Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- added_tokens.json +32 -0
- config.json +28 -0
- generation_config.json +14 -0
- latest +1 -0
- merges.txt +0 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +441 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +273 -0
- trainer_state.json +3184 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +760 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</answer>": 151670,
|
3 |
+
"</information>": 151672,
|
4 |
+
"</think>": 151666,
|
5 |
+
"</tool>": 151668,
|
6 |
+
"</tool_call>": 151658,
|
7 |
+
"<answer>": 151669,
|
8 |
+
"<information>": 151671,
|
9 |
+
"<think>": 151665,
|
10 |
+
"<tool>": 151667,
|
11 |
+
"<tool_call>": 151657,
|
12 |
+
"<|box_end|>": 151649,
|
13 |
+
"<|box_start|>": 151648,
|
14 |
+
"<|endoftext|>": 151643,
|
15 |
+
"<|file_sep|>": 151664,
|
16 |
+
"<|fim_middle|>": 151660,
|
17 |
+
"<|fim_pad|>": 151662,
|
18 |
+
"<|fim_prefix|>": 151659,
|
19 |
+
"<|fim_suffix|>": 151661,
|
20 |
+
"<|im_end|>": 151645,
|
21 |
+
"<|im_start|>": 151644,
|
22 |
+
"<|image_pad|>": 151655,
|
23 |
+
"<|object_ref_end|>": 151647,
|
24 |
+
"<|object_ref_start|>": 151646,
|
25 |
+
"<|quad_end|>": 151651,
|
26 |
+
"<|quad_start|>": 151650,
|
27 |
+
"<|repo_name|>": 151663,
|
28 |
+
"<|video_pad|>": 151656,
|
29 |
+
"<|vision_end|>": 151653,
|
30 |
+
"<|vision_pad|>": 151654,
|
31 |
+
"<|vision_start|>": 151652
|
32 |
+
}
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen2ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 151643,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 2048,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 11008,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"max_window_layers": 70,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 16,
|
16 |
+
"num_hidden_layers": 36,
|
17 |
+
"num_key_value_heads": 2,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"rope_scaling": null,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": 32768,
|
22 |
+
"tie_word_embeddings": true,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.51.3",
|
25 |
+
"use_cache": false,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 151936
|
28 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.51.3"
|
14 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step4500
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1674ae964de3cb7382f88b5adf2da60501a5733b2cc34f2bc3ebce0948cd9961
|
3 |
+
size 4957560304
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0cc00c62a0ce5af7f20e0421a3e24b46de6694d431ef33a63bf3007eda1fa40d
|
3 |
+
size 1214366696
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 6171877376
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
7 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
194 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
238 |
+
"model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
260 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
261 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
262 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
263 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
264 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
272 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
273 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
274 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
275 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
276 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
278 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
279 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
281 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
283 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
284 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
293 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
295 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
296 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
298 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
299 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
300 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
302 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
303 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
305 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
307 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
308 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
309 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
310 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
311 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
312 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
314 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
315 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
317 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
319 |
+
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
320 |
+
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
321 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
322 |
+
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
323 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
324 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
326 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
327 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
329 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
331 |
+
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
332 |
+
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
334 |
+
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
335 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
336 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
338 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
339 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
341 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
343 |
+
"model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
344 |
+
"model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
345 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
346 |
+
"model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
347 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
348 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
350 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
351 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
353 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
355 |
+
"model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
356 |
+
"model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
357 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
358 |
+
"model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
359 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
360 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
362 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
363 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
365 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
367 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
368 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
369 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
370 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
371 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
372 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
373 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
374 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
375 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
376 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
377 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
378 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
379 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
380 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
382 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
384 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
385 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
386 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
387 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
388 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
389 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
390 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
391 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
392 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
394 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
395 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
396 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
397 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
398 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
399 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
400 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
401 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
402 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
403 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
404 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
405 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
406 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
407 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
408 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
409 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
410 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
411 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
412 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
413 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
414 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
415 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
416 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
417 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
418 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
419 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
420 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
421 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
422 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
423 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
424 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
425 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
426 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
427 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
428 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
429 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
430 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
431 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
432 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
433 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
434 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
435 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
436 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
437 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
438 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
439 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
440 |
+
}
|
441 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6223cfb5499da33858a9472a0bbac51ae00362d72a643acb50af8e2065967744
|
3 |
+
size 11423384
|
tokenizer_config.json
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<think>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": true,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "</think>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": true,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"151667": {
|
198 |
+
"content": "<tool>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": true,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"151668": {
|
206 |
+
"content": "</tool>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": true,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
},
|
213 |
+
"151669": {
|
214 |
+
"content": "<answer>",
|
215 |
+
"lstrip": false,
|
216 |
+
"normalized": true,
|
217 |
+
"rstrip": false,
|
218 |
+
"single_word": false,
|
219 |
+
"special": false
|
220 |
+
},
|
221 |
+
"151670": {
|
222 |
+
"content": "</answer>",
|
223 |
+
"lstrip": false,
|
224 |
+
"normalized": true,
|
225 |
+
"rstrip": false,
|
226 |
+
"single_word": false,
|
227 |
+
"special": false
|
228 |
+
},
|
229 |
+
"151671": {
|
230 |
+
"content": "<information>",
|
231 |
+
"lstrip": false,
|
232 |
+
"normalized": true,
|
233 |
+
"rstrip": false,
|
234 |
+
"single_word": false,
|
235 |
+
"special": false
|
236 |
+
},
|
237 |
+
"151672": {
|
238 |
+
"content": "</information>",
|
239 |
+
"lstrip": false,
|
240 |
+
"normalized": true,
|
241 |
+
"rstrip": false,
|
242 |
+
"single_word": false,
|
243 |
+
"special": false
|
244 |
+
}
|
245 |
+
},
|
246 |
+
"additional_special_tokens": [
|
247 |
+
"<|im_start|>",
|
248 |
+
"<|im_end|>",
|
249 |
+
"<|object_ref_start|>",
|
250 |
+
"<|object_ref_end|>",
|
251 |
+
"<|box_start|>",
|
252 |
+
"<|box_end|>",
|
253 |
+
"<|quad_start|>",
|
254 |
+
"<|quad_end|>",
|
255 |
+
"<|vision_start|>",
|
256 |
+
"<|vision_end|>",
|
257 |
+
"<|vision_pad|>",
|
258 |
+
"<|image_pad|>",
|
259 |
+
"<|video_pad|>"
|
260 |
+
],
|
261 |
+
"bos_token": null,
|
262 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
263 |
+
"clean_up_tokenization_spaces": false,
|
264 |
+
"eos_token": "<|im_end|>",
|
265 |
+
"errors": "replace",
|
266 |
+
"extra_special_tokens": {},
|
267 |
+
"model_max_length": 131072,
|
268 |
+
"pad_token": "<|endoftext|>",
|
269 |
+
"padding_side": "right",
|
270 |
+
"split_special_tokens": false,
|
271 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
272 |
+
"unk_token": null
|
273 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,3184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 2.8553299492385786,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 4500,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.006345177664974619,
|
14 |
+
"grad_norm": 12.304139137268066,
|
15 |
+
"learning_rate": 1.9027484143763215e-07,
