Ligeng-Zhu commited on
Commit
bf6def8
·
verified ·
1 Parent(s): f47f39f

Upload files with `vila-upload`.

Browse files

Upload model-00001-of-00007.safetensors
Upload added_tokens.json
Upload processing_nvila.py
Upload generation_config.json
Upload model-00005-of-00007.safetensors
Upload chat_template.jinja
Upload model-00006-of-00007.safetensors
Upload merges.txt
Upload modeling_nvila.py
Upload special_tokens_map.json
Upload model-00007-of-00007.safetensors
Upload config.json
Upload vocab.json
Upload tokenizer_config.json
Upload model-00002-of-00007.safetensors
Upload processor_config.json
Upload model-00004-of-00007.safetensors
Upload preprocessor_config.json
Upload configuration_nvila.py
Upload model.safetensors.index.json
Upload model-00003-of-00007.safetensors

added_tokens.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<image>": 151668,
4
+ "<tool_call>": 151657,
5
+ "<vila/sentinel>": 151667,
6
+ "<vila/video>": 151669,
7
+ "<|box_end|>": 151649,
8
+ "<|box_start|>": 151648,
9
+ "<|endoftext|>": 151643,
10
+ "<|file_sep|>": 151664,
11
+ "<|fim_middle|>": 151660,
12
+ "<|fim_pad|>": 151662,
13
+ "<|fim_prefix|>": 151659,
14
+ "<|fim_suffix|>": 151661,
15
+ "<|im_end|>": 151645,
16
+ "<|im_start|>": 151644,
17
+ "<|image_pad|>": 151655,
18
+ "<|object_ref_end|>": 151647,
19
+ "<|object_ref_start|>": 151646,
20
+ "<|quad_end|>": 151651,
21
+ "<|quad_start|>": 151650,
22
+ "<|repo_name|>": 151663,
23
+ "<|video_pad|>": 151656,
24
+ "<|vision_end|>": 151653,
25
+ "<|vision_pad|>": 151654,
26
+ "<|vision_start|>": 151652,
27
+ "[BOS]": 151665,
28
+ "[PAD]": 151666
29
+ }
chat_template.jinja ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {% for message in messages %}{% if loop.first and message['role'] != 'system' %}{{ '<|im_start|>system
2
+ You are a helpful assistant<|im_end|>
3
+ ' }}{% endif %}{{ '<|im_start|>' + message['role'] + '
4
+ ' }}{% if message['content'] is string %}{{ message['content'] + '<|im_end|>
5
+ ' }}{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{{ '<image>' }}{% elif content['type'] == 'video' or 'video' in content %}{{ '<vila/video>' }}{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}{{ '<|im_end|>
6
+ ' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant
7
+ ' }}{% endif %}
config.json ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "NVILAForConditionalGeneration"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_nvila.NVILAConfig",
7
+ "AutoModel": "modeling_nvila.NVILAForConditionalGeneration",
8
+ "AutoModelForCausalLM": "modeling_nvila_lite.NVILALiteForConditionalGeneration",
9
+ "AutoModelForImageTextToText": "modeling_nvila_lite.NVILALiteForConditionalGeneration",
10
+ "AutoModelForVision2Seq": "modeling_nvila_lite.NVILALiteForConditionalGeneration"
11
+ },
12
+ "image_token_id": 151668,
13
+ "model_type": "nvila",
14
+ "text_config": {
15
+ "_attn_implementation_autoset": false,
16
+ "architectures": [
17
+ "Qwen2ForCausalLM"
18
+ ],
19
+ "attention_dropout": 0.0,
20
+ "bos_token_id": 151643,
21
+ "eos_token_id": 151645,
22
+ "hidden_act": "silu",
23
+ "hidden_size": 5120,
24
+ "initializer_range": 0.02,
25
+ "intermediate_size": 13824,
26
+ "layer_types": [
27
+ "full_attention",
28
+ "full_attention",
29
+ "full_attention",
30
+ "full_attention",
31
+ "full_attention",
32
+ "full_attention",
33
+ "full_attention",
34
+ "full_attention",
35
+ "full_attention",
36
+ "full_attention",
37
+ "full_attention",
38
+ "full_attention",
39
+ "full_attention",
40
+ "full_attention",
41
+ "full_attention",
42
+ "full_attention",
43
+ "full_attention",
44
+ "full_attention",
45
+ "full_attention",
46
+ "full_attention",
47
+ "full_attention",
48
+ "full_attention",
49
+ "full_attention",
50
+ "full_attention",
51
+ "full_attention",
52
+ "full_attention",
53
+ "full_attention",
54
+ "full_attention",
55
+ "full_attention",
56
+ "full_attention",
57
+ "full_attention",
58
+ "full_attention",
59
+ "full_attention",
60
+ "full_attention",
61
+ "full_attention",
62
+ "full_attention",
63
+ "full_attention",
64
+ "full_attention",
65
+ "full_attention",
66
+ "full_attention",
67
+ "full_attention",
68
+ "full_attention",
69
+ "full_attention",
70
+ "full_attention",
71
+ "full_attention",
72
+ "full_attention",
73
+ "full_attention",
74
+ "full_attention"
75
+ ],
76
+ "max_position_embeddings": 32768,
77
+ "max_window_layers": 70,
78
+ "model_max_length": 8192,
79
+ "model_type": "qwen2",
80
+ "num_attention_heads": 40,
81
+ "num_hidden_layers": 48,
82
+ "num_key_value_heads": 8,
83
+ "rms_norm_eps": 1e-06,
84
+ "rope_scaling": null,
85
+ "rope_theta": 1000000.0,
86
+ "sliding_window": null,
87
+ "tokenizer_model_max_length": 8192,
88
+ "tokenizer_padding_side": "right",
89
+ "torch_dtype": "bfloat16",
90
+ "use_cache": true,
91
+ "use_sliding_window": false,
92
+ "vocab_size": 151670
93
+ },
94
+ "torch_dtype": "bfloat16",
95
+ "transformers_version": "4.55.4",
96
+ "video_token_id": 151669,
97
+ "vision_config": {
98
+ "_attn_implementation_autoset": false,
99
+ "architectures": [
100
+ "SiglipVisionModel"
101
+ ],
102
+ "attention_dropout": 0.0,
103
+ "hidden_act": "gelu_pytorch_tanh",
104
+ "hidden_size": 1152,
105
+ "image_size": 448,
106
+ "intermediate_size": 4304,
107
+ "layer_norm_eps": 1e-06,
108
+ "model_type": "siglip_vision_model",
109
+ "num_attention_heads": 16,
110
+ "num_channels": 3,
111
+ "num_hidden_layers": 27,
112
+ "num_image_tokens": 256,
113
+ "patch_size": 14,
114
+ "projection_dim": 2048,
115
+ "projector_hidden_act": "gelu_fast",
116
+ "torch_dtype": "bfloat16",
117
+ "vision_use_head": false
118
+ }
119
+ }
configuration_nvila.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any
2
+
3
+ from transformers.configuration_utils import PretrainedConfig
4
+ from transformers.models.qwen2 import Qwen2Config
5
+ from transformers.models.siglip import SiglipVisionConfig
6
+
7
+
8
+ class NVILAConfig(PretrainedConfig):
9
+ model_type = "nvila"
10
+ sub_configs = {
11
+ "text_config": Qwen2Config,
12
+ "vision_config": SiglipVisionConfig,
13
+ }
14
+ _auto_class = "AutoConfig"
15
+
16
+ def __init__(
17
+ self,
18
+ *,
19
+ text_config: dict[str, Any] | None = None,
20
+ vision_config: dict[str, Any] | None = None,
21
+ image_token_id: int | None = None,
22
+ video_token_id: int | None = None,
23
+ **kwargs,
24
+ ):
25
+ self.text_config = Qwen2Config(**text_config) if text_config is not None else Qwen2Config()
26
+ self.vision_config = SiglipVisionConfig(**vision_config) if vision_config is not None else SiglipVisionConfig()
27
+
28
+ self.image_token_id = image_token_id if image_token_id is not None else -1
29
+ self.video_token_id = video_token_id if video_token_id is not None else -1
30
+
31
+ super().__init__(**kwargs)
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151643,
4
+ "eos_token_id": 151645,
5
+ "transformers_version": "4.55.4"
6
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68e4525375d50c1912927a794a0841e23add3197b029f4849c9db25420a3f761
3
+ size 4901877280
model-00002-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ee8e1e36560337ded2e6605326bac87aaa0fc6dbac94a10053783be42a11c3a
3
+ size 4954847752
model-00003-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec1e503ba79646fb8b4d3ac59d2d11d504458d6d28645e4663b36fef8c2a20ac
3
+ size 4954847824
model-00004-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c94d199e01d93f267dff25564789e5068213b2db1de2ff59332cce1ea65b6fd
3
+ size 4954847824
model-00005-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a064ec77fc77ffb2e7417dff3f155c3e8220df0e29928ba7d874892f7a06f6e
3
+ size 4954847824
model-00006-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:406d5d3155d23968753a6287c2fbb3c9663c5e6da0178608da43502f46276467
3
+ size 4278475224
model-00007-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad125356b44a540bcaa8afd59d9947d46bd403303dff6d4e350b55ef0d40709
3
+ size 1553100936
model.safetensors.index.json ADDED
@@ -0,0 +1,1030 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 15276357360,
4
+ "total_size": 30552714720
5
+ },
6
+ "weight_map": {
7
+ "llm.lm_head.weight": "model-00007-of-00007.safetensors",
8
+ "llm.model.embed_tokens.weight": "model-00001-of-00007.safetensors",
9
+ "llm.model.layers.0.input_layernorm.weight": "model-00001-of-00007.safetensors",
10
+ "llm.model.layers.0.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
11
+ "llm.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
12
+ "llm.model.layers.0.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
13
+ "llm.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
14
+ "llm.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
15
+ "llm.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
16
+ "llm.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
17
+ "llm.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
18
+ "llm.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
19
+ "llm.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
20
+ "llm.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
21
+ "llm.model.layers.1.input_layernorm.weight": "model-00001-of-00007.safetensors",
22
+ "llm.model.layers.1.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
23
+ "llm.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
24
+ "llm.model.layers.1.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
25
+ "llm.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
26
+ "llm.model.layers.1.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
27
+ "llm.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
28
+ "llm.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
29
+ "llm.model.layers.1.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
30
+ "llm.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
31
+ "llm.model.layers.1.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
32
+ "llm.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
33
+ "llm.model.layers.10.input_layernorm.weight": "model-00002-of-00007.safetensors",
34
+ "llm.model.layers.10.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
35
+ "llm.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
36
+ "llm.model.layers.10.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
37
+ "llm.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
38
+ "llm.model.layers.10.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
39
+ "llm.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
40
+ "llm.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
41
+ "llm.model.layers.10.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
42
+ "llm.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
43
+ "llm.model.layers.10.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
44
+ "llm.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
45
+ "llm.model.layers.11.input_layernorm.weight": "model-00002-of-00007.safetensors",
46
+ "llm.model.layers.11.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
47
+ "llm.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
48
+ "llm.model.layers.11.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
49
+ "llm.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
50
+ "llm.model.layers.11.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
51
+ "llm.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
52
+ "llm.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
53
+ "llm.model.layers.11.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
54
+ "llm.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
55
+ "llm.model.layers.11.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
56
+ "llm.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
57
+ "llm.model.layers.12.input_layernorm.weight": "model-00002-of-00007.safetensors",
58
+ "llm.model.layers.12.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
59
+ "llm.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
60
+ "llm.model.layers.12.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
61
+ "llm.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
62
+ "llm.model.layers.12.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
63
+ "llm.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
64
+ "llm.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
65
+ "llm.model.layers.12.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
66
+ "llm.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
67
+ "llm.model.layers.12.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
68
+ "llm.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
69
+ "llm.model.layers.13.input_layernorm.weight": "model-00003-of-00007.safetensors",
70
+ "llm.model.layers.13.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
71
+ "llm.model.layers.13.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
72
+ "llm.model.layers.13.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
73
+ "llm.model.layers.13.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
74
+ "llm.model.layers.13.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
75
+ "llm.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
76
+ "llm.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
77
+ "llm.model.layers.13.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
78
+ "llm.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
79
+ "llm.model.layers.13.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
80
+ "llm.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
81
+ "llm.model.layers.14.input_layernorm.weight": "model-00003-of-00007.safetensors",
82
+ "llm.model.layers.14.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
83
+ "llm.model.layers.14.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
84
+ "llm.model.layers.14.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
85
+ "llm.model.layers.14.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
86
+ "llm.model.layers.14.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
87
+ "llm.model.layers.14.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
88
+ "llm.model.layers.14.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
89
+ "llm.model.layers.14.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
90
+ "llm.model.layers.14.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
91
+ "llm.model.layers.14.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
92
+ "llm.model.layers.14.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
93
+ "llm.model.layers.15.input_layernorm.weight": "model-00003-of-00007.safetensors",
94
+ "llm.model.layers.15.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
95
+ "llm.model.layers.15.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
96
+ "llm.model.layers.15.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
97
+ "llm.model.layers.15.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
98
+ "llm.model.layers.15.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
99
+ "llm.model.layers.15.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
100
+ "llm.model.layers.15.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
101
+ "llm.model.layers.15.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
102
+ "llm.model.layers.15.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
103
+ "llm.model.layers.15.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
104
+ "llm.model.layers.15.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
105
+ "llm.model.layers.16.input_layernorm.weight": "model-00003-of-00007.safetensors",
106
+ "llm.model.layers.16.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
107
+ "llm.model.layers.16.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
108
+ "llm.model.layers.16.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
109
+ "llm.model.layers.16.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
110
+ "llm.model.layers.16.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
111
+ "llm.model.layers.16.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
112
+ "llm.model.layers.16.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
113
