3298
+ "loss": 2.2662,
3299
+ "step": 455
3300
+ },
3301
+ {
3302
+ "epoch": 3.1232876712328768,
3303
+ "grad_norm": 0.7401865952989628,
3304
+ "learning_rate": 6.194358194816813e-07,
3305
+ "loss": 2.1479,
3306
+ "step": 456
3307
+ },
3308
+ {
3309
+ "epoch": 3.1301369863013697,
3310
+ "grad_norm": 0.6936777496577218,
3311
+ "learning_rate": 6.10207906204556e-07,
3312
+ "loss": 2.2103,
3313
+ "step": 457
3314
+ },
3315
+ {
3316
+ "epoch": 3.136986301369863,
3317
+ "grad_norm": 0.6883084739971798,
3318
+ "learning_rate": 6.010396812005554e-07,
3319
+ "loss": 2.2406,
3320
+ "step": 458
3321
+ },
3322
+ {
3323
+ "epoch": 3.143835616438356,
3324
+ "grad_norm": 0.7021480171737262,
3325
+ "learning_rate": 5.919314340441362e-07,
3326
+ "loss": 2.2287,
3327
+ "step": 459
3328
+ },
3329
+ {
3330
+ "epoch": 3.1506849315068495,
3331
+ "grad_norm": 0.7006207646547893,
3332
+ "learning_rate": 5.828834524153795e-07,
3333
+ "loss": 2.2729,
3334
+ "step": 460
3335
+ },
3336
+ {
3337
+ "epoch": 3.1575342465753424,
3338
+ "grad_norm": 0.7229748958970227,
3339
+ "learning_rate": 5.738960220909067e-07,
3340
+ "loss": 2.2681,
3341
+ "step": 461
3342
+ },
3343
+ {
3344
+ "epoch": 3.1643835616438354,
3345
+ "grad_norm": 0.701712318725158,
3346
+ "learning_rate": 5.649694269348516e-07,
3347
+ "loss": 2.266,
3348
+ "step": 462
3349
+ },
3350
+ {
3351
+ "epoch": 3.171232876712329,
3352
+ "grad_norm": 0.7131095848134887,
3353
+ "learning_rate": 5.561039488898959e-07,
3354
+ "loss": 2.175,
3355
+ "step": 463
3356
+ },
3357
+ {
3358
+ "epoch": 3.1780821917808217,
3359
+ "grad_norm": 0.7157421024649682,
3360
+ "learning_rate": 5.472998679683619e-07,
3361
+ "loss": 2.2373,
3362
+ "step": 464
3363
+ },
3364
+ {
3365
+ "epoch": 3.184931506849315,
3366
+ "grad_norm": 0.6989091813195526,
3367
+ "learning_rate": 5.385574622433715e-07,
3368
+ "loss": 2.2671,
3369
+ "step": 465
3370
+ },
3371
+ {
3372
+ "epoch": 3.191780821917808,
3373
+ "grad_norm": 0.7100047458690754,
3374
+ "learning_rate": 5.298770078400628e-07,
3375
+ "loss": 2.2431,
3376
+ "step": 466
3377
+ },
3378
+ {
3379
+ "epoch": 3.1986301369863015,
3380
+ "grad_norm": 0.7221330810980103,
3381
+ "learning_rate": 5.21258778926865e-07,
3382
+ "loss": 2.1897,
3383
+ "step": 467
3384
+ },
3385
+ {
3386
+ "epoch": 3.2054794520547945,
3387
+ "grad_norm": 0.7225424671384507,
3388
+ "learning_rate": 5.127030477068446e-07,
3389
+ "loss": 2.2322,
3390
+ "step": 468
3391
+ },
3392
+ {
3393
+ "epoch": 3.212328767123288,
3394
+ "grad_norm": 0.6991689104341696,
3395
+ "learning_rate": 5.04210084409105e-07,
3396
+ "loss": 2.3075,
3397
+ "step": 469
3398
+ },
3399
+ {
3400
+ "epoch": 3.219178082191781,
3401
+ "grad_norm": 0.6875008540842864,
3402
+ "learning_rate": 4.957801572802495e-07,
3403
+ "loss": 2.2509,
3404
+ "step": 470
3405
+ },
3406
+ {
3407
+ "epoch": 3.2260273972602738,