|
16 |
+
"loss": 1.4092,
|
17 |
+
"step": 10
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.012690355329949238,
|
21 |
+
"grad_norm": 10.735240936279297,
|
22 |
+
"learning_rate": 4.0169133192389007e-07,
|
23 |
+
"loss": 1.3444,
|
24 |
+
"step": 20
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.01903553299492386,
|
28 |
+
"grad_norm": 4.4380784034729,
|
29 |
+
"learning_rate": 6.131078224101481e-07,
|
30 |
+
"loss": 1.2567,
|
31 |
+
"step": 30
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.025380710659898477,
|
35 |
+
"grad_norm": 3.0971062183380127,
|
36 |
+
"learning_rate": 8.245243128964061e-07,
|
37 |
+
"loss": 1.2201,
|
38 |
+
"step": 40
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.031725888324873094,
|
42 |
+
"grad_norm": 2.3528785705566406,
|
43 |
+
"learning_rate": 1.0359408033826639e-06,
|
44 |
+
"loss": 1.1005,
|
45 |
+
"step": 50
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.03807106598984772,
|
49 |
+
"grad_norm": 1.9325449466705322,
|
50 |
+
"learning_rate": 1.2473572938689219e-06,
|
51 |
+
"loss": 1.0258,
|
52 |
+
"step": 60
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.044416243654822336,
|
56 |
+
"grad_norm": 1.9481005668640137,
|
57 |
+
"learning_rate": 1.4587737843551796e-06,
|
58 |
+
"loss": 0.9549,
|
59 |
+
"step": 70
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.050761421319796954,
|
63 |
+
"grad_norm": 1.3744746446609497,
|
64 |
+
"learning_rate": 1.6701902748414379e-06,
|
65 |
+
"loss": 0.9397,
|
66 |
+
"step": 80
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.05710659898477157,
|
70 |
+
"grad_norm": 1.3208822011947632,
|
71 |
+
"learning_rate": 1.8816067653276956e-06,
|
72 |
+
"loss": 0.9581,
|
73 |
+
"step": 90
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.06345177664974619,
|
77 |
+
"grad_norm": 1.578454613685608,
|
78 |
+
"learning_rate": 2.0930232558139536e-06,
|
79 |
+
"loss": 0.8835,
|
80 |
+
"step": 100
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.06979695431472081,
|
84 |
+
"grad_norm": 1.7314599752426147,
|
85 |
+
"learning_rate": 2.3044397463002116e-06,
|
86 |
+
"loss": 0.877,
|
87 |
+
"step": 110
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.07614213197969544,
|
91 |
+
"grad_norm": 1.690652847290039,
|
92 |
+
"learning_rate": 2.5158562367864696e-06,
|
93 |
+
"loss": 0.8674,
|
94 |
+
"step": 120
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.08248730964467005,
|
98 |
+
"grad_norm": 1.4886319637298584,
|
99 |
+
"learning_rate": 2.7272727272727272e-06,
|
100 |
+
"loss": 0.8124,
|
101 |
+
"step": 130
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.08883248730964467,
|
105 |
+
"grad_norm": 1.5932313203811646,
|
106 |
+
"learning_rate": 2.9386892177589852e-06,
|
107 |
+
"loss": 0.8825,
|
108 |
+
"step": 140
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.09517766497461928,
|
112 |
+
"grad_norm": 1.7353770732879639,
|
113 |
+
"learning_rate": 3.1501057082452436e-06,
|
114 |
+
"loss": 0.8381,
|
115 |
+
"step": 150
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.10152284263959391,
|
119 |
+
"grad_norm": 1.5052095651626587,
|
120 |
+
"learning_rate": 3.3615221987315012e-06,
|
121 |
+
"loss": 0.8094,
|
122 |
+
"step": 160
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.10786802030456853,
|
126 |
+
"grad_norm": 1.5068026781082153,
|
127 |
+
"learning_rate": 3.5729386892177592e-06,
|
128 |
+
"loss": 0.8088,
|
129 |
+
"step": 170
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.11421319796954314,
|
133 |
+
"grad_norm": 1.3972314596176147,
|
134 |
+
"learning_rate": 3.7843551797040172e-06,
|
135 |
+
"loss": 0.7807,
|
136 |
+
"step": 180
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.12055837563451777,
|
140 |
+
"grad_norm": 1.4561253786087036,
|
141 |
+
"learning_rate": 3.995771670190275e-06,
|
142 |
+
"loss": 0.751,
|
143 |
+
"step": 190
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.12690355329949238,
|
147 |
+
"grad_norm": 1.1900990009307861,
|
148 |
+
"learning_rate": 4.207188160676533e-06,
|
149 |
+
"loss": 0.7526,
|
150 |
+
"step": 200
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.13324873096446702,
|
154 |
+
"grad_norm": 1.2069578170776367,
|
155 |
+
"learning_rate": 4.418604651162791e-06,
|
156 |
+
"loss": 0.737,
|
157 |
+
"step": 210
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.13959390862944163,
|
161 |
+
"grad_norm": 1.3006811141967773,
|
162 |
+
"learning_rate": 4.630021141649049e-06,
|
163 |
+
"loss": 0.757,
|
164 |
+
"step": 220
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.14593908629441624,
|
168 |
+
"grad_norm": 1.1366584300994873,
|
169 |
+
"learning_rate": 4.841437632135307e-06,
|
170 |
+
"loss": 0.7355,
|
171 |
+
"step": 230
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.15228426395939088,
|
175 |
+
"grad_norm": 1.0923043489456177,
|
176 |
+
"learning_rate": 5.052854122621564e-06,
|
177 |
+
"loss": 0.7273,
|
178 |
+
"step": 240
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.15862944162436549,
|
182 |
+
"grad_norm": 1.1340067386627197,
|
183 |
+
"learning_rate": 5.264270613107823e-06,
|
184 |
+
"loss": 0.7093,
|
185 |
+
"step": 250
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.1649746192893401,
|
189 |
+
"grad_norm": 1.0045281648635864,
|
190 |
+
"learning_rate": 5.47568710359408e-06,
|
191 |
+
"loss": 0.709,
|
192 |
+
"step": 260
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.1713197969543147,
|
196 |
+
"grad_norm": 1.3080400228500366,
|
197 |
+
"learning_rate": 5.687103594080339e-06,
|
198 |
+
"loss": 0.7142,
|
199 |
+
"step": 270
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.17766497461928935,
|
203 |
+
"grad_norm": 1.4830659627914429,
|
204 |
+
"learning_rate": 5.898520084566597e-06,
|
205 |
+
"loss": 0.7233,
|
206 |
+
"step": 280
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.18401015228426396,
|
210 |
+
"grad_norm": 1.295798897743225,
|
211 |
+
"learning_rate": 6.109936575052855e-06,
|
212 |
+
"loss": 0.7254,
|
213 |
+
"step": 290
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.19035532994923857,
|
217 |
+
"grad_norm": 1.1951725482940674,
|
218 |
+
"learning_rate": 6.321353065539113e-06,
|
219 |
+
"loss": 0.7008,
|
220 |
+
"step": 300
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.1967005076142132,
|
224 |
+
"grad_norm": 1.1962999105453491,
|
225 |
+
"learning_rate": 6.53276955602537e-06,
|
226 |
+
"loss": 0.6697,
|
227 |
+
"step": 310
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.20304568527918782,
|
231 |
+
"grad_norm": 1.0768781900405884,
|
232 |
+
"learning_rate": 6.744186046511628e-06,
|
233 |
+
"loss": 0.6688,
|
234 |
+
"step": 320
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.20939086294416243,
|
238 |
+
"grad_norm": 1.2655526399612427,
|
239 |
+
"learning_rate": 6.955602536997886e-06,
|
240 |
+
"loss": 0.7098,
|
241 |
+
"step": 330
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.21573604060913706,
|
245 |
+
"grad_norm": 1.1732734441757202,
|
246 |
+
"learning_rate": 7.167019027484144e-06,
|
247 |
+
"loss": 0.6961,
|
248 |
+
"step": 340
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.22208121827411167,
|
252 |
+
"grad_norm": 1.4146960973739624,
|
253 |
+
"learning_rate": 7.378435517970403e-06,
|
254 |
+
"loss": 0.6581,
|
255 |
+
"step": 350
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.22842639593908629,
|
259 |
+
"grad_norm": 1.0180368423461914,
|
260 |
+
"learning_rate": 7.58985200845666e-06,
|
261 |
+
"loss": 0.636,
|
262 |
+
"step": 360
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.23477157360406092,
|
266 |
+
"grad_norm": 1.1763561964035034,
|
267 |
+
"learning_rate": 7.801268498942918e-06,
|
268 |
+
"loss": 0.6695,
|
269 |
+
"step": 370
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.24111675126903553,
|
273 |
+
"grad_norm": 1.120521068572998,
|
274 |
+
"learning_rate": 8.012684989429176e-06,
|
275 |
+
"loss": 0.6658,
|
276 |
+
"step": 380
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.24746192893401014,
|
280 |
+
"grad_norm": 1.070609450340271,
|
281 |
+
"learning_rate": 8.224101479915433e-06,
|
282 |
+
"loss": 0.6528,
|
283 |
+
"step": 390
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.25380710659898476,
|
287 |
+
"grad_norm": 1.404994249343872,
|
288 |
+
"learning_rate": 8.435517970401692e-06,
|
289 |
+
"loss": 0.6525,
|
290 |
+
"step": 400
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.26015228426395937,
|
294 |
+
"grad_norm": 1.3568419218063354,
|
295 |
+
"learning_rate": 8.64693446088795e-06,
|
296 |
+
"loss": 0.6525,
|
297 |
+
"step": 410
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.26649746192893403,
|
301 |
+
"grad_norm": 1.3468185663223267,
|
302 |
+
"learning_rate": 8.858350951374208e-06,
|
303 |
+
"loss": 0.641,
|
304 |
+
"step": 420
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.27284263959390864,
|
308 |
+
"grad_norm": 1.0951420068740845,
|
309 |
+
"learning_rate": 9.069767441860465e-06,
|
310 |
+
"loss": 0.6453,
|
311 |
+
"step": 430
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.27918781725888325,
|
315 |
+
"grad_norm": 1.030259370803833,
|
316 |
+
"learning_rate": 9.281183932346723e-06,
|
317 |
+
"loss": 0.6138,
|
318 |
+
"step": 440
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.28553299492385786,
|
322 |
+
"grad_norm": 1.1757938861846924,
|
323 |
+
"learning_rate": 9.492600422832982e-06,
|
324 |
+
"loss": 0.6787,
|
325 |
+
"step": 450
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.2918781725888325,
|
329 |
+
"grad_norm": 1.3138433694839478,
|
330 |
+
"learning_rate": 9.70401691331924e-06,
|
331 |
+
"loss": 0.6633,
|
332 |
+
"step": 460
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.2982233502538071,
|
336 |
+
"grad_norm": 1.3092707395553589,
|
337 |
+
"learning_rate": 9.915433403805497e-06,
|
338 |
+
"loss": 0.6432,
|
339 |
+
"step": 470
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.30456852791878175,
|
343 |
+
"grad_norm": 1.2927078008651733,
|
344 |
+
"learning_rate": 9.999950938319974e-06,
|
345 |
+
"loss": 0.6266,
|
346 |
+
"step": 480
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.31091370558375636,
|
350 |
+
"grad_norm": 1.33150053024292,
|
351 |
+
"learning_rate": 9.999651120428776e-06,
|
352 |
+
"loss": 0.6427,
|
353 |
+
"step": 490
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.31725888324873097,
|
357 |
+
"grad_norm": 1.2657496929168701,
|
358 |
+
"learning_rate": 9.999078757459388e-06,
|
359 |
+
"loss": 0.6457,
|
360 |
+
"step": 500
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.3236040609137056,
|
364 |
+
"grad_norm": 1.6883960962295532,
|
365 |
+
"learning_rate": 9.998233880612932e-06,
|
366 |
+
"loss": 0.6137,
|
367 |
+
"step": 510
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.3299492385786802,
|
371 |
+
"grad_norm": 0.9815077781677246,
|
372 |
+
"learning_rate": 9.997116535946028e-06,
|
373 |
+
"loss": 0.6069,
|
374 |
+
"step": 520
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.3362944162436548,
|
378 |
+
"grad_norm": 1.3186026811599731,
|
379 |
+
"learning_rate": 9.99572678436828e-06,
|
380 |
+
"loss": 0.6024,
|
381 |
+
"step": 530
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.3426395939086294,
|
385 |
+
"grad_norm": 1.6290111541748047,
|
386 |
+
"learning_rate": 9.994064701638969e-06,
|
387 |
+
"loss": 0.6273,
|
388 |
+
"step": 540
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.3489847715736041,
|
392 |
+
"grad_norm": 1.3211804628372192,
|
393 |
+
"learning_rate": 9.992130378362908e-06,
|
394 |
+
"loss": 0.6068,
|
395 |
+
"step": 550
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.3553299492385787,
|
399 |
+
"grad_norm": 1.619232177734375,
|
400 |
+
"learning_rate": 9.989923919985512e-06,
|
401 |
+
"loss": 0.612,
|
402 |
+
"step": 560
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.3616751269035533,
|
406 |
+
"grad_norm": 1.0001276731491089,
|
407 |
+
"learning_rate": 9.987445446787049e-06,
|
408 |
+
"loss": 0.5687,
|
409 |
+
"step": 570
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.3680203045685279,
|
413 |
+
"grad_norm": 1.2668827772140503,
|
414 |
+
"learning_rate": 9.984695093876081e-06,
|
415 |
+
"loss": 0.5723,
|
416 |
+
"step": 580
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.3743654822335025,
|
420 |
+
"grad_norm": 1.1758859157562256,
|
421 |
+
"learning_rate": 9.981673011182098e-06,
|
422 |
+
"loss": 0.5963,
|
423 |
+
"step": 590
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.38071065989847713,
|
427 |
+
"grad_norm": 1.4700498580932617,
|
428 |
+
"learning_rate": 9.978379363447348e-06,
|
429 |
+
"loss": 0.5682,
|
430 |
+
"step": 600
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 0.3870558375634518,
|
434 |
+
"grad_norm": 1.7378568649291992,
|
435 |
+
"learning_rate": 9.974814330217858e-06,
|
436 |
+
"loss": 0.6286,
|
437 |
+
"step": 610
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.3934010152284264,
|
441 |
+
"grad_norm": 1.5732265710830688,
|
442 |
+
"learning_rate": 9.970978105833632e-06,
|
443 |
+
"loss": 0.5464,
|
444 |
+
"step": 620
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.399746192893401,
|
448 |
+
"grad_norm": 1.4477766752243042,
|
449 |
+
"learning_rate": 9.966870899418087e-06,
|
450 |
+
"loss": 0.5806,
|
451 |
+
"step": 630
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.40609137055837563,
|
455 |
+
"grad_norm": 1.5664384365081787,
|
456 |
+
"learning_rate": 9.96249293486662e-06,
|
457 |
+
"loss": 0.5868,
|
458 |
+
"step": 640
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.41243654822335024,
|
462 |
+
"grad_norm": 1.242577075958252,
|
463 |
+
"learning_rate": 9.957844450834418e-06,
|
464 |
+
"loss": 0.5943,
|
465 |
+
"step": 650
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.41878172588832485,
|
469 |
+
"grad_norm": 1.3932079076766968,
|
470 |
+
"learning_rate": 9.952925700723455e-06,
|
471 |
+
"loss": 0.5582,
|