+ "llm.model.layers.16.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
114
+ "llm.model.layers.16.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
115
+ "llm.model.layers.16.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
116
+ "llm.model.layers.16.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
117
+ "llm.model.layers.17.input_layernorm.weight": "model-00003-of-00007.safetensors",
118
+ "llm.model.layers.17.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
119
+ "llm.model.layers.17.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
120
+ "llm.model.layers.17.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
121
+ "llm.model.layers.17.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
122
+ "llm.model.layers.17.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
123
+ "llm.model.layers.17.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
124
+ "llm.model.layers.17.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
125
+ "llm.model.layers.17.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
126
+ "llm.model.layers.17.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
127
+ "llm.model.layers.17.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
128
+ "llm.model.layers.17.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
129
+ "llm.model.layers.18.input_layernorm.weight": "model-00003-of-00007.safetensors",
130
+ "llm.model.layers.18.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
131
+ "llm.model.layers.18.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
132
+ "llm.model.layers.18.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
133
+ "llm.model.layers.18.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
134
+ "llm.model.layers.18.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
135
+ "llm.model.layers.18.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
136
+ "llm.model.layers.18.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
137
+ "llm.model.layers.18.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
138
+ "llm.model.layers.18.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
139
+ "llm.model.layers.18.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
140
+ "llm.model.layers.18.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
141
+ "llm.model.layers.19.input_layernorm.weight": "model-00003-of-00007.safetensors",
142
+ "llm.model.layers.19.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
143
+ "llm.model.layers.19.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
144
+ "llm.model.layers.19.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
145
+ "llm.model.layers.19.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
146
+ "llm.model.layers.19.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
147
+ "llm.model.layers.19.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
148
+ "llm.model.layers.19.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
149
+ "llm.model.layers.19.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
150
+ "llm.model.layers.19.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
151
+ "llm.model.layers.19.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
152
+ "llm.model.layers.19.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
153
+ "llm.model.layers.2.input_layernorm.weight": "model-00001-of-00007.safetensors",
154
+ "llm.model.layers.2.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
155
+ "llm.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
156
+ "llm.model.layers.2.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
157
+ "llm.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
158
+ "llm.model.layers.2.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
159
+ "llm.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
160
+ "llm.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
161
+ "llm.model.layers.2.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
162
+ "llm.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
163
+ "llm.model.layers.2.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
164
+ "llm.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
165
+ "llm.model.layers.20.input_layernorm.weight": "model-00003-of-00007.safetensors",
166
+ "llm.model.layers.20.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
167
+ "llm.model.layers.20.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
168
+ "llm.model.layers.20.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
169
+ "llm.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
170
+ "llm.model.layers.20.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
171
+ "llm.model.layers.20.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
172
+ "llm.model.layers.20.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
173
+ "llm.model.layers.20.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
174
+ "llm.model.layers.20.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
175
+ "llm.model.layers.20.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
176
+ "llm.model.layers.20.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
177
+ "llm.model.layers.21.input_layernorm.weight": "model-00003-of-00007.safetensors",
178
+ "llm.model.layers.21.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
179
+ "llm.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
180
+ "llm.model.layers.21.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
181
+ "llm.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
182
+ "llm.model.layers.21.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
183
+ "llm.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
184
+ "llm.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
185
+ "llm.model.layers.21.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
186
+ "llm.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
187
+ "llm.model.layers.21.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
188
+ "llm.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
189
+ "llm.model.layers.22.input_layernorm.weight": "model-00004-of-00007.safetensors",
190
+ "llm.model.layers.22.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
191
+ "llm.model.layers.22.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
192
+ "llm.model.layers.22.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
193
+ "llm.model.layers.22.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
194
+ "llm.model.layers.22.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
195
+ "llm.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
196
+ "llm.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
197
+ "llm.model.layers.22.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
198
+ "llm.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
199
+ "llm.model.layers.22.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
200
+ "llm.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
201
+ "llm.model.layers.23.input_layernorm.weight": "model-00004-of-00007.safetensors",
202
+ "llm.model.layers.23.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
203
+ "llm.model.layers.23.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
204
+ "llm.model.layers.23.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
205
+ "llm.model.layers.23.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
206
+ "llm.model.layers.23.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
207
+ "llm.model.layers.23.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
208
+ "llm.model.layers.23.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
209
+ "llm.model.layers.23.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
210
+ "llm.model.layers.23.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
211
+ "llm.model.layers.23.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
212
+ "llm.model.layers.23.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
213
+ "llm.model.layers.24.input_layernorm.weight": "model-00004-of-00007.safetensors",
214
+ "llm.model.layers.24.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
215
+ "llm.model.layers.24.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
216
+ "llm.model.layers.24.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
217
+ "llm.model.layers.24.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
218
+ "llm.model.layers.24.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
219
+ "llm.model.layers.24.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
220
+ "llm.model.layers.24.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
221
+ "llm.model.layers.24.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
222
+ "llm.model.layers.24.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
223
+ "llm.model.layers.24.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
224
+ "llm.model.layers.24.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
225
+ "llm.model.layers.25.input_layernorm.weight": "model-00004-of-00007.safetensors",
226
+ "llm.model.layers.25.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
227
+ "llm.model.layers.25.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
228
+ "llm.model.layers.25.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
229
+ "llm.model.layers.25.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
230
+ "llm.model.layers.25.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
231
+ "llm.model.layers.25.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
232
+ "llm.model.layers.25.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
233
+ "llm.model.layers.25.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
234
+ "llm.model.layers.25.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
235
+ "llm.model.layers.25.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
236
+ "llm.model.layers.25.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
237
+ "llm.model.layers.26.input_layernorm.weight": "model-00004-of-00007.safetensors",
238
+ "llm.model.layers.26.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
239
+ "llm.model.layers.26.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
240
+ "llm.model.layers.26.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
241
+ "llm.model.layers.26.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
242
+ "llm.model.layers.26.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
243
+ "llm.model.layers.26.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
244
+ "llm.model.layers.26.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
245
+ "llm.model.layers.26.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
246
+ "llm.model.layers.26.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
247
+ "llm.model.layers.26.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
248
+ "llm.model.layers.26.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
249
+ "llm.model.layers.27.input_layernorm.weight": "model-00004-of-00007.safetensors",
250
+ "llm.model.layers.27.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
251
+ "llm.model.layers.27.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
252
+ "llm.model.layers.27.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
253
+ "llm.model.layers.27.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
254
+ "llm.model.layers.27.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
255
+ "llm.model.layers.27.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
256
+ "llm.model.layers.27.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
257
+ "llm.model.layers.27.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
258
+ "llm.model.layers.27.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
259
+ "llm.model.layers.27.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
260
+ "llm.model.layers.27.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
261
+ "llm.model.layers.28.input_layernorm.weight": "model-00004-of-00007.safetensors",
262
+ "llm.model.layers.28.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
263
+ "llm.model.layers.28.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
264
+ "llm.model.layers.28.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
265
+ "llm.model.layers.28.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
266
+ "llm.model.layers.28.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
267
+ "llm.model.layers.28.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
268
+ "llm.model.layers.28.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
269
+ "llm.model.layers.28.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
270
+ "llm.model.layers.28.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
271
+ "llm.model.layers.28.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
272
+ "llm.model.layers.28.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
273
+ "llm.model.layers.29.input_layernorm.weight": "model-00004-of-00007.safetensors",
274
+ "llm.model.layers.29.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
275
+ "llm.model.layers.29.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
276
+ "llm.model.layers.29.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
277
+ "llm.model.layers.29.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
278
+ "llm.model.layers.29.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
279
+ "llm.model.layers.29.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
280
+ "llm.model.layers.29.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
281
+ "llm.model.layers.29.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
282
+ "llm.model.layers.29.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
283
+ "llm.model.layers.29.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
284
+ "llm.model.layers.29.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
285
+ "llm.model.layers.3.input_layernorm.weight": "model-00001-of-00007.safetensors",
286
+ "llm.model.layers.3.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
287
+ "llm.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
288
+ "llm.model.layers.3.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
289
+ "llm.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
290
+ "llm.model.layers.3.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
291
+ "llm.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
292
+ "llm.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
293
+ "llm.model.layers.3.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
294
+ "llm.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
295
+ "llm.model.layers.3.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
296
+ "llm.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
297
+ "llm.model.layers.30.input_layernorm.weight": "model-00004-of-00007.safetensors",
298
+ "llm.model.layers.30.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
299
+ "llm.model.layers.30.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
300
+ "llm.model.layers.30.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
301
+ "llm.model.layers.30.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
302
+ "llm.model.layers.30.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
303
+ "llm.model.layers.30.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
304
+ "llm.model.layers.30.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
305
+ "llm.model.layers.30.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
306
+ "llm.model.layers.30.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
307
+ "llm.model.layers.30.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
308
+ "llm.model.layers.30.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
309
+ "llm.model.layers.31.input_layernorm.weight": "model-00005-of-00007.safetensors",
310
+ "llm.model.layers.31.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
311
+ "llm.model.layers.31.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
312
+ "llm.model.layers.31.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
313
+ "llm.model.layers.31.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
314