3408
+ "grad_norm": 0.710321387958742,
3409
+ "learning_rate": 4.874135325759133e-07,
3410
+ "loss": 2.2283,
3411
+ "step": 471
3412
+ },
3413
+ {
3414
+ "epoch": 3.232876712328767,
3415
+ "grad_norm": 0.7848622442448815,
3416
+ "learning_rate": 4.791104745523509e-07,
3417
+ "loss": 2.1495,
3418
+ "step": 472
3419
+ },
3420
+ {
3421
+ "epoch": 3.23972602739726,
3422
+ "grad_norm": 0.6876021495166095,
3423
+ "learning_rate": 4.708712454580905e-07,
3424
+ "loss": 2.2525,
3425
+ "step": 473
3426
+ },
3427
+ {
3428
+ "epoch": 3.2465753424657535,
3429
+ "grad_norm": 0.7059110406730769,
3430
+ "learning_rate": 4.6269610552565153e-07,
3431
+ "loss": 2.2432,
3432
+ "step": 474
3433
+ },
3434
+ {
3435
+ "epoch": 3.2534246575342465,
3436
+ "grad_norm": 0.713960613803224,
3437
+ "learning_rate": 4.5458531296332267e-07,
3438
+ "loss": 2.3112,
3439
+ "step": 475
3440
+ },
3441
+ {
3442
+ "epoch": 3.26027397260274,
3443
+ "grad_norm": 0.7145155485011042,
3444
+ "learning_rate": 4.465391239470113e-07,
3445
+ "loss": 2.1603,
3446
+ "step": 476
3447
+ },
3448
+ {
3449
+ "epoch": 3.267123287671233,
3450
+ "grad_norm": 0.7510837858210794,
3451
+ "learning_rate": 4.385577926121465e-07,
3452
+ "loss": 2.1269,
3453
+ "step": 477
3454
+ },
3455
+ {
3456
+ "epoch": 3.2739726027397262,
3457
+ "grad_norm": 0.7042639926048964,
3458
+ "learning_rate": 4.306415710456577e-07,
3459
+ "loss": 2.2198,
3460
+ "step": 478
3461
+ },
3462
+ {
3463
+ "epoch": 3.280821917808219,
3464
+ "grad_norm": 0.746593356064073,
3465
+ "learning_rate": 4.227907092780095e-07,
3466
+ "loss": 2.1076,
3467
+ "step": 479
3468
+ },
3469
+ {
3470
+ "epoch": 3.287671232876712,
3471
+ "grad_norm": 0.681218067460257,
3472
+ "learning_rate": 4.150054552753055e-07,
3473
+ "loss": 2.1681,
3474
+ "step": 480
3475
+ },
3476
+ {
3477
+ "epoch": 3.2945205479452055,
3478
+ "grad_norm": 0.730138040035468,
3479
+ "learning_rate": 4.07286054931455e-07,
3480
+ "loss": 2.1989,
3481
+ "step": 481
3482
+ },
3483
+ {
3484
+ "epoch": 3.2945205479452055,
3485
+ "eval_loss": 2.4142165184020996,
3486
+ "eval_runtime": 5.917,
3487
+ "eval_samples_per_second": 52.729,
3488
+ "eval_steps_per_second": 3.38,
3489
+ "step": 481
3490
+ },
3491
+ {
3492
+ "epoch": 3.3013698630136985,
3493
+ "grad_norm": 0.7712164896594699,
3494
+ "learning_rate": 3.9963275206040876e-07,
3495
+ "loss": 2.2356,
3496
+ "step": 482
3497
+ },
3498
+ {
3499
+ "epoch": 3.308219178082192,
3500
+ "grad_norm": 0.7039183878730115,
3501
+ "learning_rate": 3.920457883884571e-07,
3502
+ "loss": 2.2611,
3503
+ "step": 483
3504
+ },
3505
+ {
3506
+ "epoch": 3.315068493150685,
3507
+ "grad_norm": 0.6955665234984989,
3508
+ "learning_rate": 3.845254035465951e-07,
3509
+ "loss": 2.2646,
3510
+ "step": 484
3511
+ },
3512
+ {
3513
+ "epoch": 3.3219178082191783,
3514
+ "grad_norm": 0.7099012837873744,