472 |
+
"step": 660
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 0.4251269035532995,
|
476 |
+
"grad_norm": 1.4832308292388916,
|
477 |
+
"learning_rate": 9.947736952668667e-06,
|
478 |
+
"loss": 0.561,
|
479 |
+
"step": 670
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.43147208121827413,
|
483 |
+
"grad_norm": 1.8345366716384888,
|
484 |
+
"learning_rate": 9.942278489523338e-06,
|
485 |
+
"loss": 0.5459,
|
486 |
+
"step": 680
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.43781725888324874,
|
490 |
+
"grad_norm": 1.1875063180923462,
|
491 |
+
"learning_rate": 9.936550608843685e-06,
|
492 |
+
"loss": 0.5267,
|
493 |
+
"step": 690
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 0.44416243654822335,
|
497 |
+
"grad_norm": 1.4732545614242554,
|
498 |
+
"learning_rate": 9.930553622872631e-06,
|
499 |
+
"loss": 0.5814,
|
500 |
+
"step": 700
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.45050761421319796,
|
504 |
+
"grad_norm": 1.7493573427200317,
|
505 |
+
"learning_rate": 9.924287858522789e-06,
|
506 |
+
"loss": 0.5633,
|
507 |
+
"step": 710
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.45685279187817257,
|
511 |
+
"grad_norm": 1.4842727184295654,
|
512 |
+
"learning_rate": 9.917753657358638e-06,
|
513 |
+
"loss": 0.53,
|
514 |
+
"step": 720
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 0.4631979695431472,
|
518 |
+
"grad_norm": 1.6605039834976196,
|
519 |
+
"learning_rate": 9.910951375577907e-06,
|
520 |
+
"loss": 0.5231,
|
521 |
+
"step": 730
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.46954314720812185,
|
525 |
+
"grad_norm": 1.6541188955307007,
|
526 |
+
"learning_rate": 9.903881383992153e-06,
|
527 |
+
"loss": 0.5268,
|
528 |
+
"step": 740
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 0.47588832487309646,
|
532 |
+
"grad_norm": 1.8268778324127197,
|
533 |
+
"learning_rate": 9.89654406800655e-06,
|
534 |
+
"loss": 0.49,
|
535 |
+
"step": 750
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 0.48223350253807107,
|
539 |
+
"grad_norm": 1.4834731817245483,
|
540 |
+
"learning_rate": 9.88893982759888e-06,
|
541 |
+
"loss": 0.5045,
|
542 |
+
"step": 760
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.4885786802030457,
|
546 |
+
"grad_norm": 1.717140555381775,
|
547 |
+
"learning_rate": 9.881069077297724e-06,
|
548 |
+
"loss": 0.496,
|
549 |
+
"step": 770
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.4949238578680203,
|
553 |
+
"grad_norm": 1.0741287469863892,
|
554 |
+
"learning_rate": 9.872932246159873e-06,
|
555 |
+
"loss": 0.4679,
|
556 |
+
"step": 780
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 0.501269035532995,
|
560 |
+
"grad_norm": 1.2269752025604248,
|
561 |
+
"learning_rate": 9.864529777746929e-06,
|
562 |
+
"loss": 0.4772,
|
563 |
+
"step": 790
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.5076142131979695,
|
567 |
+
"grad_norm": 1.6613504886627197,
|
568 |
+
"learning_rate": 9.85586213010114e-06,
|
569 |
+
"loss": 0.5008,
|
570 |
+
"step": 800
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.5139593908629442,
|
574 |
+
"grad_norm": 1.2009035348892212,
|
575 |
+
"learning_rate": 9.846929775720411e-06,
|
576 |
+
"loss": 0.5038,
|
577 |
+
"step": 810
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.5203045685279187,
|
581 |
+
"grad_norm": 1.5814530849456787,
|
582 |
+
"learning_rate": 9.837733201532565e-06,
|
583 |
+
"loss": 0.5021,
|
584 |
+
"step": 820
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.5266497461928934,
|
588 |
+
"grad_norm": 1.6952024698257446,
|
589 |
+
"learning_rate": 9.82827290886879e-06,
|
590 |
+
"loss": 0.4845,
|
591 |
+
"step": 830
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.5329949238578681,
|
595 |
+
"grad_norm": 1.3526102304458618,
|
596 |
+
"learning_rate": 9.818549413436309e-06,
|
597 |
+
"loss": 0.4952,
|
598 |
+
"step": 840
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 0.5393401015228426,
|
602 |
+
"grad_norm": 1.7655881643295288,
|
603 |
+
"learning_rate": 9.80856324529027e-06,
|
604 |
+
"loss": 0.4678,
|
605 |
+
"step": 850
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 0.5456852791878173,
|
609 |
+
"grad_norm": 1.391158103942871,
|
610 |
+
"learning_rate": 9.79831494880486e-06,
|
611 |
+
"loss": 0.4702,
|
612 |
+
"step": 860
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 0.5520304568527918,
|
616 |
+
"grad_norm": 1.3191405534744263,
|
617 |
+
"learning_rate": 9.787805082643604e-06,
|
618 |
+
"loss": 0.4394,
|
619 |
+
"step": 870
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"epoch": 0.5583756345177665,
|
623 |
+
"grad_norm": 1.537750005722046,
|
624 |
+
"learning_rate": 9.777034219728943e-06,
|
625 |
+
"loss": 0.4172,
|
626 |
+
"step": 880
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.5647208121827412,
|
630 |
+
"grad_norm": 1.953177809715271,
|
631 |
+
"learning_rate": 9.76600294721098e-06,
|
632 |
+
"loss": 0.4846,
|
633 |
+
"step": 890
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.5710659898477157,
|
637 |
+
"grad_norm": 1.3089863061904907,
|
638 |
+
"learning_rate": 9.754711866435477e-06,
|
639 |
+
"loss": 0.414,
|
640 |
+
"step": 900
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 0.5774111675126904,
|
644 |
+
"grad_norm": 1.6026610136032104,
|
645 |
+
"learning_rate": 9.743161592911088e-06,
|
646 |
+
"loss": 0.5243,
|
647 |
+
"step": 910
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 0.583756345177665,
|
651 |
+
"grad_norm": 1.7620460987091064,
|
652 |
+
"learning_rate": 9.731352756275781e-06,
|
653 |
+
"loss": 0.4181,
|
654 |
+
"step": 920
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 0.5901015228426396,
|
658 |
+
"grad_norm": 1.6068378686904907,
|
659 |
+
"learning_rate": 9.719286000262533e-06,
|
660 |
+
"loss": 0.3713,
|
661 |
+
"step": 930
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.5964467005076142,
|
665 |
+
"grad_norm": 2.3091704845428467,
|
666 |
+
"learning_rate": 9.706961982664239e-06,
|
667 |
+
"loss": 0.4562,
|
668 |
+
"step": 940
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.6027918781725888,
|
672 |
+
"grad_norm": 2.353106737136841,
|
673 |
+
"learning_rate": 9.69438137529784e-06,
|
674 |
+
"loss": 0.4361,
|
675 |
+
"step": 950
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.6091370558375635,
|
679 |
+
"grad_norm": 1.599411129951477,
|
680 |
+
"learning_rate": 9.681544863967713e-06,
|
681 |
+
"loss": 0.4496,
|
682 |
+
"step": 960
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 0.6154822335025381,
|
686 |
+
"grad_norm": 1.5869901180267334,
|
687 |
+
"learning_rate": 9.668453148428282e-06,
|
688 |
+
"loss": 0.4046,
|
689 |
+
"step": 970
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 0.6218274111675127,
|
693 |
+
"grad_norm": 1.7548712491989136,
|
694 |
+
"learning_rate": 9.65510694234587e-06,
|
695 |
+
"loss": 0.3627,
|
696 |
+
"step": 980
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"epoch": 0.6281725888324873,
|
700 |
+
"grad_norm": 1.3313032388687134,
|
701 |
+
"learning_rate": 9.641506973259798e-06,
|
702 |
+
"loss": 0.4176,
|
703 |
+
"step": 990
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 0.6345177664974619,
|
707 |
+
"grad_norm": 3.056716203689575,
|
708 |
+
"learning_rate": 9.627653982542722e-06,
|
709 |
+
"loss": 0.4283,
|
710 |
+
"step": 1000
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.6408629441624365,
|
714 |
+
"grad_norm": 1.8358234167099,
|
715 |
+
"learning_rate": 9.613548725360224e-06,
|
716 |
+
"loss": 0.4217,
|
717 |
+
"step": 1010
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.6472081218274112,
|
721 |
+
"grad_norm": 1.823522686958313,
|
722 |
+
"learning_rate": 9.599191970629638e-06,
|
723 |
+
"loss": 0.437,
|
724 |
+
"step": 1020
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"epoch": 0.6535532994923858,
|
728 |
+
"grad_norm": 1.779383897781372,
|
729 |
+
"learning_rate": 9.584584500978144e-06,
|
730 |
+
"loss": 0.3995,
|
731 |
+
"step": 1030
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"epoch": 0.6598984771573604,
|
735 |
+
"grad_norm": 1.7531787157058716,
|
736 |
+
"learning_rate": 9.569727112700093e-06,
|
737 |
+
"loss": 0.4449,
|
738 |
+
"step": 1040
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"epoch": 0.666243654822335,
|
742 |
+
"grad_norm": 2.1453044414520264,
|
743 |
+
"learning_rate": 9.55462061571361e-06,
|
744 |
+
"loss": 0.3754,
|
745 |
+
"step": 1050
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 0.6725888324873096,
|
749 |
+
"grad_norm": 1.6521024703979492,
|
750 |
+
"learning_rate": 9.539265833516434e-06,
|
751 |
+
"loss": 0.419,
|
752 |
+
"step": 1060
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.6789340101522843,
|
756 |
+
"grad_norm": 1.616896152496338,
|
757 |
+
"learning_rate": 9.523663603141032e-06,
|
758 |
+
"loss": 0.4076,
|
759 |
+
"step": 1070
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.6852791878172588,
|
763 |
+
"grad_norm": 1.219354510307312,
|
764 |
+
"learning_rate": 9.507814775108971e-06,
|
765 |
+
"loss": 0.4092,
|
766 |
+
"step": 1080
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 0.6916243654822335,
|
770 |
+
"grad_norm": 22.454200744628906,
|
771 |
+
"learning_rate": 9.49172021338455e-06,
|
772 |
+
"loss": 0.4034,
|
773 |
+
"step": 1090
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 0.6979695431472082,
|
777 |
+
"grad_norm": 1.8505566120147705,
|
778 |
+
"learning_rate": 9.475380795327702e-06,
|
779 |
+
"loss": 0.3824,
|
780 |
+
"step": 1100
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"epoch": 0.7043147208121827,
|
784 |
+
"grad_norm": 1.492254376411438,
|
785 |
+
"learning_rate": 9.458797411646176e-06,
|
786 |
+
"loss": 0.3405,
|
787 |
+
"step": 1110
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"epoch": 0.7106598984771574,
|
791 |
+
"grad_norm": 1.774132251739502,
|
792 |
+
"learning_rate": 9.441970966346965e-06,
|
793 |
+
"loss": 0.3425,
|
794 |
+
"step": 1120
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 0.7170050761421319,
|
798 |
+
"grad_norm": 1.2463436126708984,
|
799 |
+
"learning_rate": 9.424902376687045e-06,
|
800 |
+
"loss": 0.3594,
|
801 |
+
"step": 1130
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.7233502538071066,
|
805 |
+
"grad_norm": 1.515215277671814,
|
806 |
+
"learning_rate": 9.407592573123359e-06,
|
807 |
+
"loss": 0.359,
|
808 |
+
"step": 1140
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"epoch": 0.7296954314720813,
|
812 |
+
"grad_norm": 3.103351593017578,
|
813 |
+
"learning_rate": 9.390042499262102e-06,
|
814 |
+
"loss": 0.3554,
|
815 |
+
"step": 1150
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"epoch": 0.7360406091370558,
|
819 |
+
"grad_norm": 1.8471239805221558,
|
820 |
+
"learning_rate": 9.372253111807276e-06,
|
821 |
+
"loss": 0.3251,
|
822 |
+
"step": 1160
|
823 |
+
},
|
824 |
+
{
|
825 |
+
"epoch": 0.7423857868020305,
|
826 |
+
"grad_norm": 1.8411760330200195,
|
827 |
+
"learning_rate": 9.354225380508548e-06,
|
828 |
+
"loss": 0.3233,
|
829 |
+
"step": 1170
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"epoch": 0.748730964467005,
|
833 |
+
"grad_norm": 1.499944806098938,
|
834 |
+
"learning_rate": 9.33596028810838e-06,
|
835 |
+
"loss": 0.3718,
|
836 |
+
"step": 1180
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.7550761421319797,
|
840 |
+
"grad_norm": 2.158557653427124,
|
841 |
+
"learning_rate": 9.317458830288446e-06,
|
842 |
+
"loss": 0.3463,
|
843 |
+
"step": 1190
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.7614213197969543,
|
847 |
+
"grad_norm": 1.5045950412750244,
|
848 |
+
"learning_rate": 9.29872201561538e-06,
|
849 |
+
"loss": 0.3682,
|
850 |
+
"step": 1200
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"epoch": 0.7677664974619289,
|
854 |
+
"grad_norm": 1.9903945922851562,
|
855 |
+
"learning_rate": 9.279750865485772e-06,
|
856 |
+
"loss": 0.3149,
|
857 |
+
"step": 1210
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"epoch": 0.7741116751269036,
|
861 |
+
"grad_norm": 1.7139513492584229,
|
862 |
+
"learning_rate": 9.260546414070504e-06,
|
863 |
+
"loss": 0.2947,
|
864 |
+
"step": 1220
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 0.7804568527918782,
|
868 |
+
"grad_norm": 2.4074273109436035,
|
869 |
+
"learning_rate": 9.241109708258362e-06,
|
870 |
+
"loss": 0.3451,
|
871 |
+
"step": 1230
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 0.7868020304568528,
|
875 |
+
"grad_norm": 1.736325740814209,
|
876 |
+
"learning_rate": 9.221441807598981e-06,
|
877 |
+
"loss": 0.3156,
|
878 |
+
"step": 1240
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 0.7931472081218274,
|
882 |
+
"grad_norm": 1.722331166267395,
|
883 |
+
"learning_rate": 9.201543784245076e-06,
|
884 |
+
"loss": 0.2895,
|
885 |
+
"step": 1250
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.799492385786802,
|
889 |
+
"grad_norm": 1.800851583480835,
|
890 |
+
"learning_rate": 9.181416722893998e-06,
|
891 |
+
"loss": 0.2907,
|
892 |
+
"step": 1260
|
893 |
+
},
|
894 |
+
{
|
895 |
+
"epoch": 0.8058375634517766,
|
896 |
+
"grad_norm": 2.2214279174804688,
|
897 |
+
"learning_rate": 9.161061720728606e-06,
|
898 |
+
"loss": 0.3074,
|
899 |
+
"step": 1270
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 0.8121827411167513,
|
903 |
+
"grad_norm": 1.5840632915496826,
|
904 |
+
"learning_rate": 9.140479887357454e-06,
|
905 |
+
"loss": 0.2684,
|
906 |
+
"step": 1280
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"epoch": 0.8185279187817259,
|
910 |
+
"grad_norm": 2.0567562580108643,
|
911 |
+
"learning_rate": 9.119672344754307e-06,
|
912 |
+
"loss": 0.2777,
|
913 |
+
"step": 1290
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"epoch": 0.8248730964467005,
|
917 |
+
"grad_norm": 2.080697774887085,
|
918 |
+
"learning_rate": 9.098640227196978e-06,
|
919 |
+
"loss": 0.294,
|
920 |
+
"step": 1300
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 0.8312182741116751,