+ "llm.model.layers.31.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
315
+ "llm.model.layers.31.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
316
+ "llm.model.layers.31.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
317
+ "llm.model.layers.31.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
318
+ "llm.model.layers.31.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
319
+ "llm.model.layers.31.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
320
+ "llm.model.layers.31.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
321
+ "llm.model.layers.32.input_layernorm.weight": "model-00005-of-00007.safetensors",
322
+ "llm.model.layers.32.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
323
+ "llm.model.layers.32.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
324
+ "llm.model.layers.32.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
325
+ "llm.model.layers.32.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
326
+ "llm.model.layers.32.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
327
+ "llm.model.layers.32.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
328
+ "llm.model.layers.32.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
329
+ "llm.model.layers.32.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
330
+ "llm.model.layers.32.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
331
+ "llm.model.layers.32.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
332
+ "llm.model.layers.32.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
333
+ "llm.model.layers.33.input_layernorm.weight": "model-00005-of-00007.safetensors",
334
+ "llm.model.layers.33.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
335
+ "llm.model.layers.33.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
336
+ "llm.model.layers.33.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
337
+ "llm.model.layers.33.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
338
+ "llm.model.layers.33.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
339
+ "llm.model.layers.33.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
340
+ "llm.model.layers.33.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
341
+ "llm.model.layers.33.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
342
+ "llm.model.layers.33.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
343
+ "llm.model.layers.33.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
344
+ "llm.model.layers.33.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
345
+ "llm.model.layers.34.input_layernorm.weight": "model-00005-of-00007.safetensors",
346
+ "llm.model.layers.34.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
347
+ "llm.model.layers.34.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
348
+ "llm.model.layers.34.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
349
+ "llm.model.layers.34.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
350
+ "llm.model.layers.34.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
351
+ "llm.model.layers.34.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
352
+ "llm.model.layers.34.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
353
+ "llm.model.layers.34.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
354
+ "llm.model.layers.34.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
355
+ "llm.model.layers.34.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
356
+ "llm.model.layers.34.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
357
+ "llm.model.layers.35.input_layernorm.weight": "model-00005-of-00007.safetensors",
358
+ "llm.model.layers.35.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
359
+ "llm.model.layers.35.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
360
+ "llm.model.layers.35.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
361
+ "llm.model.layers.35.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
362
+ "llm.model.layers.35.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
363
+ "llm.model.layers.35.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
364
+ "llm.model.layers.35.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
365
+ "llm.model.layers.35.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
366
+ "llm.model.layers.35.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
367
+ "llm.model.layers.35.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
368
+ "llm.model.layers.35.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
369
+ "llm.model.layers.36.input_layernorm.weight": "model-00005-of-00007.safetensors",
370
+ "llm.model.layers.36.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
371
+ "llm.model.layers.36.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
372
+ "llm.model.layers.36.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
373
+ "llm.model.layers.36.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
374
+ "llm.model.layers.36.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
375
+ "llm.model.layers.36.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
376
+ "llm.model.layers.36.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
377
+ "llm.model.layers.36.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
378
+ "llm.model.layers.36.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
379
+ "llm.model.layers.36.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
380
+ "llm.model.layers.36.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
381
+ "llm.model.layers.37.input_layernorm.weight": "model-00005-of-00007.safetensors",
382
+ "llm.model.layers.37.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
383
+ "llm.model.layers.37.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
384
+ "llm.model.layers.37.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
385
+ "llm.model.layers.37.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
386
+ "llm.model.layers.37.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
387
+ "llm.model.layers.37.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
388
+ "llm.model.layers.37.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
389
+ "llm.model.layers.37.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
390
+ "llm.model.layers.37.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
391
+ "llm.model.layers.37.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
392
+ "llm.model.layers.37.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
393
+ "llm.model.layers.38.input_layernorm.weight": "model-00005-of-00007.safetensors",
394
+ "llm.model.layers.38.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
395
+ "llm.model.layers.38.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
396
+ "llm.model.layers.38.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
397
+ "llm.model.layers.38.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
398
+ "llm.model.layers.38.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
399
+ "llm.model.layers.38.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
400
+ "llm.model.layers.38.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
401
+ "llm.model.layers.38.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
402
+ "llm.model.layers.38.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
403
+ "llm.model.layers.38.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
404
+ "llm.model.layers.38.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
405
+ "llm.model.layers.39.input_layernorm.weight": "model-00005-of-00007.safetensors",
406
+ "llm.model.layers.39.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
407
+ "llm.model.layers.39.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
408
+ "llm.model.layers.39.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
409
+ "llm.model.layers.39.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
410
+ "llm.model.layers.39.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
411
+ "llm.model.layers.39.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
412
+ "llm.model.layers.39.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
413
+ "llm.model.layers.39.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
414
+ "llm.model.layers.39.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
415
+ "llm.model.layers.39.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
416
+ "llm.model.layers.39.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
417
+ "llm.model.layers.4.input_layernorm.weight": "model-00002-of-00007.safetensors",
418
+ "llm.model.layers.4.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
419
+ "llm.model.layers.4.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
420
+ "llm.model.layers.4.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
421
+ "llm.model.layers.4.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
422
+ "llm.model.layers.4.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
423
+ "llm.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
424
+ "llm.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
425
+ "llm.model.layers.4.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
426
+ "llm.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
427
+ "llm.model.layers.4.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
428
+ "llm.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
429
+ "llm.model.layers.40.input_layernorm.weight": "model-00006-of-00007.safetensors",
430
+ "llm.model.layers.40.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
431
+ "llm.model.layers.40.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
432
+ "llm.model.layers.40.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
433
+ "llm.model.layers.40.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
434
+ "llm.model.layers.40.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
435
+ "llm.model.layers.40.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
436
+ "llm.model.layers.40.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
437
+ "llm.model.layers.40.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
438
+ "llm.model.layers.40.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
439
+ "llm.model.layers.40.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
440
+ "llm.model.layers.40.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
441
+ "llm.model.layers.41.input_layernorm.weight": "model-00006-of-00007.safetensors",
442
+ "llm.model.layers.41.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
443
+ "llm.model.layers.41.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
444
+ "llm.model.layers.41.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
445
+ "llm.model.layers.41.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
446
+ "llm.model.layers.41.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
447
+ "llm.model.layers.41.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
448
+ "llm.model.layers.41.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
449
+ "llm.model.layers.41.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
450
+ "llm.model.layers.41.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
451
+ "llm.model.layers.41.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
452
+ "llm.model.layers.41.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
453
+ "llm.model.layers.42.input_layernorm.weight": "model-00006-of-00007.safetensors",
454
+ "llm.model.layers.42.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
455
+ "llm.model.layers.42.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
456
+ "llm.model.layers.42.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
457
+ "llm.model.layers.42.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
458
+ "llm.model.layers.42.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
459
+ "llm.model.layers.42.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
460
+ "llm.model.layers.42.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
461
+ "llm.model.layers.42.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
462
+ "llm.model.layers.42.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
463
+ "llm.model.layers.42.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
464
+ "llm.model.layers.42.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
465
+ "llm.model.layers.43.input_layernorm.weight": "model-00006-of-00007.safetensors",
466
+ "llm.model.layers.43.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
467
+ "llm.model.layers.43.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
468
+ "llm.model.layers.43.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
469
+ "llm.model.layers.43.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
470
+ "llm.model.layers.43.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
471
+ "llm.model.layers.43.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
472
+ "llm.model.layers.43.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
473
+ "llm.model.layers.43.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
474
+ "llm.model.layers.43.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
475
+ "llm.model.layers.43.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
476
+ "llm.model.layers.43.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
477
+ "llm.model.layers.44.input_layernorm.weight": "model-00006-of-00007.safetensors",
478
+ "llm.model.layers.44.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
479
+ "llm.model.layers.44.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
480
+ "llm.model.layers.44.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
481
+ "llm.model.layers.44.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
482
+ "llm.model.layers.44.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
483
+ "llm.model.layers.44.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
484
+ "llm.model.layers.44.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
485
+ "llm.model.layers.44.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
486
+ "llm.model.layers.44.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
487
+ "llm.model.layers.44.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
488
+ "llm.model.layers.44.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
489
+ "llm.model.layers.45.input_layernorm.weight": "model-00006-of-00007.safetensors",
490
+ "llm.model.layers.45.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
491
+ "llm.model.layers.45.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
492
+ "llm.model.layers.45.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
493
+ "llm.model.layers.45.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
494
+ "llm.model.layers.45.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
495
+ "llm.model.layers.45.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
496
+ "llm.model.layers.45.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
497
+ "llm.model.layers.45.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
498
+ "llm.model.layers.45.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
499
+ "llm.model.layers.45.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
500
+ "llm.model.layers.45.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
501
+ "llm.model.layers.46.input_layernorm.weight": "model-00006-of-00007.safetensors",
502
+ "llm.model.layers.46.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
503
+ "llm.model.layers.46.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
504
+ "llm.model.layers.46.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
505
+ "llm.model.layers.46.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
506
+ "llm.model.layers.46.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
507
+ "llm.model.layers.46.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
508
+ "llm.model.layers.46.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
509
+ "llm.model.layers.46.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
510
+ "llm.model.layers.46.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
511
+ "llm.model.layers.46.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