3515
+ "learning_rate": 3.770718350629543e-07,
3516
+ "loss": 2.2907,
3517
+ "step": 485
3518
+ },
3519
+ {
3520
+ "epoch": 3.328767123287671,
3521
+ "grad_norm": 0.7786241217797155,
3522
+ "learning_rate": 3.696853183552998e-07,
3523
+ "loss": 2.2216,
3524
+ "step": 486
3525
+ },
3526
+ {
3527
+ "epoch": 3.3356164383561646,
3528
+ "grad_norm": 0.7411561630337811,
3529
+ "learning_rate": 3.6236608672359454e-07,
3530
+ "loss": 2.1726,
3531
+ "step": 487
3532
+ },
3533
+ {
3534
+ "epoch": 3.3424657534246576,
3535
+ "grad_norm": 0.7134345658926926,
3536
+ "learning_rate": 3.5511437134263196e-07,
3537
+ "loss": 2.2528,
3538
+ "step": 488
3539
+ },
3540
+ {
3541
+ "epoch": 3.3493150684931505,
3542
+ "grad_norm": 0.7355272001792791,
3543
+ "learning_rate": 3.479304012547338e-07,
3544
+ "loss": 2.2795,
3545
+ "step": 489
3546
+ },
3547
+ {
3548
+ "epoch": 3.356164383561644,
3549
+ "grad_norm": 0.714793937484987,
3550
+ "learning_rate": 3.408144033625163e-07,
3551
+ "loss": 2.2244,
3552
+ "step": 490
3553
+ },
3554
+ {
3555
+ "epoch": 3.363013698630137,
3556
+ "grad_norm": 0.7048287291783248,
3557
+ "learning_rate": 3.3376660242172093e-07,
3558
+ "loss": 2.2781,
3559
+ "step": 491
3560
+ },
3561
+ {
3562
+ "epoch": 3.3698630136986303,
3563
+ "grad_norm": 0.7772137652019824,
3564
+ "learning_rate": 3.267872210341194e-07,
3565
+ "loss": 2.1204,
3566
+ "step": 492
3567
+ },
3568
+ {
3569
+ "epoch": 3.3767123287671232,
3570
+ "grad_norm": 0.7609396724890849,
3571
+ "learning_rate": 3.1987647964048075e-07,
3572
+ "loss": 2.1819,
3573
+ "step": 493
3574
+ },
3575
+ {
3576
+ "epoch": 3.383561643835616,
3577
+ "grad_norm": 0.7160447015330966,
3578
+ "learning_rate": 3.1303459651361027e-07,
3579
+ "loss": 2.2686,
3580
+ "step": 494
3581
+ },
3582
+ {
3583
+ "epoch": 3.3904109589041096,
3584
+ "grad_norm": 0.7002741574191857,
3585
+ "learning_rate": 3.0626178775145175e-07,
3586
+ "loss": 2.31,
3587
+ "step": 495
3588
+ },
3589
+ {
3590
+ "epoch": 3.3972602739726026,
3591
+ "grad_norm": 0.7321963136731753,
3592
+ "learning_rate": 2.995582672702679e-07,
3593
+ "loss": 2.2098,
3594
+ "step": 496
3595
+ },
3596
+ {
3597
+ "epoch": 3.404109589041096,
3598
+ "grad_norm": 0.7388217600508439,
3599
+ "learning_rate": 2.9292424679787825e-07,
3600
+ "loss": 2.259,
3601
+ "step": 497
3602
+ },
3603
+ {
3604
+ "epoch": 3.410958904109589,
3605
+ "grad_norm": 0.7129862504829712,
3606
+ "learning_rate": 2.8635993586697555e-07,
3607
+ "loss": 2.2573,
3608
+ "step": 498
3609
+ },
3610
+ {
3611
+ "epoch": 3.4178082191780823,
3612
+ "grad_norm": 0.7166684509813519,
3613
+ "learning_rate": 2.7986554180850666e-07,
3614
+ "loss": 2.1755,
3615
+ "step": 499
3616
+ },
3617
+ {
3618
+ "epoch": 3.4246575342465753,
3619
+ "grad_norm": 0.700743323964397,
3620
+ "learning_rate": 2.734412697451236e-07,
3621
+ "loss": 2.2432,