|
924 |
+
"grad_norm": 2.2059218883514404,
|
925 |
+
"learning_rate": 9.077384681205487e-06,
|
926 |
+
"loss": 0.3483,
|
927 |
+
"step": 1310
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.8375634517766497,
|
931 |
+
"grad_norm": 1.5565263032913208,
|
932 |
+
"learning_rate": 9.055906865479574e-06,
|
933 |
+
"loss": 0.2744,
|
934 |
+
"step": 1320
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 0.8439086294416244,
|
938 |
+
"grad_norm": 1.5794973373413086,
|
939 |
+
"learning_rate": 9.034207950835527e-06,
|
940 |
+
"loss": 0.2803,
|
941 |
+
"step": 1330
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 0.850253807106599,
|
945 |
+
"grad_norm": 1.8375296592712402,
|
946 |
+
"learning_rate": 9.01228912014236e-06,
|
947 |
+
"loss": 0.2805,
|
948 |
+
"step": 1340
|
949 |
+
},
|
950 |
+
{
|
951 |
+
"epoch": 0.8565989847715736,
|
952 |
+
"grad_norm": 1.5420727729797363,
|
953 |
+
"learning_rate": 8.99015156825733e-06,
|
954 |
+
"loss": 0.2774,
|
955 |
+
"step": 1350
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"epoch": 0.8629441624365483,
|
959 |
+
"grad_norm": 1.6844383478164673,
|
960 |
+
"learning_rate": 8.967796501960805e-06,
|
961 |
+
"loss": 0.2724,
|
962 |
+
"step": 1360
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 0.8692893401015228,
|
966 |
+
"grad_norm": 2.27237606048584,
|
967 |
+
"learning_rate": 8.945225139890468e-06,
|
968 |
+
"loss": 0.2514,
|
969 |
+
"step": 1370
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.8756345177664975,
|
973 |
+
"grad_norm": 1.6022717952728271,
|
974 |
+
"learning_rate": 8.92243871247491e-06,
|
975 |
+
"loss": 0.2675,
|
976 |
+
"step": 1380
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 0.881979695431472,
|
980 |
+
"grad_norm": 1.3979642391204834,
|
981 |
+
"learning_rate": 8.899438461866526e-06,
|
982 |
+
"loss": 0.2404,
|
983 |
+
"step": 1390
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 0.8883248730964467,
|
987 |
+
"grad_norm": 1.8629894256591797,
|
988 |
+
"learning_rate": 8.876225641873822e-06,
|
989 |
+
"loss": 0.2744,
|
990 |
+
"step": 1400
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"epoch": 0.8946700507614214,
|
994 |
+
"grad_norm": 1.6122556924819946,
|
995 |
+
"learning_rate": 8.852801517893063e-06,
|
996 |
+
"loss": 0.2814,
|
997 |
+
"step": 1410
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"epoch": 0.9010152284263959,
|
1001 |
+
"grad_norm": 2.0331978797912598,
|
1002 |
+
"learning_rate": 8.829167366839287e-06,
|
1003 |
+
"loss": 0.2728,
|
1004 |
+
"step": 1420
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 0.9073604060913706,
|
1008 |
+
"grad_norm": 1.5905483961105347,
|
1009 |
+
"learning_rate": 8.805324477076697e-06,
|
1010 |
+
"loss": 0.2503,
|
1011 |
+
"step": 1430
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 0.9137055837563451,
|
1015 |
+
"grad_norm": 1.9675116539001465,
|
1016 |
+
"learning_rate": 8.781274148348438e-06,
|
1017 |
+
"loss": 0.2241,
|
1018 |
+
"step": 1440
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"epoch": 0.9200507614213198,
|
1022 |
+
"grad_norm": 1.981604814529419,
|
1023 |
+
"learning_rate": 8.757017691705732e-06,
|
1024 |
+
"loss": 0.2789,
|
1025 |
+
"step": 1450
|
1026 |
+
},
|
1027 |
+
{
|
1028 |
+
"epoch": 0.9263959390862944,
|
1029 |
+
"grad_norm": 1.6477928161621094,
|
1030 |
+
"learning_rate": 8.732556429436419e-06,
|
1031 |
+
"loss": 0.2442,
|
1032 |
+
"step": 1460
|
1033 |
+
},
|
1034 |
+
{
|
1035 |
+
"epoch": 0.932741116751269,
|
1036 |
+
"grad_norm": 1.875747799873352,
|
1037 |
+
"learning_rate": 8.70789169499287e-06,
|
1038 |
+
"loss": 0.2372,
|
1039 |
+
"step": 1470
|
1040 |
+
},
|
1041 |
+
{
|
1042 |
+
"epoch": 0.9390862944162437,
|
1043 |
+
"grad_norm": 1.9763504266738892,
|
1044 |
+
"learning_rate": 8.683024832919295e-06,
|
1045 |
+
"loss": 0.2493,
|
1046 |
+
"step": 1480
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 0.9454314720812182,
|
1050 |
+
"grad_norm": 2.166445016860962,
|
1051 |
+
"learning_rate": 8.657957198778455e-06,
|
1052 |
+
"loss": 0.2491,
|
1053 |
+
"step": 1490
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 0.9517766497461929,
|
1057 |
+
"grad_norm": 2.062021493911743,
|
1058 |
+
"learning_rate": 8.632690159077758e-06,
|
1059 |
+
"loss": 0.2611,
|
1060 |
+
"step": 1500
|
1061 |
+
},
|
1062 |
+
{
|
1063 |
+
"epoch": 0.9581218274111675,
|
1064 |
+
"grad_norm": 1.5676127672195435,
|
1065 |
+
"learning_rate": 8.60722509119478e-06,
|
1066 |
+
"loss": 0.2475,
|
1067 |
+
"step": 1510
|
1068 |
+
},
|
1069 |
+
{
|
1070 |
+
"epoch": 0.9644670050761421,
|
1071 |
+
"grad_norm": 1.734596610069275,
|
1072 |
+
"learning_rate": 8.581563383302158e-06,
|
1073 |
+
"loss": 0.2499,
|
1074 |
+
"step": 1520
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"epoch": 0.9708121827411168,
|
1078 |
+
"grad_norm": 2.276888132095337,
|
1079 |
+
"learning_rate": 8.555706434291944e-06,
|
1080 |
+
"loss": 0.2052,
|
1081 |
+
"step": 1530
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"epoch": 0.9771573604060914,
|
1085 |
+
"grad_norm": 1.5414533615112305,
|
1086 |
+
"learning_rate": 8.529655653699323e-06,
|
1087 |
+
"loss": 0.2008,
|
1088 |
+
"step": 1540
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 0.983502538071066,
|
1092 |
+
"grad_norm": 2.0116498470306396,
|
1093 |
+
"learning_rate": 8.503412461625792e-06,
|
1094 |
+
"loss": 0.2088,
|
1095 |
+
"step": 1550
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 0.9898477157360406,
|
1099 |
+
"grad_norm": 2.507782220840454,
|
1100 |
+
"learning_rate": 8.47697828866174e-06,
|
1101 |
+
"loss": 0.2212,
|
1102 |
+
"step": 1560
|
1103 |
+
},
|
1104 |
+
{
|
1105 |
+
"epoch": 0.9961928934010152,
|
1106 |
+
"grad_norm": 1.5416207313537598,
|
1107 |
+
"learning_rate": 8.450354575808463e-06,
|
1108 |
+
"loss": 0.227,
|
1109 |
+
"step": 1570
|
1110 |
+
},
|
1111 |
+
{
|
1112 |
+
"epoch": 1.00253807106599,
|
1113 |
+
"grad_norm": 1.7348345518112183,
|
1114 |
+
"learning_rate": 8.423542774399606e-06,
|
1115 |
+
"loss": 0.2192,
|
1116 |
+
"step": 1580
|
1117 |
+
},
|
1118 |
+
{
|
1119 |
+
"epoch": 1.0088832487309645,
|
1120 |
+
"grad_norm": 1.8863823413848877,
|
1121 |
+
"learning_rate": 8.396544346022055e-06,
|
1122 |
+
"loss": 0.159,
|
1123 |
+
"step": 1590
|
1124 |
+
},
|
1125 |
+
{
|
1126 |
+
"epoch": 1.015228426395939,
|
1127 |
+
"grad_norm": 1.3554282188415527,
|
1128 |
+
"learning_rate": 8.36936076243626e-06,
|
1129 |
+
"loss": 0.1519,
|
1130 |
+
"step": 1600
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 1.0215736040609138,
|
1134 |
+
"grad_norm": 1.915385127067566,
|
1135 |
+
"learning_rate": 8.341993505496e-06,
|
1136 |
+
"loss": 0.1667,
|
1137 |
+
"step": 1610
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 1.0279187817258884,
|
1141 |
+
"grad_norm": 2.683910369873047,
|
1142 |
+
"learning_rate": 8.314444067067611e-06,
|
1143 |
+
"loss": 0.1672,
|
1144 |
+
"step": 1620
|
1145 |
+
},
|
1146 |
+
{
|
1147 |
+
"epoch": 1.034263959390863,
|
1148 |
+
"grad_norm": 3.2767446041107178,
|
1149 |
+
"learning_rate": 8.286713948948646e-06,
|
1150 |
+
"loss": 0.151,
|
1151 |
+
"step": 1630
|
1152 |
+
},
|
1153 |
+
{
|
1154 |
+
"epoch": 1.0406091370558375,
|
1155 |
+
"grad_norm": 1.7172635793685913,
|
1156 |
+
"learning_rate": 8.258804662786031e-06,
|
1157 |
+
"loss": 0.1365,
|
1158 |
+
"step": 1640
|
1159 |
+
},
|
1160 |
+
{
|
1161 |
+
"epoch": 1.0469543147208122,
|
1162 |
+
"grad_norm": 1.9492729902267456,
|
1163 |
+
"learning_rate": 8.230717729993637e-06,
|
1164 |
+
"loss": 0.1521,
|
1165 |
+
"step": 1650
|
1166 |
+
},
|
1167 |
+
{
|
1168 |
+
"epoch": 1.0532994923857868,
|
1169 |
+
"grad_norm": 1.3974714279174805,
|
1170 |
+
"learning_rate": 8.202454681669352e-06,
|
1171 |
+
"loss": 0.1784,
|
1172 |
+
"step": 1660
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 1.0596446700507614,
|
1176 |
+
"grad_norm": 1.5528488159179688,
|
1177 |
+
"learning_rate": 8.17401705851163e-06,
|
1178 |
+
"loss": 0.145,
|
1179 |
+
"step": 1670
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 1.0659898477157361,
|
1183 |
+
"grad_norm": 4.622862815856934,
|
1184 |
+
"learning_rate": 8.14540641073548e-06,
|
1185 |
+
"loss": 0.149,
|
1186 |
+
"step": 1680
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 1.0723350253807107,
|
1190 |
+
"grad_norm": 1.4450290203094482,
|
1191 |
+
"learning_rate": 8.116624297987973e-06,
|
1192 |
+
"loss": 0.1354,
|
1193 |
+
"step": 1690
|
1194 |
+
},
|
1195 |
+
{
|
1196 |
+
"epoch": 1.0786802030456852,
|
1197 |
+
"grad_norm": 1.5473392009735107,
|
1198 |
+
"learning_rate": 8.087672289263228e-06,
|
1199 |
+
"loss": 0.1355,
|
1200 |
+
"step": 1700
|
1201 |
+
},
|
1202 |
+
{
|
1203 |
+
"epoch": 1.0850253807106598,
|
1204 |
+
"grad_norm": 1.55717134475708,
|
1205 |
+
"learning_rate": 8.058551962816858e-06,
|
1206 |
+
"loss": 0.1533,
|
1207 |
+
"step": 1710
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"epoch": 1.0913705583756346,
|
1211 |
+
"grad_norm": 2.583096742630005,
|
1212 |
+
"learning_rate": 8.029264906079962e-06,
|
1213 |
+
"loss": 0.1498,
|
1214 |
+
"step": 1720
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 1.0977157360406091,
|
1218 |
+
"grad_norm": 3.534912109375,
|
1219 |
+
"learning_rate": 7.99981271557257e-06,
|
1220 |
+
"loss": 0.1653,
|
1221 |
+
"step": 1730
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 1.1040609137055837,
|
1225 |
+
"grad_norm": 1.350325345993042,
|
1226 |
+
"learning_rate": 7.970196996816622e-06,
|
1227 |
+
"loss": 0.1253,
|
1228 |
+
"step": 1740
|
1229 |
+
},
|
1230 |
+
{
|
1231 |
+
"epoch": 1.1104060913705585,
|
1232 |
+
"grad_norm": 1.4373643398284912,
|
1233 |
+
"learning_rate": 7.940419364248445e-06,
|
1234 |
+
"loss": 0.1681,
|
1235 |
+
"step": 1750
|
1236 |
+
},
|
1237 |
+
{
|
1238 |
+
"epoch": 1.116751269035533,
|
1239 |
+
"grad_norm": 2.416491985321045,
|
1240 |
+
"learning_rate": 7.910481441130739e-06,
|
1241 |
+
"loss": 0.1382,
|
1242 |
+
"step": 1760
|
1243 |
+
},
|
1244 |
+
{
|
1245 |
+
"epoch": 1.1230964467005076,
|
1246 |
+
"grad_norm": 1.4168888330459595,
|
1247 |
+
"learning_rate": 7.880384859464102e-06,
|
1248 |
+
"loss": 0.1286,
|
1249 |
+
"step": 1770
|
1250 |
+
},
|
1251 |
+
{
|
1252 |
+
"epoch": 1.1294416243654823,
|
1253 |
+
"grad_norm": 1.4525187015533447,
|
1254 |
+
"learning_rate": 7.850131259898051e-06,
|
1255 |
+
"loss": 0.1454,
|
1256 |
+
"step": 1780
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 1.135786802030457,
|
1260 |
+
"grad_norm": 2.431896448135376,
|
1261 |
+
"learning_rate": 7.819722291641591e-06,
|
1262 |
+
"loss": 0.159,
|
1263 |
+
"step": 1790
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 1.1421319796954315,
|
1267 |
+
"grad_norm": 1.982692837715149,
|
1268 |
+
"learning_rate": 7.789159612373317e-06,
|
1269 |
+
"loss": 0.1201,
|
1270 |
+
"step": 1800
|
1271 |
+
},
|
1272 |
+
{
|
1273 |
+
"epoch": 1.148477157360406,
|
1274 |
+
"grad_norm": 1.786580204963684,
|
1275 |
+
"learning_rate": 7.758444888151042e-06,
|
1276 |
+
"loss": 0.1274,
|
1277 |
+
"step": 1810
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"epoch": 1.1548223350253808,
|
1281 |
+
"grad_norm": 1.0583122968673706,
|
1282 |
+
"learning_rate": 7.727579793320977e-06,
|
1283 |
+
"loss": 0.1246,
|
1284 |
+
"step": 1820
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"epoch": 1.1611675126903553,
|
1288 |
+
"grad_norm": 1.2649511098861694,
|
1289 |
+
"learning_rate": 7.69656601042646e-06,
|
1290 |
+
"loss": 0.1296,
|
1291 |
+
"step": 1830
|
1292 |
+
},
|
1293 |
+
{
|
1294 |
+
"epoch": 1.16751269035533,
|
1295 |
+
"grad_norm": 1.5088468790054321,
|
1296 |
+
"learning_rate": 7.665405230116232e-06,
|
1297 |
+
"loss": 0.1549,
|
1298 |
+
"step": 1840
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 1.1738578680203045,
|
1302 |
+
"grad_norm": 1.6474385261535645,
|
1303 |
+
"learning_rate": 7.634099151052283e-06,
|
1304 |
+
"loss": 0.1114,
|
1305 |
+
"step": 1850
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 1.1802030456852792,
|
1309 |
+
"grad_norm": 1.665197730064392,
|
1310 |
+
"learning_rate": 7.602649479817242e-06,
|
1311 |
+
"loss": 0.119,
|
1312 |
+
"step": 1860
|
1313 |
+
},
|
1314 |
+
{
|
1315 |
+
"epoch": 1.1865482233502538,
|
1316 |
+
"grad_norm": 1.6402256488800049,
|
1317 |
+
"learning_rate": 7.5710579308213576e-06,
|
1318 |
+
"loss": 0.105,
|
1319 |
+
"step": 1870
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 1.1928934010152283,
|
1323 |
+
"grad_norm": 1.4458770751953125,
|
1324 |
+
"learning_rate": 7.539326226209032e-06,
|
1325 |
+
"loss": 0.1574,
|
1326 |
+
"step": 1880
|
1327 |
+
},
|
1328 |
+
{
|
1329 |
+
"epoch": 1.1992385786802031,
|
1330 |
+
"grad_norm": 1.4857584238052368,
|
1331 |
+
"learning_rate": 7.507456095764942e-06,
|
1332 |
+
"loss": 0.1265,
|
1333 |
+
"step": 1890
|
1334 |
+
},
|
1335 |
+
{
|
1336 |
+
"epoch": 1.2055837563451777,
|
1337 |
+
"grad_norm": 1.7672957181930542,
|
1338 |
+
"learning_rate": 7.475449276819753e-06,
|
1339 |
+
"loss": 0.1152,
|
1340 |
+
"step": 1900
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 1.2119289340101522,
|
1344 |
+
"grad_norm": 1.756518006324768,
|
1345 |
+
"learning_rate": 7.443307514155402e-06,
|
1346 |
+
"loss": 0.1051,
|
1347 |
+
"step": 1910
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 1.218274111675127,
|
1351 |
+
"grad_norm": 2.3999290466308594,
|
1352 |
+
"learning_rate": 7.411032559909991e-06,
|
1353 |
+
"loss": 0.1249,
|
1354 |
+
"step": 1920
|
1355 |
+
},
|
1356 |
+
{
|
1357 |
+
"epoch": 1.2246192893401016,
|
1358 |
+
"grad_norm": 2.726649522781372,
|
1359 |
+
"learning_rate": 7.378626173482268e-06,
|
1360 |
+
"loss": 0.1065,
|
1361 |
+
"step": 1930
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"epoch": 1.2309644670050761,
|
1365 |
+
"grad_norm": 1.4104615449905396,
|
1366 |
+
"learning_rate": 7.346090121435724e-06,
|
1367 |
+
"loss": 0.0982,
|
1368 |
+
"step": 1940
|
1369 |
+
},
|
1370 |
+
{
|
1371 |
+
"epoch": 1.2373096446700507,
|
1372 |
+