512
+ "llm.model.layers.46.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
513
+ "llm.model.layers.47.input_layernorm.weight": "model-00006-of-00007.safetensors",
514
+ "llm.model.layers.47.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
515
+ "llm.model.layers.47.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
516
+ "llm.model.layers.47.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
517
+ "llm.model.layers.47.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
518
+ "llm.model.layers.47.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
519
+ "llm.model.layers.47.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
520
+ "llm.model.layers.47.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
521
+ "llm.model.layers.47.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
522
+ "llm.model.layers.47.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
523
+ "llm.model.layers.47.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
524
+ "llm.model.layers.47.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
525
+ "llm.model.layers.5.input_layernorm.weight": "model-00002-of-00007.safetensors",
526
+ "llm.model.layers.5.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
527
+ "llm.model.layers.5.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
528
+ "llm.model.layers.5.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
529
+ "llm.model.layers.5.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
530
+ "llm.model.layers.5.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
531
+ "llm.model.layers.5.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
532
+ "llm.model.layers.5.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
533
+ "llm.model.layers.5.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
534
+ "llm.model.layers.5.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
535
+ "llm.model.layers.5.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
536
+ "llm.model.layers.5.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
537
+ "llm.model.layers.6.input_layernorm.weight": "model-00002-of-00007.safetensors",
538
+ "llm.model.layers.6.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
539
+ "llm.model.layers.6.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
540
+ "llm.model.layers.6.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
541
+ "llm.model.layers.6.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
542
+ "llm.model.layers.6.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
543
+ "llm.model.layers.6.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
544
+ "llm.model.layers.6.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
545
+ "llm.model.layers.6.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
546
+ "llm.model.layers.6.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
547
+ "llm.model.layers.6.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
548
+ "llm.model.layers.6.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
549
+ "llm.model.layers.7.input_layernorm.weight": "model-00002-of-00007.safetensors",
550
+ "llm.model.layers.7.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
551
+ "llm.model.layers.7.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
552
+ "llm.model.layers.7.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
553
+ "llm.model.layers.7.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
554
+ "llm.model.layers.7.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
555
+ "llm.model.layers.7.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
556
+ "llm.model.layers.7.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
557
+ "llm.model.layers.7.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
558
+ "llm.model.layers.7.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
559
+ "llm.model.layers.7.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
560
+ "llm.model.layers.7.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
561
+ "llm.model.layers.8.input_layernorm.weight": "model-00002-of-00007.safetensors",
562
+ "llm.model.layers.8.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
563
+ "llm.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
564
+ "llm.model.layers.8.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
565
+ "llm.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
566
+ "llm.model.layers.8.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
567
+ "llm.model.layers.8.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
568
+ "llm.model.layers.8.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
569
+ "llm.model.layers.8.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
570
+ "llm.model.layers.8.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
571
+ "llm.model.layers.8.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
572
+ "llm.model.layers.8.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
573
+ "llm.model.layers.9.input_layernorm.weight": "model-00002-of-00007.safetensors",
574
+ "llm.model.layers.9.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
575
+ "llm.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
576
+ "llm.model.layers.9.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
577
+ "llm.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
578
+ "llm.model.layers.9.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
579
+ "llm.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
580
+ "llm.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
581
+ "llm.model.layers.9.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
582
+ "llm.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
583
+ "llm.model.layers.9.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
584
+ "llm.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
585
+ "llm.model.norm.weight": "model-00006-of-00007.safetensors",
586
+ "mm_projector.layers.1.bias": "model-00001-of-00007.safetensors",
587
+ "mm_projector.layers.1.weight": "model-00001-of-00007.safetensors",
588
+ "mm_projector.layers.2.bias": "model-00001-of-00007.safetensors",
589
+ "mm_projector.layers.2.weight": "model-00001-of-00007.safetensors",
590
+ "mm_projector.layers.4.bias": "model-00001-of-00007.safetensors",
591
+ "mm_projector.layers.4.weight": "model-00001-of-00007.safetensors",
592
+ "vision_tower.vision_model.embeddings.patch_embedding.bias": "model-00001-of-00007.safetensors",
593
+ "vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00001-of-00007.safetensors",
594
+ "vision_tower.vision_model.embeddings.position_embedding.weight": "model-00001-of-00007.safetensors",
595
+ "vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00001-of-00007.safetensors",
596
+ "vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00001-of-00007.safetensors",
597
+ "vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00001-of-00007.safetensors",
598
+ "vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00001-of-00007.safetensors",
599
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00007.safetensors",
600
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00007.safetensors",
601
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00007.safetensors",
602
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00007.safetensors",
603
+ "vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
604
+ "vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
605
+ "vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
606
+ "vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
607
+ "vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
608
+ "vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
609
+ "vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
610
+ "vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
611
+ "vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00001-of-00007.safetensors",
612
+ "vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00001-of-00007.safetensors",
613
+ "vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00001-of-00007.safetensors",
614
+ "vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00001-of-00007.safetensors",
615
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00007.safetensors",
616
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00007.safetensors",
617
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00007.safetensors",
618
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00007.safetensors",
619
+ "vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
620
+ "vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
621
+ "vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
622
+ "vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
623
+ "vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
624
+ "vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
625
+ "vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
626
+ "vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
627
+ "vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00001-of-00007.safetensors",
628
+ "vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00001-of-00007.safetensors",
629
+ "vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00001-of-00007.safetensors",
630
+ "vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00001-of-00007.safetensors",
631
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00007.safetensors",
632
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00007.safetensors",
633
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00007.safetensors",
634
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00007.safetensors",
635
+ "vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
636
+ "vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
637
+ "vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
638
+ "vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
639
+ "vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
640
+ "vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
641
+ "vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
642
+ "vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
643
+ "vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00001-of-00007.safetensors",
644
+ "vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00001-of-00007.safetensors",
645
+ "vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00001-of-00007.safetensors",
646
+ "vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00001-of-00007.safetensors",
647
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00007.safetensors",
648
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00007.safetensors",
649
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00007.safetensors",
650
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00007.safetensors",
651
+ "vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
652
+ "vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
653
+ "vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
654
+ "vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
655
+ "vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
656
+ "vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
657
+ "vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
658
+ "vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
659
+ "vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00001-of-00007.safetensors",
660
+ "vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00001-of-00007.safetensors",
661
+ "vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00001-of-00007.safetensors",
662
+ "vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00001-of-00007.safetensors",
663
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00007.safetensors",
664
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00007.safetensors",
665
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00007.safetensors",
666
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00007.safetensors",
667
+ "vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
668
+ "vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
669
+ "vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
670
+ "vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
671
+ "vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
672
+ "vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
673
+ "vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
674
+ "vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
675
+ "vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00001-of-00007.safetensors",
676
+ "vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00001-of-00007.safetensors",
677
+ "vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00001-of-00007.safetensors",
678
+ "vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00001-of-00007.safetensors",
679
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00007.safetensors",
680
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00007.safetensors",
681
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00007.safetensors",
682
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00007.safetensors",
683
+ "vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
684
+ "vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
685
+ "vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
686
+ "vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
687
+ "vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
688
+ "vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
689
+ "vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
690
+ "vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
691
+ "vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00001-of-00007.safetensors",
692
+ "vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00001-of-00007.safetensors",
693
+ "vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00001-of-00007.safetensors",
694
+ "vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00001-of-00007.safetensors",
695
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00007.safetensors",
696
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00007.safetensors",
697
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00007.safetensors",
698
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00007.safetensors",
699
+ "vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
700
+ "vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
701
+ "vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
702
+ "vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
703
+ "vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
704
+ "vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
705
+ "vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
706
+ "vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
707
+ "vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00001-of-00007.safetensors",
708
+ "vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00001-of-00007.safetensors",
709
+ "vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00001-of-00007.safetensors",
710
+ "vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00001-of-00007.safetensors",
711
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00007.safetensors",
712
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00007.safetensors",
713
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00007.safetensors",
714
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00007.safetensors",
715
+ "vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
716
+ "vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
717
+ "vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
718
+ "vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
719
+ "vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
720
+ "vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
721
+ "vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
722
+ "vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
723
+ "vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00001-of-00007.safetensors",
724