3622
+ "step": 500
3623
+ },
3624
+ {
3625
+ "epoch": 3.4315068493150687,
3626
+ "grad_norm": 0.7305544630087399,
3627
+ "learning_rate": 2.670873225847062e-07,
3628
+ "loss": 2.3166,
3629
+ "step": 501
3630
+ },
3631
+ {
3632
+ "epoch": 3.4383561643835616,
3633
+ "grad_norm": 0.7014354116705241,
3634
+ "learning_rate": 2.6080390101395044e-07,
3635
+ "loss": 2.2137,
3636
+ "step": 502
3637
+ },
3638
+ {
3639
+ "epoch": 3.4452054794520546,
3640
+ "grad_norm": 0.7810916976244717,
3641
+ "learning_rate": 2.545912034920331e-07,
3642
+ "loss": 2.2429,
3643
+ "step": 503
3644
+ },
3645
+ {
3646
+ "epoch": 3.452054794520548,
3647
+ "grad_norm": 0.7667288256979875,
3648
+ "learning_rate": 2.484494262443429e-07,
3649
+ "loss": 2.057,
3650
+ "step": 504
3651
+ },
3652
+ {
3653
+ "epoch": 3.458904109589041,
3654
+ "grad_norm": 0.7005192897641623,
3655
+ "learning_rate": 2.423787632562802e-07,
3656
+ "loss": 2.2204,
3657
+ "step": 505
3658
+ },
3659
+ {
3660
+ "epoch": 3.4657534246575343,
3661
+ "grad_norm": 0.7565336210321355,
3662
+ "learning_rate": 2.3637940626713346e-07,
3663
+ "loss": 2.1146,
3664
+ "step": 506
3665
+ },
3666
+ {
3667
+ "epoch": 3.4726027397260273,
3668
+ "grad_norm": 0.7673059104886998,
3669
+ "learning_rate": 2.3045154476402154e-07,
3670
+ "loss": 2.2906,
3671
+ "step": 507
3672
+ },
3673
+ {
3674
+ "epoch": 3.4794520547945207,
3675
+ "grad_norm": 0.6961794195903263,
3676
+ "learning_rate": 2.2459536597590785e-07,
3677
+ "loss": 2.2579,
3678
+ "step": 508
3679
+ },
3680
+ {
3681
+ "epoch": 3.4863013698630136,
3682
+ "grad_norm": 0.7197371965925977,
3683
+ "learning_rate": 2.1881105486768943e-07,
3684
+ "loss": 2.2471,
3685
+ "step": 509
3686
+ },
3687
+ {
3688
+ "epoch": 3.493150684931507,
3689
+ "grad_norm": 0.7482356824909315,
3690
+ "learning_rate": 2.1309879413435291e-07,
3691
+ "loss": 2.2682,
3692
+ "step": 510
3693
+ },
3694
+ {
3695
+ "epoch": 3.5,
3696
+ "grad_norm": 0.7135265971194484,
3697
+ "learning_rate": 2.0745876419520446e-07,
3698
+ "loss": 2.2263,
3699
+ "step": 511
3700
+ }
3701
+ ],
3702
+ "logging_steps": 1,
3703
+ "max_steps": 584,
3704
+ "num_input_tokens_seen": 0,
3705
+ "num_train_epochs": 4,
3706
+ "save_steps": 73,
3707
+ "stateful_callbacks": {
3708
+ "TrainerControl": {
3709
+ "args": {
3710
+ "should_epoch_stop": false,
3711
+ "should_evaluate": false,
3712
+ "should_log": false,
3713
+ "should_save": true,
3714
+ "should_training_stop": false
3715
+ },
3716
+ "attributes": {}
3717
+ }
3718
+ },
3719
+ "total_flos": 320979012157440.0,
3720
+ "train_batch_size": 4,
3721
+ "trial_name": null,
3722
+ "trial_params": null
3723
+ }
checkpoint-511/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99d934e26af3264e6d7e311644e8dc78b1ed7ce7e5e06d3f478fb3f9146974b7
3
+ size 8440
checkpoint-511/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)