"grad_norm": 1.8831905126571655,
|
1373 |
+
"learning_rate": 7.313426177402281e-06,
|
1374 |
+
"loss": 0.1091,
|
1375 |
+
"step": 1950
|
1376 |
+
},
|
1377 |
+
{
|
1378 |
+
"epoch": 1.2436548223350254,
|
1379 |
+
"grad_norm": 2.125528573989868,
|
1380 |
+
"learning_rate": 7.2806361219856205e-06,
|
1381 |
+
"loss": 0.1197,
|
1382 |
+
"step": 1960
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 1.25,
|
1386 |
+
"grad_norm": 1.8320462703704834,
|
1387 |
+
"learning_rate": 7.24772174266411e-06,
|
1388 |
+
"loss": 0.0979,
|
1389 |
+
"step": 1970
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 1.2563451776649746,
|
1393 |
+
"grad_norm": 1.6644319295883179,
|
1394 |
+
"learning_rate": 7.214684833693362e-06,
|
1395 |
+
"loss": 0.1451,
|
1396 |
+
"step": 1980
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"epoch": 1.262690355329949,
|
1400 |
+
"grad_norm": 1.816611886024475,
|
1401 |
+
"learning_rate": 7.181527196008424e-06,
|
1402 |
+
"loss": 0.1111,
|
1403 |
+
"step": 1990
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"epoch": 1.2690355329949239,
|
1407 |
+
"grad_norm": 2.8035154342651367,
|
1408 |
+
"learning_rate": 7.148250637125611e-06,
|
1409 |
+
"loss": 0.0894,
|
1410 |
+
"step": 2000
|
1411 |
+
},
|
1412 |
+
{
|
1413 |
+
"epoch": 1.2753807106598984,
|
1414 |
+
"grad_norm": 1.8045902252197266,
|
1415 |
+
"learning_rate": 7.114856971043963e-06,
|
1416 |
+
"loss": 0.0931,
|
1417 |
+
"step": 2010
|
1418 |
+
},
|
1419 |
+
{
|
1420 |
+
"epoch": 1.281725888324873,
|
1421 |
+
"grad_norm": 1.637097716331482,
|
1422 |
+
"learning_rate": 7.081348018146367e-06,
|
1423 |
+
"loss": 0.1572,
|
1424 |
+
"step": 2020
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 1.2880710659898478,
|
1428 |
+
"grad_norm": 1.4267776012420654,
|
1429 |
+
"learning_rate": 7.047725605100317e-06,
|
1430 |
+
"loss": 0.1071,
|
1431 |
+
"step": 2030
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 1.2944162436548223,
|
1435 |
+
"grad_norm": 2.571660280227661,
|
1436 |
+
"learning_rate": 7.01399156475834e-06,
|
1437 |
+
"loss": 0.1158,
|
1438 |
+
"step": 2040
|
1439 |
+
},
|
1440 |
+
{
|
1441 |
+
"epoch": 1.3007614213197969,
|
1442 |
+
"grad_norm": 2.324598789215088,
|
1443 |
+
"learning_rate": 6.980147736058083e-06,
|
1444 |
+
"loss": 0.0959,
|
1445 |
+
"step": 2050
|
1446 |
+
},
|
1447 |
+
{
|
1448 |
+
"epoch": 1.3071065989847717,
|
1449 |
+
"grad_norm": 1.4909052848815918,
|
1450 |
+
"learning_rate": 6.946195963922064e-06,
|
1451 |
+
"loss": 0.1202,
|
1452 |
+
"step": 2060
|
1453 |
+
},
|
1454 |
+
{
|
1455 |
+
"epoch": 1.3134517766497462,
|
1456 |
+
"grad_norm": 1.6092907190322876,
|
1457 |
+
"learning_rate": 6.9121380991571065e-06,
|
1458 |
+
"loss": 0.0805,
|
1459 |
+
"step": 2070
|
1460 |
+
},
|
1461 |
+
{
|
1462 |
+
"epoch": 1.3197969543147208,
|
1463 |
+
"grad_norm": 1.2184277772903442,
|
1464 |
+
"learning_rate": 6.877975998353433e-06,
|
1465 |
+
"loss": 0.1132,
|
1466 |
+
"step": 2080
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 1.3261421319796955,
|
1470 |
+
"grad_norm": 1.2614070177078247,
|
1471 |
+
"learning_rate": 6.8437115237834765e-06,
|
1472 |
+
"loss": 0.089,
|
1473 |
+
"step": 2090
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 1.33248730964467,
|
1477 |
+
"grad_norm": 1.7008192539215088,
|
1478 |
+
"learning_rate": 6.809346543300346e-06,
|
1479 |
+
"loss": 0.0787,
|
1480 |
+
"step": 2100
|
1481 |
+
},
|
1482 |
+
{
|
1483 |
+
"epoch": 1.3388324873096447,
|
1484 |
+
"grad_norm": 1.3894529342651367,
|
1485 |
+
"learning_rate": 6.774882930236015e-06,
|
1486 |
+
"loss": 0.0962,
|
1487 |
+
"step": 2110
|
1488 |
+
},
|
1489 |
+
{
|
1490 |
+
"epoch": 1.3451776649746192,
|
1491 |
+
"grad_norm": 1.7126891613006592,
|
1492 |
+
"learning_rate": 6.740322563299195e-06,
|
1493 |
+
"loss": 0.0952,
|
1494 |
+
"step": 2120
|
1495 |
+
},
|
1496 |
+
{
|
1497 |
+
"epoch": 1.351522842639594,
|
1498 |
+
"grad_norm": 1.7561262845993042,
|
1499 |
+
"learning_rate": 6.705667326472926e-06,
|
1500 |
+
"loss": 0.0989,
|
1501 |
+
"step": 2130
|
1502 |
+
},
|
1503 |
+
{
|
1504 |
+
"epoch": 1.3578680203045685,
|
1505 |
+
"grad_norm": 1.4162139892578125,
|
1506 |
+
"learning_rate": 6.6709191089118685e-06,
|
1507 |
+
"loss": 0.1046,
|
1508 |
+
"step": 2140
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 1.364213197969543,
|
1512 |
+
"grad_norm": 1.8884022235870361,
|
1513 |
+
"learning_rate": 6.636079804839329e-06,
|
1514 |
+
"loss": 0.0847,
|
1515 |
+
"step": 2150
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"epoch": 1.3705583756345177,
|
1519 |
+
"grad_norm": 1.4617987871170044,
|
1520 |
+
"learning_rate": 6.601151313443997e-06,
|
1521 |
+
"loss": 0.0858,
|
1522 |
+
"step": 2160
|
1523 |
+
},
|
1524 |
+
{
|
1525 |
+
"epoch": 1.3769035532994924,
|
1526 |
+
"grad_norm": 1.5476235151290894,
|
1527 |
+
"learning_rate": 6.566135538776413e-06,
|
1528 |
+
"loss": 0.0907,
|
1529 |
+
"step": 2170
|
1530 |
+
},
|
1531 |
+
{
|
1532 |
+
"epoch": 1.383248730964467,
|
1533 |
+
"grad_norm": 1.8879975080490112,
|
1534 |
+
"learning_rate": 6.531034389645175e-06,
|
1535 |
+
"loss": 0.1255,
|
1536 |
+
"step": 2180
|
1537 |
+
},
|
1538 |
+
{
|
1539 |
+
"epoch": 1.3895939086294415,
|
1540 |
+
"grad_norm": 1.563038945198059,
|
1541 |
+
"learning_rate": 6.495849779512879e-06,
|
1542 |
+
"loss": 0.084,
|
1543 |
+
"step": 2190
|
1544 |
+
},
|
1545 |
+
{
|
1546 |
+
"epoch": 1.3959390862944163,
|
1547 |
+
"grad_norm": 2.6775851249694824,
|
1548 |
+
"learning_rate": 6.460583626391827e-06,
|
1549 |
+
"loss": 0.0957,
|
1550 |
+
"step": 2200
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 1.4022842639593909,
|
1554 |
+
"grad_norm": 5.497508525848389,
|
1555 |
+
"learning_rate": 6.4252378527394475e-06,
|
1556 |
+
"loss": 0.0882,
|
1557 |
+
"step": 2210
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 1.4086294416243654,
|
1561 |
+
"grad_norm": 2.2709615230560303,
|
1562 |
+
"learning_rate": 6.3898143853535145e-06,
|
1563 |
+
"loss": 0.1038,
|
1564 |
+
"step": 2220
|
1565 |
+
},
|
1566 |
+
{
|
1567 |
+
"epoch": 1.4149746192893402,
|
1568 |
+
"grad_norm": 2.0166831016540527,
|
1569 |
+
"learning_rate": 6.354315155267105e-06,
|
1570 |
+
"loss": 0.0778,
|
1571 |
+
"step": 2230
|
1572 |
+
},
|
1573 |
+
{
|
1574 |
+
"epoch": 1.4213197969543148,
|
1575 |
+
"grad_norm": 1.4909207820892334,
|
1576 |
+
"learning_rate": 6.318742097643336e-06,
|
1577 |
+
"loss": 0.1091,
|
1578 |
+
"step": 2240
|
1579 |
+
},
|
1580 |
+
{
|
1581 |
+
"epoch": 1.4276649746192893,
|
1582 |
+
"grad_norm": 2.3677256107330322,
|
1583 |
+
"learning_rate": 6.283097151669869e-06,
|
1584 |
+
"loss": 0.1019,
|
1585 |
+
"step": 2250
|
1586 |
+
},
|
1587 |
+
{
|
1588 |
+
"epoch": 1.434010152284264,
|
1589 |
+
"grad_norm": 3.072751045227051,
|
1590 |
+
"learning_rate": 6.247382260453203e-06,
|
1591 |
+
"loss": 0.1004,
|
1592 |
+
"step": 2260
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 1.4403553299492386,
|
1596 |
+
"grad_norm": 2.3845341205596924,
|
1597 |
+
"learning_rate": 6.211599370912752e-06,
|
1598 |
+
"loss": 0.0886,
|
1599 |
+
"step": 2270
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 1.4467005076142132,
|
1603 |
+
"grad_norm": 4.395678997039795,
|
1604 |
+
"learning_rate": 6.175750433674708e-06,
|
1605 |
+
"loss": 0.1095,
|
1606 |
+
"step": 2280
|
1607 |
+
},
|
1608 |
+
{
|
1609 |
+
"epoch": 1.4530456852791878,
|
1610 |
+
"grad_norm": 1.326743721961975,
|
1611 |
+
"learning_rate": 6.139837402965705e-06,
|
1612 |
+
"loss": 0.1021,
|
1613 |
+
"step": 2290
|
1614 |
+
},
|
1615 |
+
{
|
1616 |
+
"epoch": 1.4593908629441623,
|
1617 |
+
"grad_norm": 1.4270453453063965,
|
1618 |
+
"learning_rate": 6.103862236506303e-06,
|
1619 |
+
"loss": 0.0744,
|
1620 |
+
"step": 2300
|
1621 |
+
},
|
1622 |
+
{
|
1623 |
+
"epoch": 1.465736040609137,
|
1624 |
+
"grad_norm": 1.5374149084091187,
|
1625 |
+
"learning_rate": 6.067826895404249e-06,
|
1626 |
+
"loss": 0.0757,
|
1627 |
+
"step": 2310
|
1628 |
+
},
|
1629 |
+
{
|
1630 |
+
"epoch": 1.4720812182741116,
|
1631 |
+
"grad_norm": 1.5649033784866333,
|
1632 |
+
"learning_rate": 6.031733344047581e-06,
|
1633 |
+
"loss": 0.1023,
|
1634 |
+
"step": 2320
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 1.4784263959390862,
|
1638 |
+
"grad_norm": 1.169797420501709,
|
1639 |
+
"learning_rate": 5.995583549997542e-06,
|
1640 |
+
"loss": 0.0654,
|
1641 |
+
"step": 2330
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 1.484771573604061,
|
1645 |
+
"grad_norm": 1.8578475713729858,
|
1646 |
+
"learning_rate": 5.959379483881327e-06,
|
1647 |
+
"loss": 0.0819,
|
1648 |
+
"step": 2340
|
1649 |
+
},
|
1650 |
+
{
|
1651 |
+
"epoch": 1.4911167512690355,
|
1652 |
+
"grad_norm": 1.6423859596252441,
|
1653 |
+
"learning_rate": 5.923123119284646e-06,
|
1654 |
+
"loss": 0.0663,
|
1655 |
+
"step": 2350
|
1656 |
+
},
|
1657 |
+
{
|
1658 |
+
"epoch": 1.49746192893401,
|
1659 |
+
"grad_norm": 1.1731383800506592,
|
1660 |
+
"learning_rate": 5.886816432644155e-06,
|
1661 |
+
"loss": 0.0932,
|
1662 |
+
"step": 2360
|
1663 |
+
},
|
1664 |
+
{
|
1665 |
+
"epoch": 1.5038071065989849,
|
1666 |
+
"grad_norm": 1.0412118434906006,
|
1667 |
+
"learning_rate": 5.850461403139702e-06,
|
1668 |
+
"loss": 0.0807,
|
1669 |
+
"step": 2370
|
1670 |
+
},
|
1671 |
+
{
|
1672 |
+
"epoch": 1.5101522842639594,
|
1673 |
+
"grad_norm": 1.5270987749099731,
|
1674 |
+
"learning_rate": 5.814060012586443e-06,
|
1675 |
+
"loss": 0.0747,
|
1676 |
+
"step": 2380
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 1.516497461928934,
|
1680 |
+
"grad_norm": 1.9564098119735718,
|
1681 |
+
"learning_rate": 5.777614245326802e-06,
|
1682 |
+
"loss": 0.0715,
|
1683 |
+
"step": 2390
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 1.5228426395939088,
|
1687 |
+
"grad_norm": 1.6264362335205078,
|
1688 |
+
"learning_rate": 5.7411260881223045e-06,
|
1689 |
+
"loss": 0.0947,
|
1690 |
+
"step": 2400
|
1691 |
+
},
|
1692 |
+
{
|
1693 |
+
"epoch": 1.529187817258883,
|
1694 |
+
"grad_norm": 1.0679928064346313,
|
1695 |
+
"learning_rate": 5.704597530045272e-06,
|
1696 |
+
"loss": 0.0669,
|
1697 |
+
"step": 2410
|
1698 |
+
},
|
1699 |
+
{
|
1700 |
+
"epoch": 1.5355329949238579,
|
1701 |
+
"grad_norm": 1.393947720527649,
|
1702 |
+
"learning_rate": 5.6680305623703926e-06,
|
1703 |
+
"loss": 0.089,
|
1704 |
+
"step": 2420
|
1705 |
+
},
|
1706 |
+
{
|
1707 |
+
"epoch": 1.5418781725888326,
|
1708 |
+
"grad_norm": 1.8824158906936646,
|
1709 |
+
"learning_rate": 5.631427178466166e-06,
|
1710 |
+
"loss": 0.071,
|
1711 |
+
"step": 2430
|
1712 |
+
},
|
1713 |
+
{
|
1714 |
+
"epoch": 1.548223350253807,
|
1715 |
+
"grad_norm": 1.060774326324463,
|
1716 |
+
"learning_rate": 5.594789373686247e-06,
|
1717 |
+
"loss": 0.0747,
|
1718 |
+
"step": 2440
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 1.5545685279187818,
|
1722 |
+
"grad_norm": 1.935646891593933,
|
1723 |
+
"learning_rate": 5.5581191452606664e-06,
|
1724 |
+
"loss": 0.0671,
|
1725 |
+
"step": 2450
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"epoch": 1.5609137055837563,
|
1729 |
+
"grad_norm": 1.2591124773025513,
|
1730 |
+
"learning_rate": 5.521418492186962e-06,
|
1731 |
+
"loss": 0.0796,
|
1732 |
+
"step": 2460
|
1733 |
+
},
|
1734 |
+
{
|
1735 |
+
"epoch": 1.5672588832487309,
|
1736 |
+
"grad_norm": 2.050698757171631,
|
1737 |
+
"learning_rate": 5.484689415121204e-06,
|
1738 |
+
"loss": 0.0724,
|
1739 |
+
"step": 2470
|
1740 |
+
},
|
1741 |
+
{
|
1742 |
+
"epoch": 1.5736040609137056,
|
1743 |
+
"grad_norm": 1.2225536108016968,
|
1744 |
+
"learning_rate": 5.447933916268933e-06,
|
1745 |
+
"loss": 0.0591,
|
1746 |
+
"step": 2480
|
1747 |
+
},
|
1748 |
+
{
|
1749 |
+
"epoch": 1.5799492385786802,
|
1750 |
+
"grad_norm": 4.785628318786621,
|
1751 |
+
"learning_rate": 5.411153999276016e-06,
|
1752 |
+
"loss": 0.0873,
|
1753 |
+
"step": 2490
|
1754 |
+
},
|
1755 |
+
{
|
1756 |
+
"epoch": 1.5862944162436547,
|
1757 |
+
"grad_norm": 2.2066152095794678,
|
1758 |
+
"learning_rate": 5.374351669119425e-06,
|
1759 |
+
"loss": 0.057,
|
1760 |
+
"step": 2500
|
1761 |
+
},
|
1762 |
+
{
|
1763 |
+
"epoch": 1.5926395939086295,
|
1764 |
+
"grad_norm": 1.9447569847106934,
|
1765 |
+
"learning_rate": 5.337528931997934e-06,
|
1766 |
+
"loss": 0.0548,
|
1767 |
+
"step": 2510
|
1768 |
+
},
|
1769 |
+
{
|
1770 |
+
"epoch": 1.598984771573604,
|
1771 |
+
"grad_norm": 2.1758713722229004,
|
1772 |
+
"learning_rate": 5.3006877952227585e-06,
|
1773 |
+
"loss": 0.0674,
|
1774 |
+
"step": 2520
|
1775 |
+
},
|
1776 |
+
{
|
1777 |
+
"epoch": 1.6053299492385786,
|
1778 |
+
"grad_norm": 1.5067161321640015,
|
1779 |
+
"learning_rate": 5.263830267108129e-06,
|
1780 |
+
"loss": 0.0583,
|
1781 |
+
"step": 2530
|
1782 |
+
},
|
1783 |
+
{
|
1784 |
+
"epoch": 1.6116751269035534,
|
1785 |
+
"grad_norm": 1.6991007328033447,
|
1786 |
+
"learning_rate": 5.226958356861819e-06,
|
1787 |
+
"loss": 0.0521,
|
1788 |
+
"step": 2540
|
1789 |
+
},
|
1790 |
+
{
|
1791 |
+
"epoch": 1.618020304568528,
|
1792 |
+
"grad_norm": 1.2602826356887817,
|
1793 |
+
"learning_rate": 5.190074074475606e-06,
|
1794 |
+
"loss": 0.0674,
|
1795 |
+
"step": 2550
|
1796 |
+
},
|
1797 |
+
{
|
1798 |
+
"epoch": 1.6243654822335025,
|
1799 |
+
"grad_norm": 2.1869382858276367,
|
1800 |
+
"learning_rate": 5.153179430615716e-06,
|
1801 |
+
"loss": 0.062,
|
1802 |
+
"step": 2560
|
1803 |
+
},
|
1804 |
+
{
|
1805 |
+
"epoch": 1.6307106598984773,
|
1806 |
+
"grad_norm": 1.6224417686462402,
|
1807 |
+
"learning_rate": 5.116276436513201e-06,
|
1808 |
+
"loss": 0.0718,
|
1809 |
+
"step": 2570
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 1.6370558375634516,
|
1813 |
+
"grad_norm": 2.291430711746216,
|
1814 |
+
"learning_rate": 5.079367103854311e-06,
|
1815 |
+
"loss": 0.0722,
|
1816 |
+
"step": 2580
|
1817 |
+
},
|
1818 |
+
{
|
1819 |
+
"epoch": 1.6434010152284264,
|
1820 |
+
"grad_norm": 1.0190826654434204,
|
1821 |
+
"learning_rate": 5.042453444670829e-06,
|
1822 |
+
"loss": 0.0612,
|
1823 |
+
"step": 2590
|
1824 |
+
},
|
1825 |
+
{
|
1826 |
+
"epoch": 1.649746192893401,
|
1827 |
+
"grad_norm": 1.6983177661895752,
|
1828 |
+
"learning_rate": 5.005537471230387e-06,
|
1829 |
+
"loss": 0.06,
|
1830 |
+
"step": 2600
|
1831 |
+
},
|
1832 |
+
{
|
1833 |
+
"epoch": 1.6560913705583755,
|
1834 |
+
"grad_norm": 1.5693427324295044,
|
1835 |
+
"learning_rate": 4.968621195926779e-06,
|
1836 |
+
"loss": 0.0674,
|
1837 |
+
"step": 2610
|
1838 |
+
},
|
1839 |
+
{
|
1840 |
+
"epoch": 1.6624365482233503,
|
1841 |
+
"grad_norm": 1.4258981943130493,
|
1842 |
+
"learning_rate": 4.931706631170246e-06,
|
1843 |
+
"loss": 0.0602,
|
1844 |
+
"step": 2620
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"epoch": 1.6687817258883249,
|
1848 |
+
"grad_norm": 1.9744484424591064,
|
1849 |
+
"learning_rate": 4.894795789277789e-06,
|
1850 |
+
"loss": 0.0657,
|
1851 |
+
"step": 2630
|
1852 |
+
},
|
1853 |
+
{
|
1854 |
+
"epoch": 1.6751269035532994,
|
1855 |
+
"grad_norm": 1.0477792024612427,
|
1856 |
+
"learning_rate": 4.857890682363461e-06,
|
1857 |
+
"loss": 0.0643,
|
1858 |
+
"step": 2640
|
1859 |
+
},
|
1860 |
+
{
|
1861 |
+
"epoch": 1.6814720812182742,
|
1862 |
+
"grad_norm": 1.2517801523208618,
|
1863 |
+
"learning_rate": 4.820993322228691e-06,
|
1864 |
+
"loss": 0.0574,
|
1865 |
+
"step": 2650
|
1866 |
+
},
|
1867 |
+
{
|
1868 |
+
"epoch": 1.6878172588832487,
|
1869 |
+
"grad_norm": 1.339064359664917,
|
1870 |
+
"learning_rate": 4.784105720252602e-06,
|
1871 |
+
"loss": 0.0639,
|
1872 |
+
"step": 2660
|
1873 |
+
},
|
1874 |
+
{
|
1875 |
+
"epoch": 1.6941624365482233,
|
1876 |
+
"grad_norm": 1.0788367986679077,
|
1877 |
+
"learning_rate": 4.747229887282379e-06,
|
1878 |
+
"loss": 0.044,
|
1879 |
+
"step": 2670
|
1880 |
+
},
|
1881 |
+
{
|
1882 |
+
"epoch": 1.700507614213198,
|
1883 |
+
"grad_norm": 0.8012908697128296,
|
1884 |
+
"learning_rate": 4.7103678335236395e-06,
|
1885 |
+
"loss": 0.0642,
|
1886 |
+
"step": 2680
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"epoch": 1.7068527918781726,
|
1890 |
+
"grad_norm": 1.975696086883545,
|
1891 |
+
"learning_rate": 4.673521568430859e-06,
|
1892 |
+
"loss": 0.0655,
|
1893 |
+
"step": 2690
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"epoch": 1.7131979695431472,
|
1897 |
+
"grad_norm": 1.7474173307418823,
|
1898 |
+
"learning_rate": 4.63669310059783e-06,
|
1899 |
+
"loss": 0.0447,
|
1900 |
+
"step": 2700
|
1901 |
+
},
|
1902 |
+
{
|
1903 |
+
"epoch": 1.719543147208122,
|
1904 |
+
"grad_norm": 0.9429912567138672,
|
1905 |
+
"learning_rate": 4.5998844376481665e-06,
|
1906 |
+
"loss": 0.0588,
|
1907 |
+
"step": 2710
|
1908 |
+
},
|
1909 |
+
{
|
1910 |
+
"epoch": 1.7258883248730963,
|
1911 |
+
"grad_norm": 2.345489025115967,
|
1912 |
+
"learning_rate": 4.5630975861258605e-06,
|
1913 |
+
"loss": 0.0637,
|
1914 |
+
"step": 2720
|
1915 |
+
},
|
1916 |
+
{
|
1917 |
+
"epoch": 1.732233502538071,
|
1918 |
+
"grad_norm": 0.8988242149353027,
|
1919 |
+
"learning_rate": 4.526334551385902e-06,
|
1920 |
+
"loss": 0.0613,
|
1921 |
+
"step": 2730
|
1922 |
+
},
|
1923 |
+
{
|
1924 |
+
"epoch": 1.7385786802030458,
|
1925 |
+
"grad_norm": 2.0134191513061523,
|
1926 |
+
"learning_rate": 4.489597337484961e-06,
|
1927 |
+
"loss": 0.0533,
|
1928 |
+
"step": 2740
|
1929 |
+
},
|
1930 |
+
{
|
1931 |
+
"epoch": 1.7449238578680202,
|
1932 |
+
"grad_norm": 1.8432866334915161,
|
1933 |
+
"learning_rate": 4.452887947072142e-06,
|
1934 |
+
"loss": 0.0684,
|
1935 |
+
"step": 2750
|
1936 |
+
},
|
1937 |
+
{
|
1938 |
+
"epoch": 1.751269035532995,
|
1939 |
+
"grad_norm": 3.151284694671631,
|
1940 |
+
"learning_rate": 4.416208381279812e-06,
|
1941 |
+
"loss": 0.0556,
|
1942 |
+
"step": 2760
|
1943 |
+
},
|
1944 |
+
{
|
1945 |
+
"epoch": 1.7576142131979695,
|
1946 |
+
"grad_norm": 1.051060676574707,
|
1947 |
+
"learning_rate": 4.379560639614513e-06,
|
1948 |
+
"loss": 0.0498,
|
1949 |
+
"step": 2770
|
1950 |
+
},
|
1951 |
+
{
|
1952 |
+
"epoch": 1.763959390862944,
|
1953 |
+
"grad_norm": 1.5683525800704956,
|
1954 |
+
"learning_rate": 4.3429467198479665e-06,
|
1955 |
+
"loss": 0.0524,
|
1956 |
+
"step": 2780
|
1957 |
+
},
|
1958 |
+
{
|
1959 |
+
"epoch": 1.7703045685279188,
|
1960 |
+
"grad_norm": 1.0461344718933105,
|
1961 |
+
"learning_rate": 4.306368617908163e-06,
|
1962 |
+
"loss": 0.0445,
|
1963 |
+
"step": 2790
|
1964 |
+
},
|
1965 |
+
{
|
1966 |
+
"epoch": 1.7766497461928934,
|
1967 |
+
"grad_norm": 1.2296735048294067,
|
1968 |
+
"learning_rate": 4.2698283277705655e-06,
|
1969 |
+
"loss": 0.0464,
|
1970 |
+
"step": 2800
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"epoch": 1.782994923857868,
|
1974 |
+
"grad_norm": 0.9869544506072998,
|
1975 |
+
"learning_rate": 4.23332784134941e-06,
|
1976 |
+
"loss": 0.0506,
|
1977 |
+
"step": 2810
|
1978 |
+
},
|
1979 |
+
{
|
1980 |
+
"epoch": 1.7893401015228427,
|
1981 |
+
"grad_norm": 2.624345541000366,
|
1982 |
+
"learning_rate": 4.196869148389114e-06,
|
1983 |
+
"loss": 0.0455,
|
1984 |
+
"step": 2820
|
1985 |
+
},
|
1986 |
+
{
|
1987 |
+
"epoch": 1.7956852791878173,
|
1988 |
+
"grad_norm": 2.0790648460388184,
|
1989 |
+
"learning_rate": 4.160454236355822e-06,
|
1990 |
+
"loss": 0.0465,
|
1991 |
+
"step": 2830
|
1992 |
+
},
|
1993 |
+
{
|
1994 |
+
"epoch": 1.8020304568527918,
|
1995 |
+
"grad_norm": 1.0878472328186035,
|
1996 |
+
"learning_rate": 4.124085090329056e-06,
|
1997 |
+
"loss": 0.0354,
|
1998 |
+
"step": 2840
|
1999 |
+
},
|
2000 |
+
{
|
2001 |
+
"epoch": 1.8083756345177666,
|
2002 |
+
"grad_norm": 1.4148125648498535,
|
2003 |
+
"learning_rate": 4.087763692893498e-06,
|
2004 |
+
"loss": 0.0378,
|
2005 |
+
"step": 2850
|
2006 |
+
},
|
2007 |
+
{
|
2008 |
+
"epoch": 1.8147208121827412,
|
2009 |
+
"grad_norm": 0.8988755941390991,
|
2010 |
+
"learning_rate": 4.051492024030925e-06,
|
2011 |
+
"loss": 0.0421,
|
2012 |
+
"step": 2860
|
2013 |
+
},
|
2014 |
+
{
|
2015 |
+
"epoch": 1.8210659898477157,
|
2016 |
+
"grad_norm": 2.1405270099639893,
|
2017 |
+
"learning_rate": 4.015272061012271e-06,
|
2018 |
+
"loss": 0.0647,
|
2019 |
+
"step": 2870
|
2020 |
+
},
|
2021 |
+
{
|
2022 |
+
"epoch": 1.8274111675126905,
|
2023 |
+
"grad_norm": 0.8886227607727051,
|
2024 |
+
"learning_rate": 3.979105778289832e-06,
|
2025 |
+
"loss": 0.0547,
|
2026 |
+
"step": 2880
|
2027 |
+
},
|
2028 |
+
{
|
2029 |
+
"epoch": 1.8337563451776648,
|
2030 |
+
"grad_norm": 1.402446985244751,
|
2031 |
+
"learning_rate": 3.942995147389648e-06,
|
2032 |
+
"loss": 0.0378,
|
2033 |
+
"step": 2890
|
2034 |
+
},
|
2035 |
+
{
|
2036 |
+
"epoch": 1.8401015228426396,
|
2037 |
+
"grad_norm": 1.283605933189392,
|
2038 |
+
"learning_rate": 3.9069421368040115e-06,
|
2039 |
+
"loss": 0.0488,
|
2040 |
+
"step": 2900
|
2041 |
+
},
|
2042 |
+
{
|
2043 |
+
"epoch": 1.8464467005076142,
|
2044 |
+
"grad_norm": 1.226680874824524,
|
2045 |
+
"learning_rate": 3.870948711884178e-06,
|
2046 |
+
"loss": 0.0382,
|
2047 |
+
"step": 2910
|
2048 |
+
},
|
2049 |
+
{
|
2050 |
+
"epoch": 1.8527918781725887,
|
2051 |
+
"grad_norm": 1.871385097503662,
|
2052 |
+
"learning_rate": 3.835016834733216e-06,
|
2053 |
+
"loss": 0.0441,
|
2054 |
+
"step": 2920
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 1.8591370558375635,
|
2058 |
+
"grad_norm": 1.125570297241211,
|
2059 |
+
"learning_rate": 3.7991484640990506e-06,
|
2060 |
+
"loss": 0.0429,
|
2061 |
+
"step": 2930
|
2062 |
+
},
|
2063 |
+
{
|
2064 |
+
"epoch": 1.865482233502538,
|
2065 |
+
"grad_norm": 1.131261944770813,
|
2066 |
+
"learning_rate": 3.763345555267692e-06,
|
2067 |
+
"loss": 0.0404,
|
2068 |
+
"step": 2940
|
2069 |
+
},
|
2070 |
+
{
|
2071 |
+
"epoch": 1.8718274111675126,
|
2072 |
+
"grad_norm": 1.5131438970565796,
|
2073 |
+
"learning_rate": 3.727610059956641e-06,
|
2074 |
+
"loss": 0.0359,
|
2075 |
+
"step": 2950
|
2076 |
+
},
|
2077 |
+
{
|
2078 |
+
"epoch": 1.8781725888324874,
|
2079 |
+
"grad_norm": 0.8379979133605957,
|
2080 |
+
"learning_rate": 3.691943926208494e-06,
|
2081 |
+
"loss": 0.0508,
|
2082 |
+
"step": 2960
|
2083 |
+
},
|
2084 |
+
{
|
2085 |
+
"epoch": 1.884517766497462,
|
2086 |
+
"grad_norm": 1.1895625591278076,
|
2087 |
+
"learning_rate": 3.6563490982847577e-06,
|
2088 |
+
"loss": 0.034,
|
2089 |
+
"step": 2970
|
2090 |
+
},
|
2091 |
+
{
|
2092 |
+
"epoch": 1.8908629441624365,
|
2093 |
+
"grad_norm": 0.7952091097831726,
|
2094 |
+
"learning_rate": 3.620827516559854e-06,
|
2095 |
+
"loss": 0.0494,
|
2096 |
+
"step": 2980
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"epoch": 1.8972081218274113,
|
2100 |
+
"grad_norm": 1.2926766872406006,
|
2101 |
+
"learning_rate": 3.58538111741535e-06,
|
2102 |
+
"loss": 0.0483,
|
2103 |
+
"step": 2990
|
2104 |
+
},
|
2105 |
+
{
|
2106 |
+
"epoch": 1.9035532994923858,
|
2107 |
+
"grad_norm": 1.165218472480774,
|
2108 |
+
"learning_rate": 3.550011833134399e-06,
|
2109 |
+
"loss": 0.0446,
|
2110 |
+
"step": 3000
|
2111 |
+
},
|
2112 |
+
{
|
2113 |
+
"epoch": 1.9098984771573604,
|
2114 |
+
"grad_norm": 1.2693628072738647,
|
2115 |
+
"learning_rate": 3.5147215917964037e-06,
|
2116 |
+
"loss": 0.0296,
|
2117 |
+
"step": 3010
|
2118 |
+
},
|
2119 |
+
{
|
2120 |
+
"epoch": 1.9162436548223352,
|
2121 |
+
"grad_norm": 0.7264485955238342,
|
2122 |
+
"learning_rate": 3.4795123171719142e-06,
|
2123 |
+
"loss": 0.0488,
|
2124 |
+
"step": 3020
|
2125 |
+
},
|
2126 |
+
{
|
2127 |
+
"epoch": 1.9225888324873095,
|
2128 |
+
"grad_norm": 0.9121705889701843,
|
2129 |
+
"learning_rate": 3.4443859286177545e-06,
|
2130 |
+
"loss": 0.0299,
|
2131 |
+
"step": 3030
|
2132 |
+
},
|
2133 |
+
{
|
2134 |
+
"epoch": 1.9289340101522843,
|
2135 |
+
"grad_norm": 1.2310829162597656,
|
2136 |
+
"learning_rate": 3.4093443409723985e-06,
|
2137 |
+
"loss": 0.0389,
|
2138 |
+
"step": 3040
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"epoch": 1.9352791878172588,
|
2142 |
+
"grad_norm": 1.087215542793274,
|
2143 |
+
"learning_rate": 3.374389464451583e-06,
|
2144 |
+
"loss": 0.0367,
|
2145 |
+
"step": 3050
|
2146 |
+
},
|
2147 |
+
{
|
2148 |
+
"epoch": 1.9416243654822334,
|
2149 |
+
"grad_norm": 1.1739871501922607,
|
2150 |
+
"learning_rate": 3.339523204544176e-06,
|
2151 |
+
"loss": 0.0407,
|
2152 |
+
"step": 3060
|
2153 |
+
},
|
2154 |
+
{
|
2155 |
+
"epoch": 1.9479695431472082,
|
2156 |
+
"grad_norm": 0.9143801927566528,
|
2157 |
+
"learning_rate": 3.3047474619083043e-06,
|
2158 |
+
"loss": 0.0361,
|
2159 |
+
"step": 3070
|
2160 |
+
},
|
2161 |
+
{
|
2162 |
+
"epoch": 1.9543147208121827,
|
2163 |
+
"grad_norm": 0.9468094706535339,
|
2164 |
+
"learning_rate": 3.2700641322677405e-06,
|
2165 |
+
"loss": 0.0309,
|
2166 |
+
"step": 3080
|
2167 |
+
},
|
2168 |
+
{
|
2169 |
+
"epoch": 1.9606598984771573,
|
2170 |
+
"grad_norm": 1.2729860544204712,
|
2171 |
+
"learning_rate": 3.235475106308569e-06,
|
2172 |
+
"loss": 0.0194,
|
2173 |
+
"step": 3090
|
2174 |
+
},
|
2175 |
+
{
|
2176 |
+
"epoch": 1.967005076142132,
|
2177 |
+
"grad_norm": 1.381415843963623,
|
2178 |
+
"learning_rate": 3.200982269576111e-06,
|
2179 |
+
"loss": 0.0495,
|
2180 |
+
"step": 3100
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"epoch": 1.9733502538071066,
|
2184 |
+
"grad_norm": 1.4151417016983032,
|
2185 |
+
"learning_rate": 3.1665875023721453e-06,
|
2186 |
+
"loss": 0.0344,
|
2187 |
+
"step": 3110
|
2188 |
+
},
|
2189 |
+
{
|
2190 |
+
"epoch": 1.9796954314720812,
|
2191 |
+
"grad_norm": 0.9717885851860046,
|
2192 |
+
"learning_rate": 3.1322926796524016e-06,
|
2193 |
+
"loss": 0.0376,
|
2194 |
+
"step": 3120
|
2195 |
+
},
|
2196 |
+
{
|
2197 |
+
"epoch": 1.986040609137056,
|
2198 |
+
"grad_norm": 0.9146430492401123,
|
2199 |
+
"learning_rate": 3.0980996709243517e-06,
|
2200 |
+
"loss": 0.028,
|
2201 |
+
"step": 3130
|
2202 |
+
},
|
2203 |
+
{
|
2204 |
+
"epoch": 1.9923857868020305,
|
2205 |
+
"grad_norm": 1.5948601961135864,
|
2206 |
+
"learning_rate": 3.0640103401453035e-06,
|
2207 |
+
"loss": 0.0511,
|
2208 |
+
"step": 3140
|
2209 |
+
},
|
2210 |
+
{
|
2211 |
+
"epoch": 1.998730964467005,
|
2212 |
+
"grad_norm": 1.120682716369629,
|
2213 |
+
"learning_rate": 3.030026545620787e-06,
|
2214 |
+
"loss": 0.0411,
|
2215 |
+
"step": 3150
|
2216 |
+
},
|
2217 |
+
{
|
2218 |
+
"epoch": 2.00507614213198,
|
2219 |
+
"grad_norm": 0.8402583003044128,
|
2220 |
+
"learning_rate": 2.9961501399032546e-06,
|
2221 |
+
"loss": 0.0272,
|
2222 |
+
"step": 3160
|
2223 |
+
},
|
2224 |
+
{
|
2225 |
+
"epoch": 2.011421319796954,
|
2226 |
+
"grad_norm": 1.102598786354065,
|
2227 |
+
"learning_rate": 2.9623829696910867e-06,
|
2228 |
+
"loss": 0.0207,
|
2229 |
+
"step": 3170
|
2230 |
+
},
|
2231 |
+
{
|
2232 |
+
"epoch": 2.017766497461929,
|
2233 |
+
"grad_norm": 0.9598972201347351,
|
2234 |
+
"learning_rate": 2.928726875727937e-06,
|
2235 |
+
"loss": 0.0197,
|
2236 |
+
"step": 3180
|
2237 |
+
},
|
2238 |
+
{
|
2239 |
+
"epoch": 2.0241116751269037,
|
2240 |
+
"grad_norm": 0.8507049679756165,
|
2241 |
+
"learning_rate": 2.8951836927023703e-06,
|
2242 |
+
"loss": 0.0161,
|
2243 |
+
"step": 3190
|
2244 |
+
},
|
2245 |
+
{
|
2246 |
+
"epoch": 2.030456852791878,
|
2247 |
+
"grad_norm": 0.9228895902633667,
|
2248 |
+
"learning_rate": 2.861755249147862e-06,
|
2249 |
+
"loss": 0.023,
|
2250 |
+
"step": 3200
|
2251 |
+
},
|
2252 |
+
{
|
2253 |
+
"epoch": 2.036802030456853,
|
2254 |
+
"grad_norm": 0.8271005749702454,
|
2255 |
+
"learning_rate": 2.828443367343119e-06,
|
2256 |
+
"loss": 0.0148,
|
2257 |
+
"step": 3210
|
2258 |
+
},
|
2259 |
+
{
|
2260 |
+
"epoch": 2.0431472081218276,
|
2261 |
+
"grad_norm": 1.2311136722564697,
|
2262 |
+
"learning_rate": 2.7952498632127324e-06,
|
2263 |
+
"loss": 0.0202,
|
2264 |
+
"step": 3220
|
2265 |
+
},
|
2266 |
+
{
|
2267 |
+
"epoch": 2.049492385786802,
|
2268 |
+
"grad_norm": 1.3220641613006592,
|
2269 |
+
"learning_rate": 2.762176546228198e-06,
|
2270 |
+
"loss": 0.0235,
|
2271 |
+
"step": 3230
|
2272 |
+
},
|
2273 |
+
{
|
2274 |
+
"epoch": 2.0558375634517767,
|
2275 |
+
"grad_norm": 1.2385421991348267,
|
2276 |
+
"learning_rate": 2.7292252193092693e-06,
|
2277 |
+
"loss": 0.0205,
|
2278 |
+
"step": 3240
|
2279 |
+
},
|
2280 |
+
{
|
2281 |
+
"epoch": 2.0621827411167515,
|
2282 |
+
"grad_norm": 1.238295316696167,
|
2283 |
+
"learning_rate": 2.6963976787256726e-06,
|
2284 |
+
"loss": 0.0157,
|
2285 |
+
"step": 3250
|
2286 |
+
},
|
2287 |
+
{
|
2288 |
+
"epoch": 2.068527918781726,
|
2289 |
+
"grad_norm": 0.7305588126182556,
|
2290 |
+
"learning_rate": 2.6636957139992003e-06,
|
2291 |
+
"loss": 0.0183,
|
2292 |
+
"step": 3260
|
2293 |
+
},
|
2294 |
+
{
|
2295 |
+
"epoch": 2.0748730964467006,
|
2296 |
+
"grad_norm": 0.8512719869613647,
|
2297 |
+
"learning_rate": 2.631121107806144e-06,
|
2298 |
+
"loss": 0.0204,
|
2299 |
+
"step": 3270
|
2300 |
+
},
|
2301 |
+
{
|
2302 |
+
"epoch": 2.081218274111675,
|
2303 |
+
"grad_norm": 0.8006191849708557,
|
2304 |
+
"learning_rate": 2.598675635880129e-06,
|
2305 |
+
"loss": 0.0223,
|
2306 |
+
"step": 3280
|
2307 |
+
},
|
2308 |
+
{
|
2309 |
+
"epoch": 2.0875634517766497,
|
2310 |
+
"grad_norm": 1.4886091947555542,
|
2311 |
+
"learning_rate": 2.5663610669153043e-06,
|
2312 |
+
"loss": 0.0197,
|
2313 |
+
"step": 3290
|
2314 |
+
},
|
2315 |
+
{
|
2316 |
+
"epoch": 2.0939086294416245,
|
2317 |
+
"grad_norm": 0.7531688213348389,
|
2318 |
+
"learning_rate": 2.534179162469924e-06,
|
2319 |
+
"loss": 0.0222,
|
2320 |
+
"step": 3300
|
2321 |
+
},
|
2322 |
+
{
|
2323 |
+
"epoch": 2.100253807106599,
|
2324 |
+
"grad_norm": 0.6706914305686951,
|
2325 |
+
"learning_rate": 2.502131676870335e-06,
|
2326 |
+
"loss": 0.019,
|
2327 |
+
"step": 3310
|
2328 |
+
},
|
2329 |
+
{
|
2330 |
+
"epoch": 2.1065989847715736,
|
2331 |
+
"grad_norm": 0.8195891380310059,
|
2332 |
+
"learning_rate": 2.470220357115327e-06,
|
2333 |
+
"loss": 0.0099,
|
2334 |
+
"step": 3320
|
2335 |
+
},
|
2336 |
+
{
|
2337 |
+
"epoch": 2.1129441624365484,
|
2338 |
+
"grad_norm": 0.8743392825126648,
|
2339 |
+
"learning_rate": 2.438446942780911e-06,
|
2340 |
+
"loss": 0.0145,
|
2341 |
+
"step": 3330
|
2342 |
+
},
|
2343 |
+
{
|
2344 |
+
"epoch": 2.1192893401015227,
|
2345 |
+
"grad_norm": 0.5079776048660278,
|
2346 |
+
"learning_rate": 2.4068131659254803e-06,
|
2347 |
+
"loss": 0.0164,
|
2348 |
+
"step": 3340
|
2349 |
+
},
|
2350 |
+
{
|
2351 |
+
"epoch": 2.1256345177664975,
|
2352 |
+
"grad_norm": 0.512514054775238,
|
2353 |
+
"learning_rate": 2.3753207509953963e-06,
|
2354 |
+
"loss": 0.0287,
|
2355 |
+
"step": 3350
|
2356 |
+
},
|
2357 |
+
{
|
2358 |
+
"epoch": 2.1319796954314723,
|
2359 |
+
"grad_norm": 0.7019079923629761,
|
2360 |
+
"learning_rate": 2.3439714147309845e-06,
|
2361 |
+
"loss": 0.0189,
|
2362 |
+
"step": 3360
|
2363 |
+
},
|
2364 |
+
{
|
2365 |
+
"epoch": 2.1383248730964466,
|
2366 |
+
"grad_norm": 0.8089588284492493,
|
2367 |
+
"learning_rate": 2.312766866072947e-06,
|
2368 |
+
"loss": 0.0255,
|
2369 |
+
"step": 3370
|
2370 |
+
},
|
2371 |
+
{
|
2372 |
+
"epoch": 2.1446700507614214,
|
2373 |
+
"grad_norm": 0.9173935651779175,
|
2374 |
+
"learning_rate": 2.2817088060692094e-06,
|
2375 |
+
"loss": 0.0149,
|
2376 |
+
"step": 3380
|
2377 |
+
},
|
2378 |
+
{
|
2379 |
+
"epoch": 2.151015228426396,
|
2380 |
+
"grad_norm": 1.1662015914916992,
|
2381 |
+
"learning_rate": 2.2507989277821847e-06,
|
2382 |
+
"loss": 0.0201,
|
2383 |
+
"step": 3390
|
2384 |
+
},
|
2385 |
+
{
|
2386 |
+
"epoch": 2.1573604060913705,
|
2387 |
+
"grad_norm": 0.5388917922973633,
|
2388 |
+
"learning_rate": 2.2200389161964795e-06,
|
2389 |
+
"loss": 0.0198,
|
2390 |
+
"step": 3400
|
2391 |
+
},
|
2392 |
+
{
|
2393 |
+
"epoch": 2.1637055837563453,
|
2394 |
+
"grad_norm": 1.1195067167282104,
|
2395 |
+
"learning_rate": 2.189430448127055e-06,
|
2396 |
+
"loss": 0.0196,
|
2397 |
+
"step": 3410
|
2398 |
+
},
|
2399 |
+
{
|
2400 |
+
"epoch": 2.1700507614213196,
|
2401 |
+
"grad_norm": 0.7136582732200623,
|
2402 |
+
"learning_rate": 2.1589751921277925e-06,
|
2403 |
+
"loss": 0.0188,
|
2404 |
+
"step": 3420
|
2405 |
+
},
|
2406 |
+
{
|
2407 |
+
"epoch": 2.1763959390862944,
|
2408 |
+
"grad_norm": 0.773573100566864,
|
2409 |
+
"learning_rate": 2.128674808400565e-06,
|
2410 |
+
"loss": 0.0212,
|
2411 |
+
"step": 3430
|
2412 |
+
},
|
2413 |
+
{
|
2414 |
+
"epoch": 2.182741116751269,
|
2415 |
+
"grad_norm": 0.7614580392837524,
|
2416 |
+
"learning_rate": 2.098530948704714e-06,
|
2417 |
+
"loss": 0.021,
|
2418 |
+
"step": 3440
|
2419 |
+
},
|
2420 |
+
{
|
2421 |
+
"epoch": 2.1890862944162435,
|
2422 |
+
"grad_norm": 0.6622429490089417,
|
2423 |
+
"learning_rate": 2.068545256267015e-06,
|
2424 |
+
"loss": 0.0169,
|
2425 |
+
"step": 3450
|
2426 |
+
},
|
2427 |
+
{
|
2428 |
+
"epoch": 2.1954314720812182,
|
2429 |
+
"grad_norm": 0.3882254660129547,
|
2430 |
+
"learning_rate": 2.0387193656921063e-06,
|
2431 |
+
"loss": 0.023,
|
2432 |
+
"step": 3460
|
2433 |
+
},
|
2434 |
+
{
|
2435 |
+
"epoch": 2.201776649746193,
|
2436 |
+
"grad_norm": 1.2883610725402832,
|
2437 |
+
"learning_rate": 2.0090549028733685e-06,
|
2438 |
+
"loss": 0.0179,
|
2439 |
+
"step": 3470
|
2440 |
+
},
|
2441 |
+
{
|
2442 |
+
"epoch": 2.2081218274111674,
|
2443 |
+
"grad_norm": 1.0185002088546753,
|
2444 |
+
"learning_rate": 1.9795534849043054e-06,
|
2445 |
+
"loss": 0.0206,
|
2446 |
+
"step": 3480
|
2447 |
+
},
|
2448 |
+
{
|
2449 |
+
"epoch": 2.214467005076142,
|
2450 |
+
"grad_norm": 0.7340651154518127,
|
2451 |
+
"learning_rate": 1.950216719990383e-06,
|
2452 |
+
"loss": 0.0159,
|
2453 |
+
"step": 3490
|
2454 |
+
},
|
2455 |
+
{
|
2456 |
+
"epoch": 2.220812182741117,
|
2457 |
+
"grad_norm": 0.8917669057846069,
|
2458 |
+
"learning_rate": 1.921046207361365e-06,
|
2459 |
+
"loss": 0.014,
|
2460 |
+
"step": 3500
|
2461 |
+
},
|
2462 |
+
{
|
2463 |
+
"epoch": 2.2271573604060912,
|
2464 |
+
"grad_norm": 0.8342999815940857,
|
2465 |
+
"learning_rate": 1.8920435371841394e-06,
|
2466 |
+
"loss": 0.0168,
|
2467 |
+
"step": 3510
|
2468 |
+
},
|
2469 |
+
{
|
2470 |
+
"epoch": 2.233502538071066,
|
2471 |
+
"grad_norm": 0.49451372027397156,
|
2472 |
+
"learning_rate": 1.8632102904760241e-06,
|
2473 |
+
"loss": 0.0202,
|
2474 |
+
"step": 3520
|
2475 |
+
},
|
2476 |
+
{
|
2477 |
+
"epoch": 2.239847715736041,
|
2478 |
+
"grad_norm": 0.8475871086120605,
|
2479 |
+
"learning_rate": 1.8345480390185865e-06,
|
2480 |
+
"loss": 0.0228,
|
2481 |
+
"step": 3530
|
2482 |
+
},
|
2483 |
+
{
|
2484 |
+
"epoch": 2.246192893401015,
|
2485 |
+
"grad_norm": 0.6851008534431458,
|
2486 |
+
"learning_rate": 1.806058345271962e-06,
|
2487 |
+
"loss": 0.016,
|
2488 |
+
"step": 3540
|
2489 |
+
},
|
2490 |
+
{
|
2491 |
+
"epoch": 2.25253807106599,
|
2492 |
+
"grad_norm": 1.2128303050994873,
|
2493 |
+
"learning_rate": 1.7777427622896764e-06,
|
2494 |
+
"loss": 0.0183,
|
2495 |
+
"step": 3550
|
2496 |
+
},
|
2497 |
+
{
|
2498 |
+
"epoch": 2.2588832487309647,
|
2499 |
+
"grad_norm": 0.3974970877170563,
|
2500 |
+
"learning_rate": 1.749602833633992e-06,
|
2501 |
+
"loss": 0.0221,
|
2502 |
+
"step": 3560
|
2503 |
+
},
|
2504 |
+
{
|
2505 |
+
"epoch": 2.265228426395939,
|
2506 |
+
"grad_norm": 0.6373499631881714,
|
2507 |
+
"learning_rate": 1.7216400932917544e-06,
|
2508 |
+
"loss": 0.0184,
|
2509 |
+
"step": 3570
|
2510 |
+
},
|
2511 |
+
{
|
2512 |
+
"epoch": 2.271573604060914,
|
2513 |
+
"grad_norm": 0.6473302245140076,
|
2514 |
+
"learning_rate": 1.6938560655907743e-06,
|
2515 |
+
"loss": 0.0156,
|
2516 |
+
"step": 3580
|
2517 |
+
},
|
2518 |
+
{
|
2519 |
+
"epoch": 2.277918781725888,
|
2520 |
+
"grad_norm": 0.5753197073936462,
|
2521 |
+
"learning_rate": 1.6662522651167345e-06,
|
2522 |
+
"loss": 0.0137,
|
2523 |
+
"step": 3590
|
2524 |
+
},
|
2525 |
+
{
|
2526 |
+
"epoch": 2.284263959390863,
|
2527 |
+
"grad_norm": 0.9094467759132385,
|
2528 |
+
"learning_rate": 1.6388301966306215e-06,
|
2529 |
+
"loss": 0.0147,
|
2530 |
+
"step": 3600
|
2531 |
+
},
|
2532 |
+
{
|
2533 |
+
"epoch": 2.2906091370558377,
|
2534 |
+
"grad_norm": 0.5902413725852966,
|
2535 |
+
"learning_rate": 1.6115913549867025e-06,
|
2536 |
+
"loss": 0.0224,
|
2537 |
+
"step": 3610
|
2538 |
+
},
|
2539 |
+
{
|
2540 |
+
"epoch": 2.296954314720812,
|
2541 |
+
"grad_norm": 0.875133752822876,
|
2542 |
+
"learning_rate": 1.5845372250510287e-06,
|
2543 |
+
"loss": 0.0232,
|
2544 |
+
"step": 3620
|
2545 |
+
},
|
2546 |
+
{
|
2547 |
+
"epoch": 2.303299492385787,
|
2548 |
+
"grad_norm": 1.241910696029663,
|
2549 |
+
"learning_rate": 1.557669281620497e-06,
|
2550 |
+
"loss": 0.0099,
|
2551 |
+
"step": 3630
|
2552 |
+
},
|
2553 |
+
{
|
2554 |
+
"epoch": 2.3096446700507616,
|
2555 |
+
"grad_norm": 0.6328564882278442,
|
2556 |
+
"learning_rate": 1.5309889893424563e-06,
|
2557 |
+
"loss": 0.0132,
|
2558 |
+
"step": 3640
|
2559 |
+
},
|
2560 |
+
{
|
2561 |
+
"epoch": 2.315989847715736,
|
2562 |
+
"grad_norm": 0.5470057725906372,
|
2563 |
+
"learning_rate": 1.5044978026348527e-06,
|
2564 |
+
"loss": 0.0164,
|
2565 |
+
"step": 3650
|
2566 |
+
},
|
2567 |
+
{
|
2568 |
+
"epoch": 2.3223350253807107,
|
2569 |
+
"grad_norm": 1.0264612436294556,
|
2570 |
+
"learning_rate": 1.4781971656069665e-06,
|
2571 |
+
"loss": 0.0203,
|
2572 |
+
"step": 3660
|
2573 |
+
},
|
2574 |
+
{
|
2575 |
+
"epoch": 2.3286802030456855,
|
2576 |
+
"grad_norm": 0.6052107810974121,
|
2577 |
+
"learning_rate": 1.4520885119806704e-06,
|
2578 |
+
"loss": 0.026,
|
2579 |
+
"step": 3670
|
2580 |
+
},
|
2581 |
+
{
|
2582 |
+
"epoch": 2.33502538071066,
|
2583 |
+
"grad_norm": 0.4180527329444885,
|
2584 |
+
"learning_rate": 1.4261732650122795e-06,
|
2585 |
+
"loss": 0.0204,
|
2586 |
+
"step": 3680
|
2587 |
+
},
|
2588 |
+
{
|
2589 |
+
"epoch": 2.3413705583756346,
|
2590 |
+
"grad_norm": 0.6096001267433167,
|
2591 |
+
"learning_rate": 1.4004528374149745e-06,
|
2592 |
+
"loss": 0.0095,
|
2593 |
+
"step": 3690
|
2594 |
+
},
|
2595 |
+
{
|
2596 |
+
"epoch": 2.347715736040609,
|
2597 |
+
"grad_norm": 0.5584781765937805,
|
2598 |
+
"learning_rate": 1.3749286312817722e-06,
|
2599 |
+
"loss": 0.0126,
|
2600 |
+
"step": 3700
|
2601 |
+
},
|
2602 |
+
{
|
2603 |
+
"epoch": 2.3540609137055837,
|
2604 |
+
"grad_norm": 0.3657080829143524,
|
2605 |
+
"learning_rate": 1.349602038009114e-06,
|
2606 |
+
"loss": 0.0108,
|
2607 |
+
"step": 3710
|
2608 |
+
},
|
2609 |
+
{
|
2610 |
+
"epoch": 2.3604060913705585,
|
2611 |
+
"grad_norm": 0.9728971719741821,
|
2612 |
+
"learning_rate": 1.3244744382210017e-06,
|
2613 |
+
"loss": 0.0104,
|
2614 |
+
"step": 3720
|
2615 |
+
},
|
2616 |
+
{
|
2617 |
+
"epoch": 2.3667512690355332,
|
2618 |
+
"grad_norm": 0.8524286150932312,
|
2619 |
+
"learning_rate": 1.2995472016937405e-06,
|
2620 |
+
"loss": 0.0167,
|
2621 |
+
"step": 3730
|
2622 |
+
},
|
2623 |
+
{
|
2624 |
+
"epoch": 2.3730964467005076,
|
2625 |
+
"grad_norm": 0.6725841164588928,
|
2626 |
+
"learning_rate": 1.2748216872812747e-06,
|
2627 |
+
"loss": 0.0131,
|
2628 |
+
"step": 3740
|
2629 |
+
},
|
2630 |
+
{
|
2631 |
+
"epoch": 2.3794416243654823,
|
2632 |
+
"grad_norm": 0.8610649704933167,
|
2633 |
+
"learning_rate": 1.2502992428411022e-06,
|
2634 |
+
"loss": 0.018,
|
2635 |
+
"step": 3750
|
2636 |
+
},
|
2637 |
+
{
|
2638 |
+
"epoch": 2.3857868020304567,
|
2639 |
+
"grad_norm": 0.4205199182033539,
|
2640 |
+
"learning_rate": 1.2259812051608066e-06,
|
2641 |
+
"loss": 0.0158,
|
2642 |
+
"step": 3760
|
2643 |
+
},
|
2644 |
+
{
|
2645 |
+
"epoch": 2.3921319796954315,
|
2646 |
+
"grad_norm": 0.7805858850479126,
|
2647 |
+
"learning_rate": 1.2018688998851802e-06,
|
2648 |
+
"loss": 0.0203,
|
2649 |
+
"step": 3770
|
2650 |
+
},
|
2651 |
+
{
|
2652 |
+
"epoch": 2.3984771573604062,
|
2653 |
+
"grad_norm": 0.2444067746400833,
|
2654 |
+
"learning_rate": 1.1779636414439672e-06,
|
2655 |
+
"loss": 0.0147,
|
2656 |
+
"step": 3780
|
2657 |
+
},
|
2658 |
+
{
|
2659 |
+
"epoch": 2.4048223350253806,
|
2660 |
+
"grad_norm": 0.40047794580459595,
|
2661 |
+
"learning_rate": 1.1542667329801998e-06,
|
2662 |
+
"loss": 0.011,
|
2663 |
+
"step": 3790
|
2664 |
+
},
|
2665 |
+
{
|
2666 |
+
"epoch": 2.4111675126903553,
|
2667 |
+
"grad_norm": 0.7459643483161926,
|
2668 |
+
"learning_rate": 1.130779466279166e-06,
|
2669 |
+
"loss": 0.0126,
|
2670 |
+
"step": 3800
|
2671 |
+
},
|
2672 |
+
{
|
2673 |
+
"epoch": 2.41751269035533,
|
2674 |
+
"grad_norm": 0.6922224760055542,
|
2675 |
+
"learning_rate": 1.107503121697997e-06,
|
2676 |
+
"loss": 0.0163,
|
2677 |
+
"step": 3810
|
2678 |
+
},
|
2679 |
+
{
|
2680 |
+
"epoch": 2.4238578680203045,
|
2681 |
+
"grad_norm": 1.863350749015808,
|
2682 |
+
"learning_rate": 1.0844389680958533e-06,
|
2683 |
+
"loss": 0.0194,
|
2684 |
+
"step": 3820
|
2685 |
+
},
|
2686 |
+
{
|
2687 |
+
"epoch": 2.4302030456852792,
|
2688 |
+
"grad_norm": 0.29856589436531067,
|
2689 |
+
"learning_rate": 1.0615882627647766e-06,
|
2690 |
+
"loss": 0.0155,
|
2691 |
+
"step": 3830
|
2692 |
+
},
|
2693 |
+
{
|
2694 |
+
"epoch": 2.436548223350254,
|
2695 |
+
"grad_norm": 0.377093642950058,
|
2696 |
+
"learning_rate": 1.0389522513611372e-06,
|
2697 |
+
"loss": 0.015,
|
2698 |
+
"step": 3840
|
2699 |
+
},
|
2700 |
+
{
|
2701 |
+
"epoch": 2.4428934010152283,
|
2702 |
+
"grad_norm": 0.5333195924758911,
|
2703 |
+
"learning_rate": 1.0165321678377332e-06,
|
2704 |
+
"loss": 0.0137,
|
2705 |
+
"step": 3850
|
2706 |
+
},
|
2707 |
+
{
|
2708 |
+
"epoch": 2.449238578680203,
|
2709 |
+
"grad_norm": 0.32329970598220825,
|
2710 |
+
"learning_rate": 9.943292343765293e-07,
|
2711 |
+
"loss": 0.0084,
|
2712 |
+
"step": 3860
|
2713 |
+
},
|
2714 |
+
{
|
2715 |
+
"epoch": 2.4555837563451774,
|
2716 |
+
"grad_norm": 0.3231019377708435,
|
2717 |
+
"learning_rate": 9.723446613220249e-07,
|
2718 |
+
"loss": 0.0126,
|
2719 |
+
"step": 3870
|
2720 |
+
},
|
2721 |
+
{
|
2722 |
+
"epoch": 2.4619289340101522,
|
2723 |
+
"grad_norm": 0.6870127320289612,
|
2724 |
+
"learning_rate": 9.505796471152783e-07,
|
2725 |
+
"loss": 0.0137,
|
2726 |
+
"step": 3880
|
2727 |
+
},
|
2728 |
+
{
|
2729 |
+
"epoch": 2.468274111675127,
|
2730 |
+
"grad_norm": 0.6023297309875488,
|
2731 |
+
"learning_rate": 9.290353782285766e-07,
|
2732 |
+
"loss": 0.0148,
|
2733 |
+
"step": 3890
|
2734 |
+
},
|
2735 |
+
{
|
2736 |
+
"epoch": 2.4746192893401013,
|
2737 |
+
"grad_norm": 0.46455860137939453,
|
2738 |
+
"learning_rate": 9.077130291007553e-07,
|
2739 |
+
"loss": 0.022,
|
2740 |
+
"step": 3900
|
2741 |
+
},
|
2742 |
+
{
|
2743 |
+
"epoch": 2.480964467005076,
|
2744 |
+
"grad_norm": 0.5320664048194885,
|
2745 |
+
"learning_rate": 8.86613762073183e-07,
|
2746 |
+
"loss": 0.0096,
|
2747 |
+
"step": 3910
|
2748 |
+
},
|
2749 |
+
{
|
2750 |
+
"epoch": 2.487309644670051,
|
2751 |
+
"grad_norm": 0.6012682914733887,
|
2752 |
+
"learning_rate": 8.657387273263895e-07,
|
2753 |
+
"loss": 0.0099,
|
2754 |
+
"step": 3920
|
2755 |
+
},
|
2756 |
+
{
|
2757 |
+
"epoch": 2.4936548223350252,
|
2758 |
+
"grad_norm": 0.8949501514434814,
|
2759 |
+
"learning_rate": 8.450890628173725e-07,
|
2760 |
+
"loss": 0.0111,
|
2761 |
+
"step": 3930
|
2762 |
+
},
|
2763 |
+
{
|
2764 |
+
"epoch": 2.5,
|
2765 |
+
"grad_norm": 0.8802683353424072,
|
2766 |
+
"learning_rate": 8.246658942175611e-07,
|
2767 |
+
"loss": 0.0143,
|
2768 |
+
"step": 3940
|
2769 |
+
},
|
2770 |
+
{
|
2771 |
+
"epoch": 2.5063451776649748,
|
2772 |
+
"grad_norm": 0.9922573566436768,
|
2773 |
+
"learning_rate": 8.04470334851456e-07,
|
2774 |
+
"loss": 0.0234,
|
2775 |
+
"step": 3950
|
2776 |
+
},
|
2777 |
+
{
|
2778 |
+
"epoch": 2.512690355329949,
|
2779 |
+
"grad_norm": 0.23940332233905792,
|
2780 |
+
"learning_rate": 7.845034856359368e-07,
|
2781 |
+
"loss": 0.011,
|
2782 |
+
"step": 3960
|
2783 |
+
},
|
2784 |
+
{
|
2785 |
+
"epoch": 2.519035532994924,
|
2786 |
+
"grad_norm": 0.2019755095243454,
|
2787 |
+
"learning_rate": 7.647664350202461e-07,
|
2788 |
+
"loss": 0.0135,
|
2789 |
+
"step": 3970
|
2790 |
+
},
|
2791 |
+
{
|
2792 |
+
"epoch": 2.525380710659898,
|
2793 |
+
"grad_norm": 0.17184686660766602,
|
2794 |
+
"learning_rate": 7.452602589266583e-07,
|
2795 |
+
"loss": 0.0074,
|
2796 |
+
"step": 3980
|
2797 |
+
},
|
2798 |
+
{
|
2799 |
+
"epoch": 2.531725888324873,
|
2800 |
+
"grad_norm": 0.8647210597991943,
|
2801 |
+
"learning_rate": 7.259860206918268e-07,
|
2802 |
+
"loss": 0.0101,
|
2803 |
+
"step": 3990
|
2804 |
+
},
|
2805 |
+
{
|
2806 |
+
"epoch": 2.5380710659898478,
|
2807 |
+
"grad_norm": 0.9781297445297241,
|
2808 |
+
"learning_rate": 7.069447710088167e-07,
|
2809 |
+
"loss": 0.0147,
|
2810 |
+
"step": 4000
|
2811 |
+
},
|
2812 |
+
{
|
2813 |
+
"epoch": 2.5444162436548226,
|
2814 |
+
"grad_norm": 0.7230397462844849,
|
2815 |
+
"learning_rate": 6.881375478698332e-07,
|
2816 |
+
"loss": 0.0159,
|
2817 |
+
"step": 4010
|
2818 |
+
},
|
2819 |
+
{
|
2820 |
+
"epoch": 2.550761421319797,
|
2821 |
+
"grad_norm": 1.1674317121505737,
|
2822 |
+
"learning_rate": 6.695653765096327e-07,
|
2823 |
+
"loss": 0.0125,
|
2824 |
+
"step": 4020
|
2825 |
+
},
|
2826 |
+
{
|
2827 |
+
"epoch": 2.5571065989847717,
|
2828 |
+
"grad_norm": 0.38593119382858276,
|
2829 |
+
"learning_rate": 6.512292693496353e-07,
|
2830 |
+
"loss": 0.0071,
|
2831 |
+
"step": 4030
|
2832 |
+
},
|
2833 |
+
{
|
2834 |
+
"epoch": 2.563451776649746,
|
2835 |
+
"grad_norm": 0.3000188171863556,
|
2836 |
+
"learning_rate": 6.331302259427418e-07,
|
2837 |
+
"loss": 0.0086,
|
2838 |
+
"step": 4040
|
2839 |
+
},
|
2840 |
+
{
|
2841 |
+
"epoch": 2.5697969543147208,
|
2842 |
+
"grad_norm": 0.6724553108215332,
|
2843 |
+
"learning_rate": 6.152692329188297e-07,
|
2844 |
+
"loss": 0.0076,
|
2845 |
+
"step": 4050
|
2846 |
+
},
|
2847 |
+
{
|
2848 |
+
"epoch": 2.5761421319796955,
|
2849 |
+
"grad_norm": 1.0246587991714478,
|
2850 |
+
"learning_rate": 5.976472639309888e-07,
|
2851 |
+
"loss": 0.02,
|
2852 |
+
"step": 4060
|
2853 |
+
},
|
2854 |
+
{
|
2855 |
+
"epoch": 2.5824873096446703,
|
2856 |
+
"grad_norm": 0.5962472558021545,
|
2857 |
+
"learning_rate": 5.802652796024294e-07,
|
2858 |
+
"loss": 0.0208,
|
2859 |
+
"step": 4070
|
2860 |
+
},
|
2861 |
+
{
|
2862 |
+
"epoch": 2.5888324873096447,
|
2863 |
+
"grad_norm": 0.44684454798698425,
|
2864 |
+
"learning_rate": 5.631242274741211e-07,
|
2865 |
+
"loss": 0.0179,
|
2866 |
+
"step": 4080
|
2867 |
+
},
|
2868 |
+
{
|
2869 |
+
"epoch": 2.5951776649746194,
|
2870 |
+
"grad_norm": 0.446123331785202,
|
2871 |
+
"learning_rate": 5.46225041953145e-07,
|
2872 |
+
"loss": 0.0065,
|
2873 |
+
"step": 4090
|
2874 |
+
},
|
2875 |
+
{
|
2876 |
+
"epoch": 2.6015228426395938,
|
2877 |
+
"grad_norm": 0.28516885638237,
|
2878 |
+
"learning_rate": 5.295686442617442e-07,
|
2879 |
+
"loss": 0.0084,
|
2880 |
+
"step": 4100
|
2881 |
+
},
|
2882 |
+
{
|
2883 |
+
"epoch": 2.6078680203045685,
|
2884 |
+
"grad_norm": 0.42138996720314026,
|
2885 |
+
"learning_rate": 5.131559423871191e-07,
|
2886 |
+
"loss": 0.0119,
|
2887 |
+
"step": 4110
|
2888 |
+
},
|
2889 |
+
{
|
2890 |
+
"epoch": 2.6142131979695433,
|
2891 |
+
"grad_norm": 0.857070803642273,
|
2892 |
+
"learning_rate": 4.969878310319204e-07,
|
2893 |
+
"loss": 0.0116,
|
2894 |
+
"step": 4120
|
2895 |
+
},
|
2896 |
+
{
|
2897 |
+
"epoch": 2.6205583756345177,
|
2898 |
+
"grad_norm": 0.4262557327747345,
|
2899 |
+
"learning_rate": 4.810651915654807e-07,
|
2900 |
+
"loss": 0.013,
|
2901 |
+
"step": 4130
|
2902 |
+
},
|
2903 |
+
{
|
2904 |
+
"epoch": 2.6269035532994924,
|
2905 |
+
"grad_norm": 0.08034439384937286,
|
2906 |
+
"learning_rate": 4.6538889197576985e-07,
|
2907 |
+
"loss": 0.0085,
|
2908 |
+
"step": 4140
|
2909 |
+
},
|
2910 |
+
{
|
2911 |
+
"epoch": 2.6332487309644668,
|
2912 |
+
"grad_norm": 0.4999110698699951,
|
2913 |
+
"learning_rate": 4.4995978682207396e-07,
|
2914 |
+
"loss": 0.0104,
|
2915 |
+
"step": 4150
|
2916 |
+
},
|
2917 |
+
{
|
2918 |
+
"epoch": 2.6395939086294415,
|
2919 |
+
"grad_norm": 0.47301802039146423,
|
2920 |
+
"learning_rate": 4.347787171884149e-07,
|
2921 |
+
"loss": 0.013,
|
2922 |
+
"step": 4160
|
2923 |
+
},
|
2924 |
+
{
|
2925 |
+
"epoch": 2.6459390862944163,
|
2926 |
+
"grad_norm": 0.2837192416191101,
|
2927 |
+
"learning_rate": 4.1984651063769864e-07,
|
2928 |
+
"loss": 0.0123,
|
2929 |
+
"step": 4170
|
2930 |
+
},
|
2931 |
+
{
|
2932 |
+
"epoch": 2.652284263959391,
|
2933 |
+
"grad_norm": 0.4908500611782074,
|
2934 |
+
"learning_rate": 4.0516398116660196e-07,
|
2935 |
+
"loss": 0.0137,
|
2936 |
+
"step": 4180
|
2937 |
+
},
|
2938 |
+
{
|
2939 |
+
"epoch": 2.6586294416243654,
|
2940 |
+
"grad_norm": 0.38162919878959656,
|
2941 |
+
"learning_rate": 3.907319291612027e-07,
|
2942 |
+
"loss": 0.0108,
|
2943 |
+
"step": 4190
|
2944 |
+
},
|
2945 |
+
{
|
2946 |
+
"epoch": 2.66497461928934,
|
2947 |
+
"grad_norm": 0.9448516368865967,
|
2948 |
+
"learning_rate": 3.765511413533429e-07,
|
2949 |
+
"loss": 0.0139,
|
2950 |
+
"step": 4200
|
2951 |
+
},
|
2952 |
+
{
|
2953 |
+
"epoch": 2.6713197969543145,
|
2954 |
+
"grad_norm": 0.4047912359237671,
|
2955 |
+
"learning_rate": 3.626223907777482e-07,
|
2956 |
+
"loss": 0.0147,
|
2957 |
+
"step": 4210
|
2958 |
+
},
|
2959 |
+
{
|
2960 |
+
"epoch": 2.6776649746192893,
|
2961 |
+
"grad_norm": 0.1890551596879959,
|
2962 |
+
"learning_rate": 3.489464367298795e-07,
|
2963 |
+
"loss": 0.0135,
|
2964 |
+
"step": 4220
|
2965 |
+
},
|
2966 |
+
{
|
2967 |
+
"epoch": 2.684010152284264,
|
2968 |
+
"grad_norm": 0.3367404341697693,
|
2969 |
+
"learning_rate": 3.3552402472454893e-07,
|
2970 |
+
"loss": 0.017,
|
2971 |
+
"step": 4230
|
2972 |
+
},
|
2973 |
+
{
|
2974 |
+
"epoch": 2.6903553299492384,
|
2975 |
+
"grad_norm": 0.5344458818435669,
|
2976 |
+
"learning_rate": 3.2235588645527893e-07,
|
2977 |
+
"loss": 0.0201,
|
2978 |
+
"step": 4240
|
2979 |
+
},
|
2980 |
+
{
|
2981 |
+
"epoch": 2.696700507614213,
|
2982 |
+
"grad_norm": 0.8313795328140259,
|
2983 |
+
"learning_rate": 3.094427397544103e-07,
|
2984 |
+
"loss": 0.0162,
|
2985 |
+
"step": 4250
|
2986 |
+
},
|
2987 |
+
{
|
2988 |
+
"epoch": 2.703045685279188,
|
2989 |
+
"grad_norm": 0.35280096530914307,
|
2990 |
+
"learning_rate": 2.967852885539768e-07,
|
2991 |
+
"loss": 0.0064,
|
2992 |
+
"step": 4260
|
2993 |
+
},
|
2994 |
+
{
|
2995 |
+
"epoch": 2.7093908629441623,
|
2996 |
+
"grad_norm": 0.6538042426109314,
|
2997 |
+
"learning_rate": 2.843842228473293e-07,
|
2998 |
+
"loss": 0.0145,
|
2999 |
+
"step": 4270
|
3000 |
+
},
|
3001 |
+
{
|
3002 |
+
"epoch": 2.715736040609137,
|
3003 |
+
"grad_norm": 0.6905611753463745,
|
3004 |
+
"learning_rate": 2.7224021865151996e-07,
|
3005 |
+
"loss": 0.0128,
|
3006 |
+
"step": 4280
|
3007 |
+
},
|
3008 |
+
{
|
3009 |
+
"epoch": 2.722081218274112,
|
3010 |
+
"grad_norm": 0.5076076984405518,
|
3011 |
+
"learning_rate": 2.603539379704567e-07,
|
3012 |
+
"loss": 0.0171,
|
3013 |
+
"step": 4290
|
3014 |
+
},
|
3015 |
+
{
|
3016 |
+
"epoch": 2.728426395939086,
|
3017 |
+
"grad_norm": 0.6590428352355957,
|
3018 |
+
"learning_rate": 2.4872602875881004e-07,
|
3019 |
+
"loss": 0.0077,
|
3020 |
+
"step": 4300
|
3021 |
+
},
|
3022 |
+
{
|
3023 |
+
"epoch": 2.734771573604061,
|
3024 |
+
"grad_norm": 0.3470360338687897,
|
3025 |
+
"learning_rate": 2.373571248866946e-07,
|
3026 |
+
"loss": 0.0115,
|
3027 |
+
"step": 4310
|
3028 |
+
},
|
3029 |
+
{
|
3030 |
+
"epoch": 2.7411167512690353,
|
3031 |
+
"grad_norm": 0.5780541896820068,
|
3032 |
+
"learning_rate": 2.262478461051132e-07,
|
3033 |
+
"loss": 0.0191,
|
3034 |
+
"step": 4320
|
3035 |
+
},
|
3036 |
+
{
|
3037 |
+
"epoch": 2.74746192893401,
|
3038 |
+
"grad_norm": 1.4629708528518677,
|
3039 |
+
"learning_rate": 2.153987980121719e-07,
|
3040 |
+
"loss": 0.0189,
|
3041 |
+
"step": 4330
|
3042 |
+
},
|
3043 |
+
{
|
3044 |
+
"epoch": 2.753807106598985,
|
3045 |
+
"grad_norm": 1.3563203811645508,
|
3046 |
+
"learning_rate": 2.0481057202006992e-07,
|
3047 |
+
"loss": 0.0116,
|
3048 |
+
"step": 4340
|
3049 |
+
},
|
3050 |
+
{
|
3051 |
+
"epoch": 2.7601522842639596,
|
3052 |
+
"grad_norm": 0.4442911744117737,
|
3053 |
+
"learning_rate": 1.9448374532285707e-07,
|
3054 |
+
"loss": 0.0153,
|
3055 |
+
"step": 4350
|
3056 |
+
},
|
3057 |
+
{
|
3058 |
+
"epoch": 2.766497461928934,
|
3059 |
+
"grad_norm": 0.26719120144844055,
|
3060 |
+
"learning_rate": 1.8441888086497162e-07,
|
3061 |
+
"loss": 0.0156,
|
3062 |
+
"step": 4360
|
3063 |
+
},
|
3064 |
+
{
|
3065 |
+
"epoch": 2.7728426395939088,
|
3066 |
+
"grad_norm": 0.4203988015651703,
|
3067 |
+
"learning_rate": 1.7461652731055157e-07,
|
3068 |
+
"loss": 0.0162,
|
3069 |
+
"step": 4370
|
3070 |
+
},
|
3071 |
+
{
|
3072 |
+
"epoch": 2.779187817258883,
|
3073 |
+
"grad_norm": 1.0901730060577393,
|
3074 |
+
"learning_rate": 1.650772190135247e-07,
|
3075 |
+
"loss": 0.0131,
|
3076 |
+
"step": 4380
|
3077 |
+
},
|
3078 |
+
{
|
3079 |
+
"epoch": 2.785532994923858,
|
3080 |
+
"grad_norm": 0.3400239944458008,
|
3081 |
+
"learning_rate": 1.5580147598848018e-07,
|
3082 |
+
"loss": 0.0141,
|
3083 |
+
"step": 4390
|
3084 |
+
},
|
3085 |
+
{
|
3086 |
+
"epoch": 2.7918781725888326,
|
3087 |
+
"grad_norm": 0.38450250029563904,
|
3088 |
+
"learning_rate": 1.4678980388232233e-07,
|
3089 |
+
"loss": 0.0099,
|
3090 |
+
"step": 4400
|
3091 |
+
},
|
3092 |
+
{
|
3093 |
+
"epoch": 2.798223350253807,
|
3094 |
+
"grad_norm": 0.4401623606681824,
|
3095 |
+
"learning_rate": 1.3804269394670388e-07,
|
3096 |
+
"loss": 0.0166,
|
3097 |
+
"step": 4410
|
3098 |
+
},
|
3099 |
+
{
|
3100 |
+
"epoch": 2.8045685279187818,
|
3101 |
+
"grad_norm": 0.765143871307373,
|
3102 |
+
"learning_rate": 1.295606230112495e-07,
|
3103 |
+
"loss": 0.015,
|
3104 |
+
"step": 4420
|
3105 |
+
},
|
3106 |
+
{
|
3107 |
+
"epoch": 2.810913705583756,
|
3108 |
+
"grad_norm": 0.47553789615631104,
|
3109 |
+
"learning_rate": 1.2134405345755773e-07,
|
3110 |
+
"loss": 0.0104,
|
3111 |
+
"step": 4430
|
3112 |
+
},
|
3113 |
+
{
|
3114 |
+
"epoch": 2.817258883248731,
|
3115 |
+
"grad_norm": 1.053678274154663,
|
3116 |
+
"learning_rate": 1.1339343319400175e-07,
|
3117 |
+
"loss": 0.0085,
|
3118 |
+
"step": 4440
|
3119 |
+
},
|
3120 |
+
{
|
3121 |
+
"epoch": 2.8236040609137056,
|
3122 |
+
"grad_norm": 0.5694789290428162,
|
3123 |
+
"learning_rate": 1.057091956313061e-07,
|
3124 |
+
"loss": 0.0131,
|
3125 |
+
"step": 4450
|
3126 |
+
},
|
3127 |
+
{
|
3128 |
+
"epoch": 2.8299492385786804,
|
3129 |
+
"grad_norm": 0.41042569279670715,
|
3130 |
+
"learning_rate": 9.829175965892557e-08,
|
3131 |
+
"loss": 0.0162,
|
3132 |
+
"step": 4460
|
3133 |
+
},
|
3134 |
+
{
|
3135 |
+
"epoch": 2.8362944162436547,
|
3136 |
+
"grad_norm": 0.30753186345100403,
|
3137 |
+
"learning_rate": 9.114152962220734e-08,
|
3138 |
+
"loss": 0.0085,
|
3139 |
+
"step": 4470
|
3140 |
+
},
|
3141 |
+
{
|
3142 |
+
"epoch": 2.8426395939086295,
|
3143 |
+
"grad_norm": 1.1423698663711548,
|
3144 |
+
"learning_rate": 8.425889530034815e-08,
|
3145 |
+
"loss": 0.0111,
|
3146 |
+
"step": 4480
|
3147 |
+
},
|
3148 |
+
{
|
3149 |
+
"epoch": 2.848984771573604,
|
3150 |
+
"grad_norm": 0.9772459864616394,
|
3151 |
+
"learning_rate": 7.764423188515058e-08,
|
3152 |
+
"loss": 0.0137,
|
3153 |
+
"step": 4490
|
3154 |
+
},
|
3155 |
+
{
|
3156 |
+
"epoch": 2.8553299492385786,
|
3157 |
+
"grad_norm": 0.2530859112739563,
|
3158 |
+
"learning_rate": 7.129789996056568e-08,
|
3159 |
+
"loss": 0.0148,
|
3160 |
+
"step": 4500
|
3161 |
+
}
|
3162 |
+
],
|
3163 |
+
"logging_steps": 10,
|
3164 |
+
"max_steps": 4728,
|
3165 |
+
"num_input_tokens_seen": 0,
|
3166 |
+
"num_train_epochs": 3,
|
3167 |
+
"save_steps": 500,
|
3168 |
+
"stateful_callbacks": {
|
3169 |
+
"TrainerControl": {
|
3170 |
+
"args": {
|
3171 |
+
"should_epoch_stop": false,
|
3172 |
+
"should_evaluate": false,
|
3173 |
+
"should_log": false,
|
3174 |
+
"should_save": true,
|
3175 |
+
"should_training_stop": false
|
3176 |
+
},
|
3177 |
+
"attributes": {}
|
3178 |
+
}
|
3179 |
+
},
|
3180 |
+
"total_flos": 391740982493184.0,
|
3181 |
+
"train_batch_size": 1,
|
3182 |
+
"trial_name": null,
|
3183 |
+
"trial_params": null
|
3184 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ddfb641a3858b4d87703e8b63d389c469e300e2afe6cce5876835fc3ee89fe0e
|
3 |
+
size 8145
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|