+ "vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00001-of-00007.safetensors",
725
+ "vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00001-of-00007.safetensors",
726
+ "vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00001-of-00007.safetensors",
727
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00007.safetensors",
728
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00007.safetensors",
729
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00007.safetensors",
730
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00007.safetensors",
731
+ "vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
732
+ "vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
733
+ "vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
734
+ "vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
735
+ "vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
736
+ "vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
737
+ "vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
738
+ "vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
739
+ "vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00001-of-00007.safetensors",
740
+ "vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00001-of-00007.safetensors",
741
+ "vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00001-of-00007.safetensors",
742
+ "vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00001-of-00007.safetensors",
743
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00007.safetensors",
744
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00007.safetensors",
745
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00007.safetensors",
746
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00007.safetensors",
747
+ "vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
748
+ "vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
749
+ "vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
750
+ "vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
751
+ "vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
752
+ "vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
753
+ "vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
754
+ "vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
755
+ "vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00001-of-00007.safetensors",
756
+ "vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00001-of-00007.safetensors",
757
+ "vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00001-of-00007.safetensors",
758
+ "vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00001-of-00007.safetensors",
759
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00007.safetensors",
760
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00007.safetensors",
761
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00007.safetensors",
762
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00007.safetensors",
763
+ "vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
764
+ "vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
765
+ "vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
766
+ "vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
767
+ "vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
768
+ "vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
769
+ "vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
770
+ "vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
771
+ "vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00001-of-00007.safetensors",
772
+ "vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00001-of-00007.safetensors",
773
+ "vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00001-of-00007.safetensors",
774
+ "vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00001-of-00007.safetensors",
775
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00007.safetensors",
776
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00007.safetensors",
777
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00007.safetensors",
778
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00007.safetensors",
779
+ "vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
780
+ "vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
781
+ "vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
782
+ "vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
783
+ "vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
784
+ "vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
785
+ "vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
786
+ "vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
787
+ "vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00001-of-00007.safetensors",
788
+ "vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00001-of-00007.safetensors",
789
+ "vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00001-of-00007.safetensors",
790
+ "vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00001-of-00007.safetensors",
791
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00007.safetensors",
792
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00007.safetensors",
793
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00007.safetensors",
794
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00007.safetensors",
795
+ "vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
796
+ "vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
797
+ "vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
798
+ "vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
799
+ "vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
800
+ "vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
801
+ "vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
802
+ "vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
803
+ "vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00001-of-00007.safetensors",
804
+ "vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00001-of-00007.safetensors",
805
+ "vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00001-of-00007.safetensors",
806
+ "vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00001-of-00007.safetensors",
807
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00007.safetensors",
808
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00007.safetensors",
809
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00007.safetensors",
810
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00007.safetensors",
811
+ "vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
812
+ "vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
813
+ "vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
814
+ "vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
815
+ "vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
816
+ "vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
817
+ "vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
818
+ "vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
819
+ "vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00001-of-00007.safetensors",
820
+ "vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00001-of-00007.safetensors",
821
+ "vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00001-of-00007.safetensors",
822
+ "vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00001-of-00007.safetensors",
823
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00007.safetensors",
824
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00007.safetensors",
825
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00007.safetensors",
826
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00007.safetensors",
827
+ "vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
828
+ "vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
829
+ "vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
830
+ "vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
831
+ "vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
832
+ "vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
833
+ "vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
834
+ "vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
835
+ "vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00001-of-00007.safetensors",
836
+ "vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00001-of-00007.safetensors",
837
+ "vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00001-of-00007.safetensors",
838
+ "vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00001-of-00007.safetensors",
839
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00007.safetensors",
840
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00007.safetensors",
841
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00007.safetensors",
842
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00007.safetensors",
843
+ "vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
844
+ "vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
845
+ "vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
846
+ "vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
847
+ "vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
848
+ "vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
849
+ "vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
850
+ "vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
851
+ "vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00001-of-00007.safetensors",
852
+ "vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00001-of-00007.safetensors",
853
+ "vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00001-of-00007.safetensors",
854
+ "vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00001-of-00007.safetensors",
855
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00007.safetensors",
856
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00007.safetensors",
857
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00007.safetensors",
858
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00007.safetensors",
859
+ "vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
860
+ "vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
861
+ "vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
862
+ "vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
863
+ "vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
864
+ "vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
865
+ "vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
866
+ "vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
867
+ "vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00001-of-00007.safetensors",
868
+ "vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00001-of-00007.safetensors",
869
+ "vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00001-of-00007.safetensors",
870
+ "vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00001-of-00007.safetensors",
871
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00001-of-00007.safetensors",
872
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00001-of-00007.safetensors",
873
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00001-of-00007.safetensors",
874
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00001-of-00007.safetensors",
875
+ "vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
876
+ "vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
877
+ "vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
878
+ "vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
879
+ "vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
880
+ "vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
881
+ "vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
882
+ "vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
883
+ "vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00001-of-00007.safetensors",
884
+ "vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00001-of-00007.safetensors",
885
+ "vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00001-of-00007.safetensors",
886
+ "vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00001-of-00007.safetensors",
887
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00001-of-00007.safetensors",
888
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00001-of-00007.safetensors",
889
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00001-of-00007.safetensors",
890
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00001-of-00007.safetensors",
891
+ "vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
892
+ "vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
893
+ "vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
894
+ "vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
895
+ "vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
896
+ "vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
897
+ "vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
898
+ "vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
899
+ "vision_tower.vision_model.encoder.layers.26.layer_norm1.bias": "model-00001-of-00007.safetensors",
900
+ "vision_tower.vision_model.encoder.layers.26.layer_norm1.weight": "model-00001-of-00007.safetensors",
901
+ "vision_tower.vision_model.encoder.layers.26.layer_norm2.bias": "model-00001-of-00007.safetensors",
902
+ "vision_tower.vision_model.encoder.layers.26.layer_norm2.weight": "model-00001-of-00007.safetensors",
903
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc1.bias": "model-00001-of-00007.safetensors",
904
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc1.weight": "model-00001-of-00007.safetensors",
905
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc2.bias": "model-00001-of-00007.safetensors",
906
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc2.weight": "model-00001-of-00007.safetensors",
907
+ "vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
908
+ "vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
909
+ "vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
910
+ "vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
911
+ "vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
912
+ "vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
913
+ "vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
914
+ "vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
915
+ "vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00001-of-00007.safetensors",
916
+ "vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00001-of-00007.safetensors",
917
+ "vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00001-of-00007.safetensors",
918
+ "vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00001-of-00007.safetensors",
919
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00007.safetensors",
920
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00007.safetensors",
921
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00007.safetensors",
922
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00007.safetensors",
923
+ "vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
924
+ "vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
925
+ "vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
926
+ "vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
927
+ "vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
928
+ "vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
929
+ "vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
930
+ "vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
931
+ "vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00001-of-00007.safetensors",
932
+ "vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00001-of-00007.safetensors",
933
+ "vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00001-of-00007.safetensors",
934
+ "vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00001-of-00007.safetensors",
935
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00007.safetensors",
936
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00007.safetensors",
937
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00007.safetensors",
938
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00007.safetensors",
939
+ "vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
940
+ "vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
941
+ "vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
942
+ "vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
943
+ "vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
944
+ "vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
945
+ "vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
946
+ "vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
947
+ "vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00001-of-00007.safetensors",
948
+ "vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00001-of-00007.safetensors",
949
+ "vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00001-of-00007.safetensors",
950
+ "vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00001-of-00007.safetensors",
951
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00007.safetensors",
952
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00007.safetensors",
953
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00007.safetensors",
954
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00007.safetensors",
955
+ "vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
956
+ "vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
957
+ "vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
958
+ "vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
959
+ "vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
960
+ "vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
961
+ "vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
962
+ "vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
963
+ "vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00001-of-00007.safetensors",
964
+ "vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00001-of-00007.safetensors",
965
+ "vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00001-of-00007.safetensors",
966
+ "vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00001-of-00007.safetensors",
967
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00007.safetensors",
968
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00007.safetensors",
969
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00007.safetensors",
970
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00007.safetensors",
971
+ "vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
972
+ "vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
973
+ "vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
974
+ "vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
975
+ "vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
976
+ "vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
977
+ "vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
978
+ "vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
979
+ "vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00001-of-00007.safetensors",
980
+ "vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00001-of-00007.safetensors",
981
+ "vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00001-of-00007.safetensors",
982
+ "vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00001-of-00007.safetensors",
983
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00007.safetensors",
984
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00007.safetensors",
985
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00007.safetensors",
986
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00007.safetensors",
987
+ "vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
988
+ "vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
989
+ "vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
990
+ "vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
991
+ "vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
992
+ "vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
993
+ "vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
994
+ "vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
995
+ "vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00001-of-00007.safetensors",
996
+ "vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00001-of-00007.safetensors",
997
+ "vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00001-of-00007.safetensors",
998
+ "vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00001-of-00007.safetensors",
999
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00007.safetensors",
1000
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00007.safetensors",
1001
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00007.safetensors",
1002
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00007.safetensors",
1003
+ "vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
1004
+ "vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
1005
+ "vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
1006
+ "vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
1007
+ "vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
1008
+ "vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
1009
+ "vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
1010
+ "vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
1011
+ "vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00001-of-00007.safetensors",
1012
+ "vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00001-of-00007.safetensors",
1013
+ "vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00001-of-00007.safetensors",
1014
+ "vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00001-of-00007.safetensors",
1015
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00007.safetensors",
1016
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00007.safetensors",
1017
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00007.safetensors",
1018
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00007.safetensors",
1019
+ "vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
1020
+ "vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
1021
+ "vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00007.safetensors",
1022
+ "vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00007.safetensors",
1023
+ "vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
1024
+ "vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
1025
+ "vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
1026
+ "vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
1027
+ "vision_tower.vision_model.post_layernorm.bias": "model-00001-of-00007.safetensors",
1028
+ "vision_tower.vision_model.post_layernorm.weight": "model-00001-of-00007.safetensors"
1029
+ }
1030
+ }
modeling_nvila.py ADDED
@@ -0,0 +1,302 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import contextlib
2
+ import math
3
+
4
+ import einops
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.nn.functional as F
8
+ from torch import Tensor
9
+ from transformers import Qwen2ForCausalLM, SiglipVisionModel
10
+ from transformers.cache_utils import Cache
11
+ from transformers.generation.utils import GenerationMixin
12
+ from transformers.modeling_outputs import BaseModelOutputWithPooling, CausalLMOutputWithPast
13
+ from transformers.modeling_utils import PreTrainedModel
14
+
15
+ from .configuration_nvila import NVILAConfig
16
+
17
+ MM_HIDDEN_SIZE = 3456
18
+
19
+
20
+ class NVILAMultiModalProjectorDownsampleBlock(nn.Module):
21
+ def forward(self, x: Tensor) -> Tensor:
22
+ batch_size, sequence_length, hidden_size = x.shape
23
+
24
+ feat_size = math.isqrt(sequence_length)
25
+
26
+ features = x.reshape(batch_size, feat_size, feat_size, hidden_size)
27
+
28
+ pad_after = feat_size % 2
29
+ if pad_after > 0:
30
+ features = F.pad(features, (0, 0, 0, pad_after, 0, pad_after))
31
+ feat_size = feat_size + pad_after
32
+
33
+ features = features.reshape(batch_size, feat_size // 2, 2, feat_size // 2, 2, hidden_size)
34
+ features = features.permute(0, 1, 3, 2, 4, 5).contiguous()
35
+ features = features.reshape(batch_size, -1, 4 * hidden_size)
36
+
37
+ return features
38
+
39
+
40
+ class NVILAMultiModalProjector(nn.Module):
41
+ def __init__(self, config: NVILAConfig):
42
+ super().__init__()
43
+
44
+ self.layers = nn.Sequential(
45
+ NVILAMultiModalProjectorDownsampleBlock(),
46
+ nn.LayerNorm(MM_HIDDEN_SIZE * 4),
47
+ nn.Linear(MM_HIDDEN_SIZE * 4, config.text_config.hidden_size),
48
+ nn.GELU(),
49
+ nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size),
50
+ )
51
+
52
+ def forward(self, x: Tensor) -> Tensor:
53
+ return self.layers(x)
54
+
55
+
56
+ class NVILAForConditionalGeneration(PreTrainedModel, GenerationMixin):
57
+ config_class = NVILAConfig
58
+ base_model_prefix: str = "llm"
59
+ _auto_class = "AutoModel"
60
+ _supports_flash_attn_2 = True
61
+ _supports_sdpa = True
62
+
63
+ def __init__(self, config: NVILAConfig):
64
+ super().__init__(config)
65
+
66
+ self.config: NVILAConfig
67
+
68
+ @contextlib.contextmanager
69
+ def default_torch_dtype(dtype):
70
+ original_dtype = torch.get_default_dtype()
71
+ torch.set_default_dtype(dtype)
72
+ try:
73
+ yield
74
+ finally:
75
+ torch.set_default_dtype(original_dtype)
76
+
77
+ with default_torch_dtype(config.torch_dtype):
78
+ self.vision_tower = SiglipVisionModel(config.vision_config)
79
+ self.mm_projector = NVILAMultiModalProjector(config)
80
+ self.llm = Qwen2ForCausalLM(config.text_config)
81
+
82
+ self.post_init()
83
+
84
+ def forward(
85
+ self,
86
+ *,
87
+ block_sizes: list[tuple[int, int]] | None = None,
88
+ input_ids: Tensor | None = None,
89
+ inputs_embeds: Tensor | None = None,
90
+ pixel_values: Tensor | None = None,
91
+ pixel_values_videos: Tensor | None = None,
92
+ **kwargs,
93
+ ) -> CausalLMOutputWithPast:
94
+ assert (input_ids is None) != (
95
+ inputs_embeds is None
96
+ ), "Exactly one of `input_ids` or `inputs_embeds` must be specified."
97
+
98
+ if input_ids is not None and torch.any(
99
+ torch.isin(
100
+ input_ids,
101
+ torch.tensor(
102
+ [self.config.image_token_id, self.config.video_token_id],
103
+ device=input_ids.device,
104
+ ),
105
+ ).any()
106
+ ): # Prefill
107
+ inputs_embeds = self._embed(
108
+ block_sizes=block_sizes,
109
+ input_ids=input_ids,
110
+ pixel_values=pixel_values,
111
+ pixel_values_videos=pixel_values_videos,
112
+ )
113
+ input_ids = None
114
+
115
+ outputs = self.llm(
116
+ input_ids=input_ids,
117
+ inputs_embeds=inputs_embeds,
118
+ **kwargs,
119
+ )
120
+
121
+ return outputs
122
+
123
+ def _embed(
124
+ self,
125
+ *,
126
+ block_sizes: list[tuple[int, int]] | None,
127
+ input_ids: Tensor,
128
+ pixel_values: Tensor | None,
129
+ pixel_values_videos: Tensor | None,
130
+ ) -> Tensor:
131
+ inputs_embeds: Tensor = self.llm.model.embed_tokens(input_ids)
132
+
133
+ for pixel_values, media_token_id in [
134
+ (pixel_values, self.config.image_token_id),
135
+ (pixel_values_videos, self.config.video_token_id),
136
+ ]:
137
+ if pixel_values is None:
138
+ continue
139
+
140
+ vision_features = self._encode_vision(
141
+ pixel_values,
142
+ block_sizes=block_sizes,
143
+ )
144
+ vision_features = einops.rearrange(vision_features, "n p d -> (n p) d")
145
+
146
+ inputs_embeds[input_ids == media_token_id] = vision_features
147
+
148
+ return inputs_embeds
149
+
150
+ def _encode_vision(
151
+ self,
152
+ pixel_values: Tensor,
153
+ *,
154
+ block_sizes: list[tuple[int, int]] | None = None,
155
+ ) -> Tensor:
156
+ vision_tower_output: BaseModelOutputWithPooling = self.vision_tower(
157
+ pixel_values.to(device=self.vision_tower.device, dtype=self.vision_tower.dtype),
158
+ output_hidden_states=True,
159
+ )
160
+ assert vision_tower_output.hidden_states is not None
161
+
162
+ vision_features: Tensor = vision_tower_output.hidden_states[-2]
163
+
164
+ vision_features_list, block_sizes = merge_features_for_dynamic_s2(
165
+ vision_features,
166
+ block_sizes=block_sizes if block_sizes is not None else [None] * vision_features.shape[0],
167
+ resize_output_to_scale_idx=-1,
168
+ scales=[448, 896, 1344],
169
+ )
170
+
171
+ vision_features_list = [
172
+ split_chessboard(x, block_size[0], block_size[1])
173
+ for x, block_size in zip(vision_features_list, block_sizes)
174
+ ]
175
+
176
+ vision_features = torch.cat([einops.rearrange(x, "b c h w -> b (h w) c") for x in vision_features_list])
177
+
178
+ vision_features = self.mm_projector(vision_features.to(self.device, self.dtype))
179
+
180
+ vision_features_list = list(
181
+ vision_features.split([block_size[0] * block_size[1] for block_size in block_sizes], dim=0)
182
+ )
183
+ vision_features_list = [
184
+ merge_chessboard(x, block_size[0], block_size[1])
185
+ for x, block_size in zip(vision_features_list, block_sizes)
186
+ ]
187
+
188
+ vision_features = torch.stack([einops.rearrange(x, "1 c h w -> (h w) c") for x in vision_features_list])
189
+
190
+ return vision_features
191
+
192
+
193
+ # NOTE: The following functions are directly copied from VILA codebase.
194
+
195
+
196
+ def merge_chessboard(x, num_split_h, num_split_w):
197
+ """
198
+ x: b * n * c or b * h * w * c
199
+ out: b * c * h * w
200
+ Assuming x contains num_split**2 sub-squares concatenated along batch dimension, merge the sub-squares back to the original whole square.
201
+ """
202
+ B = x.shape[0]
203
+ if x.dim() == 3:
204
+ N = x.shape[1]
205
+ x = einops.rearrange(x, "b (h w) c -> b c h w", h=math.isqrt(N), w=math.isqrt(N))
206
+
207
+ assert B % (num_split_h * num_split_w) == 0
208
+ b = B // (num_split_h * num_split_w)
209
+
210
+ x_merge = torch.cat(
211
+ [
212
+ torch.cat(
213
+ [x[(i * num_split_w + j) * b : (i * num_split_w + j + 1) * b] for j in range(num_split_w)], dim=-1
214
+ )
215
+ for i in range(num_split_h)
216
+ ],
217
+ dim=-2,
218
+ )
219
+
220
+ return x_merge
221
+
222
+
223
+ def merge_features_for_dynamic_s2(image_features, block_sizes, *, scales, resize_output_to_scale_idx):
224
+ image_features_each_image = []
225
+ new_block_sizes = []
226
+ block_cnt = 0
227
+ for block_size_each_image in block_sizes:
228
+ if block_size_each_image is None:
229
+ cur_features = image_features[block_cnt : block_cnt + 1]
230
+ cur_features = einops.rearrange(cur_features, "1 (h w) c -> 1 c h w", h=math.isqrt(cur_features.shape[1]))
231
+ cur_features = cur_features.repeat(1, len(scales), 1, 1)
232
+ image_features_each_image.append(cur_features)
233
+ new_block_sizes.append((1, 1))
234
+ block_cnt += 1
235
+ else:
236
+ cur_features_each_scale = []
237
+ for scale in scales[:-1]:
238
+ num_blocks_this_scale = (scale // scales[0]) ** 2
239
+ cur_features_each_scale.append(
240
+ merge_chessboard(
241
+ image_features[block_cnt : block_cnt + num_blocks_this_scale],
242
+ num_split_h=scale // scales[0],
243
+ num_split_w=scale // scales[0],
244
+ )
245
+ ) # 1 * C * H * W
246
+ block_cnt += num_blocks_this_scale
247
+ num_blocks_last_scale = block_size_each_image[0] * block_size_each_image[1]
248
+ cur_features_each_scale.append(
249
+ merge_chessboard(
250
+ image_features[block_cnt : block_cnt + num_blocks_last_scale],
251
+ num_split_h=block_size_each_image[0],
252
+ num_split_w=block_size_each_image[1],
253
+ )
254
+ ) # 1 * C * H * W
255
+ block_cnt += num_blocks_last_scale
256
+
257
+ # resize and concat features from different scales
258
+ output_size = cur_features_each_scale[resize_output_to_scale_idx].shape[-2:]
259
+ cur_features = torch.cat(
260
+ [
261
+ F.interpolate(cur_features_each_scale[i].to(torch.float32), size=output_size, mode="area").to(
262
+ cur_features_each_scale[i].dtype
263
+ )
264
+ for i in range(len(cur_features_each_scale))
265
+ ],
266
+ dim=1,
267
+ )
268
+ # cur_features = rearrange(cur_features, "1 c h w -> (h w) c")
269
+
270
+ image_features_each_image.append(cur_features)
271
+
272
+ if resize_output_to_scale_idx == len(scales) - 1 or resize_output_to_scale_idx == -1:
273
+ new_block_sizes.append(block_size_each_image)
274
+ else:
275
+ new_block_sizes.append(
276
+ (
277
+ scales[resize_output_to_scale_idx] // scales[0],
278
+ scales[resize_output_to_scale_idx] // scales[0],
279
+ )
280
+ )
281
+
282
+ assert block_cnt == len(
283
+ image_features
284
+ ), f"The number of blocks ({block_cnt}) does not match length of image_features ({len(image_features)})!"
285
+
286
+ return image_features_each_image, new_block_sizes
287
+
288
+
289
+ def split_chessboard(x, num_split_h, num_split_w):
290
+ """
291
+ x: b * c * h * w
292
+ out: b * c * h * w
293
+ Deividing x into num_split**2 sub-squares, and concatenate all the sub-squares on the batch dimension
294
+ """
295
+ B, C, H, W = x.shape
296
+ assert H % num_split_h == 0 and W % num_split_w == 0
297
+ h, w = H // num_split_h, W // num_split_w
298
+ x_split = torch.cat(
299
+ [x[:, :, i * h : (i + 1) * h, j * w : (j + 1) * w] for i in range(num_split_h) for j in range(num_split_w)],
300
+ dim=0,
301
+ )
302
+ return x_split
preprocessor_config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoProcessor": "processing_nvila.NVILAProcessor"
4
+ },
5
+ "do_convert_rgb": null,
6
+ "do_normalize": true,
7
+ "do_rescale": true,
8
+ "do_resize": true,
9
+ "image_mean": [
10
+ 0.5,
11
+ 0.5,
12
+ 0.5
13
+ ],
14
+ "image_processor_type": "SiglipImageProcessor",
15
+ "image_std": [
16
+ 0.5,
17
+ 0.5,
18
+ 0.5
19
+ ],
20
+ "processor_class": "NVILAProcessor",
21
+ "resample": 3,
22
+ "rescale_factor": 0.00392156862745098,
23
+ "size": {
24
+ "height": 448,
25
+ "width": 448
26
+ }
27
+ }
processing_nvila.py ADDED
@@ -0,0 +1,407 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ from os import PathLike
3
+ from typing import cast
4
+
5
+ import numpy as np
6
+ import transformers.image_transforms as image_transforms
7
+ import transformers.image_utils as image_utils
8
+ import transformers.video_utils as video_utils
9
+ from PIL.Image import Image
10
+ from transformers.feature_extraction_utils import BatchFeature
11
+ from transformers.image_utils import ImageInput
12
+ from transformers.models.qwen2 import Qwen2Tokenizer, Qwen2TokenizerFast
13
+ from transformers.models.siglip import SiglipImageProcessor, SiglipImageProcessorFast
14
+ from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, VideosKwargs
15
+ from transformers.tokenization_utils_base import BatchEncoding, TextInput
16
+ from transformers.video_utils import VideoInput, VideoMetadata
17
+
18
+
19
+ class NVILAProcessorKwargs(ProcessingKwargs, total=False):
20
+ _defaults = {} # type: ignore
21
+
22
+
23
+ class NVILAProcessor(ProcessorMixin):
24
+ attributes = [
25
+ "image_processor",
26
+ "tokenizer",
27
+ ]
28
+ image_processor_class = "AutoImageProcessor"
29
+ tokenizer_class = "AutoTokenizer"
30
+ _auto_class = "AutoProcessor"
31
+
32
+ def __init__(
33
+ self,
34
+ image_processor: SiglipImageProcessor | SiglipImageProcessorFast,
35
+ tokenizer: Qwen2Tokenizer | Qwen2TokenizerFast,
36
+ chat_template: str | None = None,
37
+ **kwargs,
38
+ ):
39
+ super().__init__(
40
+ image_processor,
41
+ tokenizer,
42
+ chat_template=chat_template,
43
+ **kwargs,
44
+ )
45
+
46
+ self.image_processor: SiglipImageProcessor | SiglipImageProcessorFast
47
+ self.tokenizer: Qwen2Tokenizer | Qwen2TokenizerFast
48
+
49
+ def __call__(
50
+ self,
51
+ *,
52
+ text: TextInput | list[TextInput],
53
+ images: ImageInput | None = None,
54
+ videos: VideoInput | None = None,
55
+ **kwargs: Unpack[NVILAProcessorKwargs],
56
+ ) -> BatchFeature:
57
+ normalized_text, normalized_images, normalized_videos = self._normalize_inputs(
58
+ text=text,
59
+ images=images,
60
+ videos=videos,
61
+ )
62
+
63
+ images_inputs, image_token_padding_strategy = (
64
+ self._preprocess_images(
65
+ normalized_images,
66
+ **kwargs,
67
+ )
68
+ if len(normalized_images) > 0
69
+ else (BatchFeature(), [])
70
+ )
71
+
72
+ videos_inputs, video_token_padding_strategy = (
73
+ self._preprocess_videos(
74
+ normalized_videos,
75
+ **kwargs,
76
+ )
77
+ if len(normalized_videos) > 0
78
+ else (BatchFeature(), [])
79
+ )
80
+
81
+ text_inputs = self._preprocess_text(
82
+ normalized_text,
83
+ image_token_padding_strategy=image_token_padding_strategy,
84
+ video_token_padding_strategy=video_token_padding_strategy,
85
+ **kwargs,
86
+ )
87
+
88
+ return BatchFeature(
89
+ {
90
+ **text_inputs,
91
+ **images_inputs,
92
+ **videos_inputs,
93
+ }
94
+ )
95
+
96
+ def batch_decode(self, *args, **kwargs) -> list[str]:
97
+ return self.tokenizer.batch_decode(*args, **kwargs)
98
+
99
+ def _normalize_inputs(
100
+ self,
101
+ *,
102
+ text: TextInput | list[TextInput],
103
+ images: ImageInput | None,
104
+ videos: VideoInput | None,
105
+ ) -> tuple[list[str], list[Image], list[list[Image]]]:
106
+ if isinstance(text, list):
107
+ normalized_text = text
108
+ else:
109
+ normalized_text = [text]
110
+
111
+ if images is not None and images != []:
112
+ image_flat_list = cast(list, image_utils.make_flat_list_of_images(images))
113
+ normalized_images = [cast(Image, image_transforms.to_pil_image(image)) for image in image_flat_list]
114
+ else:
115
+ normalized_images = []
116
+
117
+ if videos is not None and videos != []:
118
+ video_list = cast(list[list], video_utils.make_batched_videos(videos))
119
+ normalized_videos = [
120
+ [cast(Image, image_transforms.to_pil_image(image)) for image in video] for video in video_list
121
+ ]
122
+ else:
123
+ normalized_videos = []
124
+
125
+ return normalized_text, normalized_images, normalized_videos
126
+
127
+ def _preprocess_images(
128
+ self,
129
+ images: list[Image],
130
+ **kwargs: Unpack[NVILAProcessorKwargs],
131
+ ) -> tuple[BatchFeature, list[list[int]]]:
132
+ merged_kwargs = self._merge_kwargs(
133
+ NVILAProcessorKwargs, # type: ignore
134
+ tokenizer_init_kwargs=self.tokenizer.init_kwargs,
135
+ **kwargs,
136
+ )
137
+
138
+ images = [image.convert("RGB") for image in images]
139
+
140
+ if len(images) == 1:
141
+ assert self.image_processor.size["height"] == self.image_processor.size["width"]
142
+
143
+ images, block_size = dynamic_s2_preprocess(
144
+ images[0],
145
+ s2_scales=[448, 896, 1344],
146
+ max_num=12,
147
+ image_size=self.image_processor.size["height"],
148
+ )
149
+
150
+ pixel_values = self.image_processor(
151
+ images,
152
+ **merged_kwargs["images_kwargs"],
153
+ )["pixel_values"]
154
+
155
+ images_inputs = BatchFeature(
156
+ {
157
+ "block_sizes": [block_size],
158
+ "pixel_values": pixel_values,
159
+ }
160
+ )
161
+
162
+ padding_strategy = [[block_size[0] * block_size[1] * 256]]
163
+
164
+ else:
165
+ pixel_values = self.image_processor(
166
+ images,
167
+ **merged_kwargs["images_kwargs"],
168
+ )["pixel_values"]
169
+
170
+ images_inputs = BatchFeature(
171
+ {
172
+ "pixel_values": pixel_values,
173
+ }
174
+ )
175
+
176
+ padding_strategy = [[256]] * len(images)
177
+
178
+ return images_inputs, padding_strategy
179
+
180
+ def _preprocess_text(
181
+ self,
182
+ text: list[str],
183
+ *,
184
+ image_token_padding_strategy: list[list[int]],
185
+ video_token_padding_strategy: list[list[int]],
186
+ **kwargs: Unpack[NVILAProcessorKwargs],
187
+ ) -> BatchEncoding:
188
+ # Pad media tokens.
189
+ assert isinstance(self.tokenizer.image_token, str)
190
+ assert isinstance(self.tokenizer.video_token, str)
191
+
192
+ for media_token, padding_strategy in (
193
+ (self.tokenizer.image_token, image_token_padding_strategy),
194
+ (self.tokenizer.video_token, video_token_padding_strategy),
195
+ ):
196
+ assert sum([s.count(media_token) for s in text]) == len(padding_strategy)
197
+
198
+ # Pad to number of tiles.
199
+ pad_lens = [len(x) for x in padding_strategy]
200
+ text = [re.sub(rf"({re.escape(media_token)})", lambda _: media_token * pad_lens.pop(0), s) for s in text]
201
+
202
+ # Pad to number of features.
203
+ pad_lens = [y for x in padding_strategy for y in x]
204
+ pad_lens = [x + 1 for x in pad_lens] # Reserve for lf ending.
205
+ text = [re.sub(rf"({re.escape(media_token)})", lambda _: media_token * pad_lens.pop(0), s) for s in text]
206
+
207
+ merged_kwargs = self._merge_kwargs(
208
+ NVILAProcessorKwargs, # type: ignore
209
+ tokenizer_init_kwargs=self.tokenizer.init_kwargs,
210
+ **kwargs,
211
+ )
212
+
213
+ text_inputs = self.tokenizer(
214
+ text=text,
215
+ **merged_kwargs["text_kwargs"],
216
+ )
217
+
218
+ # Replace last token id of every image tile with lf token id.
219
+ lf_token_id = self.tokenizer.encode("\n")[0]
220
+ assert isinstance(self.tokenizer.image_token_id, int)
221
+ assert isinstance(self.tokenizer.video_token_id, int)
222
+
223
+ input_ids = text_inputs.input_ids
224
+
225
+ for media_token_id, padding_strategy in (
226
+ (self.tokenizer.image_token_id, image_token_padding_strategy),
227
+ (self.tokenizer.video_token_id, video_token_padding_strategy),
228
+ ):
229
+ pad_lens = [y for x in padding_strategy for y in x]
230
+
231
+ for i in range(len(input_ids)):
232
+ j = 0
233
+ while j < len(input_ids[i]):
234
+ if input_ids[i][j] != media_token_id:
235
+ j += 1
236
+ continue
237
+
238
+ j += pad_lens.pop(0)
239
+ input_ids[i][j] = lf_token_id
240
+
241
+ j += 1
242
+
243
+ return text_inputs
244
+
245
+ def _preprocess_videos(
246
+ self,
247
+ videos: list[list[Image]],
248
+ **kwargs: Unpack[NVILAProcessorKwargs],
249
+ ) -> tuple[BatchFeature, list[list[int]]]:
250
+ merged_kwargs = self._merge_kwargs(
251
+ NVILAProcessorKwargs, # type: ignore
252
+ tokenizer_init_kwargs=self.tokenizer.init_kwargs,
253
+ **kwargs,
254
+ )
255
+
256
+ # Support sampling frames.
257
+ if merged_kwargs["videos_kwargs"].get("do_sample_frames"):
258
+ videos = [
259
+ self._sample_frames(
260
+ video,
261
+ **merged_kwargs["videos_kwargs"],
262
+ )
263
+ for video in videos
264
+ ]
265
+
266
+ videos = [[image.convert("RGB") for image in video] for video in videos]
267
+
268
+ frames = [image for video in videos for image in video]
269
+ pixel_values_videos = self.image_processor(
270
+ frames,
271
+ **merged_kwargs["images_kwargs"],
272
+ )["pixel_values"]
273
+
274
+ videos_inputs = BatchFeature(
275
+ {
276
+ "pixel_values_videos": pixel_values_videos,
277
+ }
278
+ )
279
+
280
+ padding_strategy = [[256] * len(video) for video in videos]
281
+
282
+ return videos_inputs, padding_strategy
283
+
284
+ def _sample_frames(
285
+ self,
286
+ video: list[Image],
287
+ **kwargs: Unpack[VideosKwargs],
288
+ ) -> list[Image]:
289
+ fps = kwargs.get("fps")
290
+ num_frames = kwargs.get("num_frames")
291
+
292
+ if num_frames is not None and fps is None:
293
+ indices = np.round(np.linspace(0, len(video) - 1, num_frames)).astype(int)
294
+
295
+ return [video[i] for i in indices]
296
+
297
+ elif num_frames is None and fps is not None:
298
+ video_metadata = kwargs.get("video_metadata")
299
+
300
+ if isinstance(video_metadata, VideoMetadata):
301
+ total_num_frames = video_metadata.total_num_frames
302
+ duration = video_metadata.duration
303
+
304
+ elif isinstance(video_metadata, dict):
305
+ total_num_frames = video_metadata.get("total_num_frames")
306
+ duration = video_metadata.get("duration")
307
+
308
+ assert total_num_frames is not None
309
+ assert duration is not None
310
+
311
+ else:
312
+ raise NotImplementedError
313
+
314
+ indices = np.round(np.linspace(0, total_num_frames - 1, int(fps * duration))).astype(int)
315
+
316
+ return [video[i] for i in indices]
317
+
318
+ else:
319
+ raise NotImplementedError
320
+
321
+
322
+ # NOTE: The following functions are directly copied from VILA codebase.
323
+
324
+
325
+ def dynamic_s2_preprocess(image, s2_scales=[384, 768, 1152], max_num=12, image_size=384):
326
+ orig_width, orig_height = image.size
327
+ aspect_ratio = orig_width / orig_height
328
+ min_num = (s2_scales[-1] // s2_scales[0]) ** 2 # at least use number of tiles as the largest scale
329
+
330
+ processed_images = []
331
+
332
+ ##########################################################################################
333
+ ############# Add tiles for all but the last scale using fixed squre ratio ###############
334
+ ##########################################################################################
335
+
336
+ for scale in s2_scales[:-1]:
337
+ target_width = image_size * (scale // s2_scales[0])
338
+ target_height = image_size * (scale // s2_scales[0])
339
+ blocks = (scale // s2_scales[0]) ** 2
340
+
341
+ # resize the image
342
+ resized_img = image.resize((target_width, target_height))
343
+ for i in range(blocks):
344
+ box = (
345
+ (i % (target_width // image_size)) * image_size,
346
+ (i // (target_width // image_size)) * image_size,
347
+ ((i % (target_width // image_size)) + 1) * image_size,
348
+ ((i // (target_width // image_size)) + 1) * image_size,
349
+ )
350
+ # split the image
351
+ split_img = resized_img.crop(box)
352
+ processed_images.append(split_img)
353
+
354
+ ##########################################################################################
355
+ ################ Add tiles for the last scale using dynamic aspect ratio #################
356
+ ##########################################################################################
357
+
358
+ # calculate the existing image aspect ratio
359
+ target_ratios = {
360
+ (i, j)
361
+ for n in range(min_num, max_num + 1)
362
+ for i in range(1, n + 1)
363
+ for j in range(1, n + 1)
364
+ if i * j <= max_num and i * j >= min_num
365
+ }
366
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
367
+
368
+ # find the closest aspect ratio to the target
369
+ target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)
370
+
371
+ # calculate the target width and height
372
+ target_width = image_size * target_aspect_ratio[0]
373
+ target_height = image_size * target_aspect_ratio[1]
374
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
375
+
376
+ # resize the image
377
+ resized_img = image.resize((target_width, target_height))
378
+ for i in range(blocks):
379
+ box = (
380
+ (i % (target_width // image_size)) * image_size,
381
+ (i // (target_width // image_size)) * image_size,
382
+ ((i % (target_width // image_size)) + 1) * image_size,
383
+ ((i // (target_width // image_size)) + 1) * image_size,
384
+ )
385
+ # split the image
386
+ split_img = resized_img.crop(box)
387
+ processed_images.append(split_img)
388
+
389
+ return processed_images, (target_aspect_ratio[1], target_aspect_ratio[0])
390
+
391
+
392
+ def find_closest_aspect_ratio(
393
+ aspect_ratio: float, target_ratios: list[tuple[int, int]], width: int, height: int, image_size: int
394
+ ) -> tuple[int, int]:
395
+ best_ratio_diff = float("inf")
396
+ best_ratio = (1, 1)
397
+ area = width * height
398
+ for ratio in target_ratios:
399
+ target_aspect_ratio = ratio[0] / ratio[1]
400
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
401
+ if ratio_diff < best_ratio_diff:
402
+ best_ratio_diff = ratio_diff
403
+ best_ratio = ratio
404
+ elif ratio_diff == best_ratio_diff:
405
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
406
+ best_ratio = ratio
407
+ return best_ratio
processor_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoProcessor": "processing_nvila.NVILAProcessor"
4
+ },
5
+ "processor_class": "NVILAProcessor"
6
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "bos_token": {
18
+ "content": "[BOS]",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "eos_token": {
25
+ "content": "<|im_end|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ },
31
+ "image_token": "<image>",
32
+ "pad_token": {
33
+ "content": "[PAD]",
34
+ "lstrip": false,
35
+ "normalized": false,
36
+ "rstrip": false,
37
+ "single_word": false
38
+ },
39
+ "sentinel_token": "<vila/sentinel>",
40
+ "video_token": "<vila/video>"
41
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,260 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "[BOS]",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": true
188
+ },
189
+ "151666": {
190
+ "content": "[PAD]",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": true
196
+ },
197
+ "151667": {
198
+ "content": "<vila/sentinel>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": true
204
+ },
205
+ "151668": {
206
+ "content": "<image>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": true
212
+ },
213
+ "151669": {
214
+ "content": "<vila/video>",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": true
220
+ }
221
+ },
222
+ "additional_special_tokens": [
223
+ "<|im_start|>",
224
+ "<|im_end|>",
225
+ "<|object_ref_start|>",
226
+ "<|object_ref_end|>",
227
+ "<|box_start|>",
228
+ "<|box_end|>",
229
+ "<|quad_start|>",
230
+ "<|quad_end|>",
231
+ "<|vision_start|>",
232
+ "<|vision_end|>",
233
+ "<|vision_pad|>",
234
+ "<|image_pad|>",
235
+ "<|video_pad|>"
236
+ ],
237
+ "auto_map": {
238
+ "AutoProcessor": "processing_nvila.NVILAProcessor"
239
+ },
240
+ "bos_token": "[BOS]",
241
+ "clean_up_tokenization_spaces": false,
242
+ "eos_token": "<|im_end|>",
243
+ "errors": "replace",
244
+ "extra_special_tokens": {
245
+ "image_token": "<image>",
246
+ "sentinel_token": "<vila/sentinel>",
247
+ "video_token": "<vila/video>"
248
+ },
249
+ "image_token": "<image>",
250
+ "legacy": false,
251
+ "model_max_length": 8192,
252
+ "pad_token": "[PAD]",
253
+ "padding_side": "left",
254
+ "processor_class": "NVILAProcessor",
255
+ "sentinel_token": "<vila/sentinel>",
256
+ "split_special_tokens": false,
257
+ "tokenizer_class": "Qwen2Tokenizer",
258
+ "unk_token": null,
259
+ "video_token": "<vila/video>"
260
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff