shulin16 commited on
Commit
4d97764
·
verified ·
1 Parent(s): 232b9b6

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</answer>": 151670,
3
+ "</information>": 151672,
4
+ "</think>": 151666,
5
+ "</tool>": 151668,
6
+ "</tool_call>": 151658,
7
+ "<answer>": 151669,
8
+ "<information>": 151671,
9
+ "<think>": 151665,
10
+ "<tool>": 151667,
11
+ "<tool_call>": 151657,
12
+ "<|box_end|>": 151649,
13
+ "<|box_start|>": 151648,
14
+ "<|endoftext|>": 151643,
15
+ "<|file_sep|>": 151664,
16
+ "<|fim_middle|>": 151660,
17
+ "<|fim_pad|>": 151662,
18
+ "<|fim_prefix|>": 151659,
19
+ "<|fim_suffix|>": 151661,
20
+ "<|im_end|>": 151645,
21
+ "<|im_start|>": 151644,
22
+ "<|image_pad|>": 151655,
23
+ "<|object_ref_end|>": 151647,
24
+ "<|object_ref_start|>": 151646,
25
+ "<|quad_end|>": 151651,
26
+ "<|quad_start|>": 151650,
27
+ "<|repo_name|>": 151663,
28
+ "<|video_pad|>": 151656,
29
+ "<|vision_end|>": 151653,
30
+ "<|vision_pad|>": 151654,
31
+ "<|vision_start|>": 151652
32
+ }
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2ForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 151643,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 2048,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 11008,
12
+ "max_position_embeddings": 32768,
13
+ "max_window_layers": 70,
14
+ "model_type": "qwen2",
15
+ "num_attention_heads": 16,
16
+ "num_hidden_layers": 36,
17
+ "num_key_value_heads": 2,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_scaling": null,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": 32768,
22
+ "tie_word_embeddings": true,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.51.3",
25
+ "use_cache": false,
26
+ "use_sliding_window": false,
27
+ "vocab_size": 151936
28
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.51.3"
14
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step4500
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1674ae964de3cb7382f88b5adf2da60501a5733b2cc34f2bc3ebce0948cd9961
3
+ size 4957560304
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cc00c62a0ce5af7f20e0421a3e24b46de6694d431ef33a63bf3007eda1fa40d
3
+ size 1214366696
model.safetensors.index.json ADDED
@@ -0,0 +1,441 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6171877376
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
187
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
194
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
197
+ "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
206
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
209
+ "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
211
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
230
+ "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
233
+ "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
235
+ "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
242
+ "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
254
+ "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
257
+ "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
259
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
260
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
266
+ "model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
269
+ "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
271
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
272
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
283
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
284
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
295
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
296
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
307
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
319
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
331
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
343
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
355
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
367
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
368
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
379
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
391
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
403
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
415
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
427
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
439
+ "model.norm.weight": "model-00002-of-00002.safetensors"
440
+ }
441
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6223cfb5499da33858a9472a0bbac51ae00362d72a643acb50af8e2065967744
3
+ size 11423384
tokenizer_config.json ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<think>",
183
+ "lstrip": false,
184
+ "normalized": true,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</think>",
191
+ "lstrip": false,
192
+ "normalized": true,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<tool>",
199
+ "lstrip": false,
200
+ "normalized": true,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</tool>",
207
+ "lstrip": false,
208
+ "normalized": true,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ },
213
+ "151669": {
214
+ "content": "<answer>",
215
+ "lstrip": false,
216
+ "normalized": true,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": false
220
+ },
221
+ "151670": {
222
+ "content": "</answer>",
223
+ "lstrip": false,
224
+ "normalized": true,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": false
228
+ },
229
+ "151671": {
230
+ "content": "<information>",
231
+ "lstrip": false,
232
+ "normalized": true,
233
+ "rstrip": false,
234
+ "single_word": false,
235
+ "special": false
236
+ },
237
+ "151672": {
238
+ "content": "</information>",
239
+ "lstrip": false,
240
+ "normalized": true,
241
+ "rstrip": false,
242
+ "single_word": false,
243
+ "special": false
244
+ }
245
+ },
246
+ "additional_special_tokens": [
247
+ "<|im_start|>",
248
+ "<|im_end|>",
249
+ "<|object_ref_start|>",
250
+ "<|object_ref_end|>",
251
+ "<|box_start|>",
252
+ "<|box_end|>",
253
+ "<|quad_start|>",
254
+ "<|quad_end|>",
255
+ "<|vision_start|>",
256
+ "<|vision_end|>",
257
+ "<|vision_pad|>",
258
+ "<|image_pad|>",
259
+ "<|video_pad|>"
260
+ ],
261
+ "bos_token": null,
262
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
263
+ "clean_up_tokenization_spaces": false,
264
+ "eos_token": "<|im_end|>",
265
+ "errors": "replace",
266
+ "extra_special_tokens": {},
267
+ "model_max_length": 131072,
268
+ "pad_token": "<|endoftext|>",
269
+ "padding_side": "right",
270
+ "split_special_tokens": false,
271
+ "tokenizer_class": "Qwen2Tokenizer",
272
+ "unk_token": null
273
+ }
trainer_state.json ADDED
@@ -0,0 +1,3184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 2.8553299492385786,
6
+ "eval_steps": 500,
7
+ "global_step": 4500,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.006345177664974619,
14
+ "grad_norm": 12.304139137268066,
15
+ "learning_rate": 1.9027484143763215e-07,
16
+ "loss": 1.4092,
17
+ "step": 10
18
+ },
19
+ {
20
+ "epoch": 0.012690355329949238,
21
+ "grad_norm": 10.735240936279297,
22
+ "learning_rate": 4.0169133192389007e-07,
23
+ "loss": 1.3444,
24
+ "step": 20
25
+ },
26
+ {
27
+ "epoch": 0.01903553299492386,
28
+ "grad_norm": 4.4380784034729,
29
+ "learning_rate": 6.131078224101481e-07,
30
+ "loss": 1.2567,
31
+ "step": 30
32
+ },
33
+ {
34
+ "epoch": 0.025380710659898477,
35
+ "grad_norm": 3.0971062183380127,
36
+ "learning_rate": 8.245243128964061e-07,
37
+ "loss": 1.2201,
38
+ "step": 40
39
+ },
40
+ {
41
+ "epoch": 0.031725888324873094,
42
+ "grad_norm": 2.3528785705566406,
43
+ "learning_rate": 1.0359408033826639e-06,
44
+ "loss": 1.1005,
45
+ "step": 50
46
+ },
47
+ {
48
+ "epoch": 0.03807106598984772,
49
+ "grad_norm": 1.9325449466705322,
50
+ "learning_rate": 1.2473572938689219e-06,
51
+ "loss": 1.0258,
52
+ "step": 60
53
+ },
54
+ {
55
+ "epoch": 0.044416243654822336,
56
+ "grad_norm": 1.9481005668640137,
57
+ "learning_rate": 1.4587737843551796e-06,
58
+ "loss": 0.9549,
59
+ "step": 70
60
+ },
61
+ {
62
+ "epoch": 0.050761421319796954,
63
+ "grad_norm": 1.3744746446609497,
64
+ "learning_rate": 1.6701902748414379e-06,
65
+ "loss": 0.9397,
66
+ "step": 80
67
+ },
68
+ {
69
+ "epoch": 0.05710659898477157,
70
+ "grad_norm": 1.3208822011947632,
71
+ "learning_rate": 1.8816067653276956e-06,
72
+ "loss": 0.9581,
73
+ "step": 90
74
+ },
75
+ {
76
+ "epoch": 0.06345177664974619,
77
+ "grad_norm": 1.578454613685608,
78
+ "learning_rate": 2.0930232558139536e-06,
79
+ "loss": 0.8835,
80
+ "step": 100
81
+ },
82
+ {
83
+ "epoch": 0.06979695431472081,
84
+ "grad_norm": 1.7314599752426147,
85
+ "learning_rate": 2.3044397463002116e-06,
86
+ "loss": 0.877,
87
+ "step": 110
88
+ },
89
+ {
90
+ "epoch": 0.07614213197969544,
91
+ "grad_norm": 1.690652847290039,
92
+ "learning_rate": 2.5158562367864696e-06,
93
+ "loss": 0.8674,
94
+ "step": 120
95
+ },
96
+ {
97
+ "epoch": 0.08248730964467005,
98
+ "grad_norm": 1.4886319637298584,
99
+ "learning_rate": 2.7272727272727272e-06,
100
+ "loss": 0.8124,
101
+ "step": 130
102
+ },
103
+ {
104
+ "epoch": 0.08883248730964467,
105
+ "grad_norm": 1.5932313203811646,
106
+ "learning_rate": 2.9386892177589852e-06,
107
+ "loss": 0.8825,
108
+ "step": 140
109
+ },
110
+ {
111
+ "epoch": 0.09517766497461928,
112
+ "grad_norm": 1.7353770732879639,
113
+ "learning_rate": 3.1501057082452436e-06,
114
+ "loss": 0.8381,
115
+ "step": 150
116
+ },
117
+ {
118
+ "epoch": 0.10152284263959391,
119
+ "grad_norm": 1.5052095651626587,
120
+ "learning_rate": 3.3615221987315012e-06,
121
+ "loss": 0.8094,
122
+ "step": 160
123
+ },
124
+ {
125
+ "epoch": 0.10786802030456853,
126
+ "grad_norm": 1.5068026781082153,
127
+ "learning_rate": 3.5729386892177592e-06,
128
+ "loss": 0.8088,
129
+ "step": 170
130
+ },
131
+ {
132
+ "epoch": 0.11421319796954314,
133
+ "grad_norm": 1.3972314596176147,
134
+ "learning_rate": 3.7843551797040172e-06,
135
+ "loss": 0.7807,
136
+ "step": 180
137
+ },
138
+ {
139
+ "epoch": 0.12055837563451777,
140
+ "grad_norm": 1.4561253786087036,
141
+ "learning_rate": 3.995771670190275e-06,
142
+ "loss": 0.751,
143
+ "step": 190
144
+ },
145
+ {
146
+ "epoch": 0.12690355329949238,
147
+ "grad_norm": 1.1900990009307861,
148
+ "learning_rate": 4.207188160676533e-06,
149
+ "loss": 0.7526,
150
+ "step": 200
151
+ },
152
+ {
153
+ "epoch": 0.13324873096446702,
154
+ "grad_norm": 1.2069578170776367,
155
+ "learning_rate": 4.418604651162791e-06,
156
+ "loss": 0.737,
157
+ "step": 210
158
+ },
159
+ {
160
+ "epoch": 0.13959390862944163,
161
+ "grad_norm": 1.3006811141967773,
162
+ "learning_rate": 4.630021141649049e-06,
163
+ "loss": 0.757,
164
+ "step": 220
165
+ },
166
+ {
167
+ "epoch": 0.14593908629441624,
168
+ "grad_norm": 1.1366584300994873,
169
+ "learning_rate": 4.841437632135307e-06,
170
+ "loss": 0.7355,
171
+ "step": 230
172
+ },
173
+ {
174
+ "epoch": 0.15228426395939088,
175
+ "grad_norm": 1.0923043489456177,
176
+ "learning_rate": 5.052854122621564e-06,
177
+ "loss": 0.7273,
178
+ "step": 240
179
+ },
180
+ {
181
+ "epoch": 0.15862944162436549,
182
+ "grad_norm": 1.1340067386627197,
183
+ "learning_rate": 5.264270613107823e-06,
184
+ "loss": 0.7093,
185
+ "step": 250
186
+ },
187
+ {
188
+ "epoch": 0.1649746192893401,
189
+ "grad_norm": 1.0045281648635864,
190
+ "learning_rate": 5.47568710359408e-06,
191
+ "loss": 0.709,
192
+ "step": 260
193
+ },
194
+ {
195
+ "epoch": 0.1713197969543147,
196
+ "grad_norm": 1.3080400228500366,
197
+ "learning_rate": 5.687103594080339e-06,
198
+ "loss": 0.7142,
199
+ "step": 270
200
+ },
201
+ {
202
+ "epoch": 0.17766497461928935,
203
+ "grad_norm": 1.4830659627914429,
204
+ "learning_rate": 5.898520084566597e-06,
205
+ "loss": 0.7233,
206
+ "step": 280
207
+ },
208
+ {
209
+ "epoch": 0.18401015228426396,
210
+ "grad_norm": 1.295798897743225,
211
+ "learning_rate": 6.109936575052855e-06,
212
+ "loss": 0.7254,
213
+ "step": 290
214
+ },
215
+ {
216
+ "epoch": 0.19035532994923857,
217
+ "grad_norm": 1.1951725482940674,
218
+ "learning_rate": 6.321353065539113e-06,
219
+ "loss": 0.7008,
220
+ "step": 300
221
+ },
222
+ {
223
+ "epoch": 0.1967005076142132,
224
+ "grad_norm": 1.1962999105453491,
225
+ "learning_rate": 6.53276955602537e-06,
226
+ "loss": 0.6697,
227
+ "step": 310
228
+ },
229
+ {
230
+ "epoch": 0.20304568527918782,
231
+ "grad_norm": 1.0768781900405884,
232
+ "learning_rate": 6.744186046511628e-06,
233
+ "loss": 0.6688,
234
+ "step": 320
235
+ },
236
+ {
237
+ "epoch": 0.20939086294416243,
238
+ "grad_norm": 1.2655526399612427,
239
+ "learning_rate": 6.955602536997886e-06,
240
+ "loss": 0.7098,
241
+ "step": 330
242
+ },
243
+ {
244
+ "epoch": 0.21573604060913706,
245
+ "grad_norm": 1.1732734441757202,
246
+ "learning_rate": 7.167019027484144e-06,
247
+ "loss": 0.6961,
248
+ "step": 340
249
+ },
250
+ {
251
+ "epoch": 0.22208121827411167,
252
+ "grad_norm": 1.4146960973739624,
253
+ "learning_rate": 7.378435517970403e-06,
254
+ "loss": 0.6581,
255
+ "step": 350
256
+ },
257
+ {
258
+ "epoch": 0.22842639593908629,
259
+ "grad_norm": 1.0180368423461914,
260
+ "learning_rate": 7.58985200845666e-06,
261
+ "loss": 0.636,
262
+ "step": 360
263
+ },
264
+ {
265
+ "epoch": 0.23477157360406092,
266
+ "grad_norm": 1.1763561964035034,
267
+ "learning_rate": 7.801268498942918e-06,
268
+ "loss": 0.6695,
269
+ "step": 370
270
+ },
271
+ {
272
+ "epoch": 0.24111675126903553,
273
+ "grad_norm": 1.120521068572998,
274
+ "learning_rate": 8.012684989429176e-06,
275
+ "loss": 0.6658,
276
+ "step": 380
277
+ },
278
+ {
279
+ "epoch": 0.24746192893401014,
280
+ "grad_norm": 1.070609450340271,
281
+ "learning_rate": 8.224101479915433e-06,
282
+ "loss": 0.6528,
283
+ "step": 390
284
+ },
285
+ {
286
+ "epoch": 0.25380710659898476,
287
+ "grad_norm": 1.404994249343872,
288
+ "learning_rate": 8.435517970401692e-06,
289
+ "loss": 0.6525,
290
+ "step": 400
291
+ },
292
+ {
293
+ "epoch": 0.26015228426395937,
294
+ "grad_norm": 1.3568419218063354,
295
+ "learning_rate": 8.64693446088795e-06,
296
+ "loss": 0.6525,
297
+ "step": 410
298
+ },
299
+ {
300
+ "epoch": 0.26649746192893403,
301
+ "grad_norm": 1.3468185663223267,
302
+ "learning_rate": 8.858350951374208e-06,
303
+ "loss": 0.641,
304
+ "step": 420
305
+ },
306
+ {
307
+ "epoch": 0.27284263959390864,
308
+ "grad_norm": 1.0951420068740845,
309
+ "learning_rate": 9.069767441860465e-06,
310
+ "loss": 0.6453,
311
+ "step": 430
312
+ },
313
+ {
314
+ "epoch": 0.27918781725888325,
315
+ "grad_norm": 1.030259370803833,
316
+ "learning_rate": 9.281183932346723e-06,
317
+ "loss": 0.6138,
318
+ "step": 440
319
+ },
320
+ {
321
+ "epoch": 0.28553299492385786,
322
+ "grad_norm": 1.1757938861846924,
323
+ "learning_rate": 9.492600422832982e-06,
324
+ "loss": 0.6787,
325
+ "step": 450
326
+ },
327
+ {
328
+ "epoch": 0.2918781725888325,
329
+ "grad_norm": 1.3138433694839478,
330
+ "learning_rate": 9.70401691331924e-06,
331
+ "loss": 0.6633,
332
+ "step": 460
333
+ },
334
+ {
335
+ "epoch": 0.2982233502538071,
336
+ "grad_norm": 1.3092707395553589,
337
+ "learning_rate": 9.915433403805497e-06,
338
+ "loss": 0.6432,
339
+ "step": 470
340
+ },
341
+ {
342
+ "epoch": 0.30456852791878175,
343
+ "grad_norm": 1.2927078008651733,
344
+ "learning_rate": 9.999950938319974e-06,
345
+ "loss": 0.6266,
346
+ "step": 480
347
+ },
348
+ {
349
+ "epoch": 0.31091370558375636,
350
+ "grad_norm": 1.33150053024292,
351
+ "learning_rate": 9.999651120428776e-06,
352
+ "loss": 0.6427,
353
+ "step": 490
354
+ },
355
+ {
356
+ "epoch": 0.31725888324873097,
357
+ "grad_norm": 1.2657496929168701,
358
+ "learning_rate": 9.999078757459388e-06,
359
+ "loss": 0.6457,
360
+ "step": 500
361
+ },
362
+ {
363
+ "epoch": 0.3236040609137056,
364
+ "grad_norm": 1.6883960962295532,
365
+ "learning_rate": 9.998233880612932e-06,
366
+ "loss": 0.6137,
367
+ "step": 510
368
+ },
369
+ {
370
+ "epoch": 0.3299492385786802,
371
+ "grad_norm": 0.9815077781677246,
372
+ "learning_rate": 9.997116535946028e-06,
373
+ "loss": 0.6069,
374
+ "step": 520
375
+ },
376
+ {
377
+ "epoch": 0.3362944162436548,
378
+ "grad_norm": 1.3186026811599731,
379
+ "learning_rate": 9.99572678436828e-06,
380
+ "loss": 0.6024,
381
+ "step": 530
382
+ },
383
+ {
384
+ "epoch": 0.3426395939086294,
385
+ "grad_norm": 1.6290111541748047,
386
+ "learning_rate": 9.994064701638969e-06,
387
+ "loss": 0.6273,
388
+ "step": 540
389
+ },
390
+ {
391
+ "epoch": 0.3489847715736041,
392
+ "grad_norm": 1.3211804628372192,
393
+ "learning_rate": 9.992130378362908e-06,
394
+ "loss": 0.6068,
395
+ "step": 550
396
+ },
397
+ {
398
+ "epoch": 0.3553299492385787,
399
+ "grad_norm": 1.619232177734375,
400
+ "learning_rate": 9.989923919985512e-06,
401
+ "loss": 0.612,
402
+ "step": 560
403
+ },
404
+ {
405
+ "epoch": 0.3616751269035533,
406
+ "grad_norm": 1.0001276731491089,
407
+ "learning_rate": 9.987445446787049e-06,
408
+ "loss": 0.5687,
409
+ "step": 570
410
+ },
411
+ {
412
+ "epoch": 0.3680203045685279,
413
+ "grad_norm": 1.2668827772140503,
414
+ "learning_rate": 9.984695093876081e-06,
415
+ "loss": 0.5723,
416
+ "step": 580
417
+ },
418
+ {
419
+ "epoch": 0.3743654822335025,
420
+ "grad_norm": 1.1758859157562256,
421
+ "learning_rate": 9.981673011182098e-06,
422
+ "loss": 0.5963,
423
+ "step": 590
424
+ },
425
+ {
426
+ "epoch": 0.38071065989847713,
427
+ "grad_norm": 1.4700498580932617,
428
+ "learning_rate": 9.978379363447348e-06,
429
+ "loss": 0.5682,
430
+ "step": 600
431
+ },
432
+ {
433
+ "epoch": 0.3870558375634518,
434
+ "grad_norm": 1.7378568649291992,
435
+ "learning_rate": 9.974814330217858e-06,
436
+ "loss": 0.6286,
437
+ "step": 610
438
+ },
439
+ {
440
+ "epoch": 0.3934010152284264,
441
+ "grad_norm": 1.5732265710830688,
442
+ "learning_rate": 9.970978105833632e-06,
443
+ "loss": 0.5464,
444
+ "step": 620
445
+ },
446
+ {
447
+ "epoch": 0.399746192893401,
448
+ "grad_norm": 1.4477766752243042,
449
+ "learning_rate": 9.966870899418087e-06,
450
+ "loss": 0.5806,
451
+ "step": 630
452
+ },
453
+ {
454
+ "epoch": 0.40609137055837563,
455
+ "grad_norm": 1.5664384365081787,
456
+ "learning_rate": 9.96249293486662e-06,
457
+ "loss": 0.5868,
458
+ "step": 640
459
+ },
460
+ {
461
+ "epoch": 0.41243654822335024,
462
+ "grad_norm": 1.242577075958252,
463
+ "learning_rate": 9.957844450834418e-06,
464
+ "loss": 0.5943,
465
+ "step": 650
466
+ },
467
+ {
468
+ "epoch": 0.41878172588832485,
469
+ "grad_norm": 1.3932079076766968,
470
+ "learning_rate": 9.952925700723455e-06,
471
+ "loss": 0.5582,
472
+ "step": 660
473
+ },
474
+ {
475
+ "epoch": 0.4251269035532995,
476
+ "grad_norm": 1.4832308292388916,
477
+ "learning_rate": 9.947736952668667e-06,
478
+ "loss": 0.561,
479
+ "step": 670
480
+ },
481
+ {
482
+ "epoch": 0.43147208121827413,
483
+ "grad_norm": 1.8345366716384888,
484
+ "learning_rate": 9.942278489523338e-06,
485
+ "loss": 0.5459,
486
+ "step": 680
487
+ },
488
+ {
489
+ "epoch": 0.43781725888324874,
490
+ "grad_norm": 1.1875063180923462,
491
+ "learning_rate": 9.936550608843685e-06,
492
+ "loss": 0.5267,
493
+ "step": 690
494
+ },
495
+ {
496
+ "epoch": 0.44416243654822335,
497
+ "grad_norm": 1.4732545614242554,
498
+ "learning_rate": 9.930553622872631e-06,
499
+ "loss": 0.5814,
500
+ "step": 700
501
+ },
502
+ {
503
+ "epoch": 0.45050761421319796,
504
+ "grad_norm": 1.7493573427200317,
505
+ "learning_rate": 9.924287858522789e-06,
506
+ "loss": 0.5633,
507
+ "step": 710
508
+ },
509
+ {
510
+ "epoch": 0.45685279187817257,
511
+ "grad_norm": 1.4842727184295654,
512
+ "learning_rate": 9.917753657358638e-06,
513
+ "loss": 0.53,
514
+ "step": 720
515
+ },
516
+ {
517
+ "epoch": 0.4631979695431472,
518
+ "grad_norm": 1.6605039834976196,
519
+ "learning_rate": 9.910951375577907e-06,
520
+ "loss": 0.5231,
521
+ "step": 730
522
+ },
523
+ {
524
+ "epoch": 0.46954314720812185,
525
+ "grad_norm": 1.6541188955307007,
526
+ "learning_rate": 9.903881383992153e-06,
527
+ "loss": 0.5268,
528
+ "step": 740
529
+ },
530
+ {
531
+ "epoch": 0.47588832487309646,
532
+ "grad_norm": 1.8268778324127197,
533
+ "learning_rate": 9.89654406800655e-06,
534
+ "loss": 0.49,
535
+ "step": 750
536
+ },
537
+ {
538
+ "epoch": 0.48223350253807107,
539
+ "grad_norm": 1.4834731817245483,
540
+ "learning_rate": 9.88893982759888e-06,
541
+ "loss": 0.5045,
542
+ "step": 760
543
+ },
544
+ {
545
+ "epoch": 0.4885786802030457,
546
+ "grad_norm": 1.717140555381775,
547
+ "learning_rate": 9.881069077297724e-06,
548
+ "loss": 0.496,
549
+ "step": 770
550
+ },
551
+ {
552
+ "epoch": 0.4949238578680203,
553
+ "grad_norm": 1.0741287469863892,
554
+ "learning_rate": 9.872932246159873e-06,
555
+ "loss": 0.4679,
556
+ "step": 780
557
+ },
558
+ {
559
+ "epoch": 0.501269035532995,
560
+ "grad_norm": 1.2269752025604248,
561
+ "learning_rate": 9.864529777746929e-06,
562
+ "loss": 0.4772,
563
+ "step": 790
564
+ },
565
+ {
566
+ "epoch": 0.5076142131979695,
567
+ "grad_norm": 1.6613504886627197,
568
+ "learning_rate": 9.85586213010114e-06,
569
+ "loss": 0.5008,
570
+ "step": 800
571
+ },
572
+ {
573
+ "epoch": 0.5139593908629442,
574
+ "grad_norm": 1.2009035348892212,
575
+ "learning_rate": 9.846929775720411e-06,
576
+ "loss": 0.5038,
577
+ "step": 810
578
+ },
579
+ {
580
+ "epoch": 0.5203045685279187,
581
+ "grad_norm": 1.5814530849456787,
582
+ "learning_rate": 9.837733201532565e-06,
583
+ "loss": 0.5021,
584
+ "step": 820
585
+ },
586
+ {
587
+ "epoch": 0.5266497461928934,
588
+ "grad_norm": 1.6952024698257446,
589
+ "learning_rate": 9.82827290886879e-06,
590
+ "loss": 0.4845,
591
+ "step": 830
592
+ },
593
+ {
594
+ "epoch": 0.5329949238578681,
595
+ "grad_norm": 1.3526102304458618,
596
+ "learning_rate": 9.818549413436309e-06,
597
+ "loss": 0.4952,
598
+ "step": 840
599
+ },
600
+ {
601
+ "epoch": 0.5393401015228426,
602
+ "grad_norm": 1.7655881643295288,
603
+ "learning_rate": 9.80856324529027e-06,
604
+ "loss": 0.4678,
605
+ "step": 850
606
+ },
607
+ {
608
+ "epoch": 0.5456852791878173,
609
+ "grad_norm": 1.391158103942871,
610
+ "learning_rate": 9.79831494880486e-06,
611
+ "loss": 0.4702,
612
+ "step": 860
613
+ },
614
+ {
615
+ "epoch": 0.5520304568527918,
616
+ "grad_norm": 1.3191405534744263,
617
+ "learning_rate": 9.787805082643604e-06,
618
+ "loss": 0.4394,
619
+ "step": 870
620
+ },
621
+ {
622
+ "epoch": 0.5583756345177665,
623
+ "grad_norm": 1.537750005722046,
624
+ "learning_rate": 9.777034219728943e-06,
625
+ "loss": 0.4172,
626
+ "step": 880
627
+ },
628
+ {
629
+ "epoch": 0.5647208121827412,
630
+ "grad_norm": 1.953177809715271,
631
+ "learning_rate": 9.76600294721098e-06,
632
+ "loss": 0.4846,
633
+ "step": 890
634
+ },
635
+ {
636
+ "epoch": 0.5710659898477157,
637
+ "grad_norm": 1.3089863061904907,
638
+ "learning_rate": 9.754711866435477e-06,
639
+ "loss": 0.414,
640
+ "step": 900
641
+ },
642
+ {
643
+ "epoch": 0.5774111675126904,
644
+ "grad_norm": 1.6026610136032104,
645
+ "learning_rate": 9.743161592911088e-06,
646
+ "loss": 0.5243,
647
+ "step": 910
648
+ },
649
+ {
650
+ "epoch": 0.583756345177665,
651
+ "grad_norm": 1.7620460987091064,
652
+ "learning_rate": 9.731352756275781e-06,
653
+ "loss": 0.4181,
654
+ "step": 920
655
+ },
656
+ {
657
+ "epoch": 0.5901015228426396,
658
+ "grad_norm": 1.6068378686904907,
659
+ "learning_rate": 9.719286000262533e-06,
660
+ "loss": 0.3713,
661
+ "step": 930
662
+ },
663
+ {
664
+ "epoch": 0.5964467005076142,
665
+ "grad_norm": 2.3091704845428467,
666
+ "learning_rate": 9.706961982664239e-06,
667
+ "loss": 0.4562,
668
+ "step": 940
669
+ },
670
+ {
671
+ "epoch": 0.6027918781725888,
672
+ "grad_norm": 2.353106737136841,
673
+ "learning_rate": 9.69438137529784e-06,
674
+ "loss": 0.4361,
675
+ "step": 950
676
+ },
677
+ {
678
+ "epoch": 0.6091370558375635,
679
+ "grad_norm": 1.599411129951477,
680
+ "learning_rate": 9.681544863967713e-06,
681
+ "loss": 0.4496,
682
+ "step": 960
683
+ },
684
+ {
685
+ "epoch": 0.6154822335025381,
686
+ "grad_norm": 1.5869901180267334,
687
+ "learning_rate": 9.668453148428282e-06,
688
+ "loss": 0.4046,
689
+ "step": 970
690
+ },
691
+ {
692
+ "epoch": 0.6218274111675127,
693
+ "grad_norm": 1.7548712491989136,
694
+ "learning_rate": 9.65510694234587e-06,
695
+ "loss": 0.3627,
696
+ "step": 980
697
+ },
698
+ {
699
+ "epoch": 0.6281725888324873,
700
+ "grad_norm": 1.3313032388687134,
701
+ "learning_rate": 9.641506973259798e-06,
702
+ "loss": 0.4176,
703
+ "step": 990
704
+ },
705
+ {
706
+ "epoch": 0.6345177664974619,
707
+ "grad_norm": 3.056716203689575,
708
+ "learning_rate": 9.627653982542722e-06,
709
+ "loss": 0.4283,
710
+ "step": 1000
711
+ },
712
+ {
713
+ "epoch": 0.6408629441624365,
714
+ "grad_norm": 1.8358234167099,
715
+ "learning_rate": 9.613548725360224e-06,
716
+ "loss": 0.4217,
717
+ "step": 1010
718
+ },
719
+ {
720
+ "epoch": 0.6472081218274112,
721
+ "grad_norm": 1.823522686958313,
722
+ "learning_rate": 9.599191970629638e-06,
723
+ "loss": 0.437,
724
+ "step": 1020
725
+ },
726
+ {
727
+ "epoch": 0.6535532994923858,
728
+ "grad_norm": 1.779383897781372,
729
+ "learning_rate": 9.584584500978144e-06,
730
+ "loss": 0.3995,
731
+ "step": 1030
732
+ },
733
+ {
734
+ "epoch": 0.6598984771573604,
735
+ "grad_norm": 1.7531787157058716,
736
+ "learning_rate": 9.569727112700093e-06,
737
+ "loss": 0.4449,
738
+ "step": 1040
739
+ },
740
+ {
741
+ "epoch": 0.666243654822335,
742
+ "grad_norm": 2.1453044414520264,
743
+ "learning_rate": 9.55462061571361e-06,
744
+ "loss": 0.3754,
745
+ "step": 1050
746
+ },
747
+ {
748
+ "epoch": 0.6725888324873096,
749
+ "grad_norm": 1.6521024703979492,
750
+ "learning_rate": 9.539265833516434e-06,
751
+ "loss": 0.419,
752
+ "step": 1060
753
+ },
754
+ {
755
+ "epoch": 0.6789340101522843,
756
+ "grad_norm": 1.616896152496338,
757
+ "learning_rate": 9.523663603141032e-06,
758
+ "loss": 0.4076,
759
+ "step": 1070
760
+ },
761
+ {
762
+ "epoch": 0.6852791878172588,
763
+ "grad_norm": 1.219354510307312,
764
+ "learning_rate": 9.507814775108971e-06,
765
+ "loss": 0.4092,
766
+ "step": 1080
767
+ },
768
+ {
769
+ "epoch": 0.6916243654822335,
770
+ "grad_norm": 22.454200744628906,
771
+ "learning_rate": 9.49172021338455e-06,
772
+ "loss": 0.4034,
773
+ "step": 1090
774
+ },
775
+ {
776
+ "epoch": 0.6979695431472082,
777
+ "grad_norm": 1.8505566120147705,
778
+ "learning_rate": 9.475380795327702e-06,
779
+ "loss": 0.3824,
780
+ "step": 1100
781
+ },
782
+ {
783
+ "epoch": 0.7043147208121827,
784
+ "grad_norm": 1.492254376411438,
785
+ "learning_rate": 9.458797411646176e-06,
786
+ "loss": 0.3405,
787
+ "step": 1110
788
+ },
789
+ {
790
+ "epoch": 0.7106598984771574,
791
+ "grad_norm": 1.774132251739502,
792
+ "learning_rate": 9.441970966346965e-06,
793
+ "loss": 0.3425,
794
+ "step": 1120
795
+ },
796
+ {
797
+ "epoch": 0.7170050761421319,
798
+ "grad_norm": 1.2463436126708984,
799
+ "learning_rate": 9.424902376687045e-06,
800
+ "loss": 0.3594,
801
+ "step": 1130
802
+ },
803
+ {
804
+ "epoch": 0.7233502538071066,
805
+ "grad_norm": 1.515215277671814,
806
+ "learning_rate": 9.407592573123359e-06,
807
+ "loss": 0.359,
808
+ "step": 1140
809
+ },
810
+ {
811
+ "epoch": 0.7296954314720813,
812
+ "grad_norm": 3.103351593017578,
813
+ "learning_rate": 9.390042499262102e-06,
814
+ "loss": 0.3554,
815
+ "step": 1150
816
+ },
817
+ {
818
+ "epoch": 0.7360406091370558,
819
+ "grad_norm": 1.8471239805221558,
820
+ "learning_rate": 9.372253111807276e-06,
821
+ "loss": 0.3251,
822
+ "step": 1160
823
+ },
824
+ {
825
+ "epoch": 0.7423857868020305,
826
+ "grad_norm": 1.8411760330200195,
827
+ "learning_rate": 9.354225380508548e-06,
828
+ "loss": 0.3233,
829
+ "step": 1170
830
+ },
831
+ {
832
+ "epoch": 0.748730964467005,
833
+ "grad_norm": 1.499944806098938,
834
+ "learning_rate": 9.33596028810838e-06,
835
+ "loss": 0.3718,
836
+ "step": 1180
837
+ },
838
+ {
839
+ "epoch": 0.7550761421319797,
840
+ "grad_norm": 2.158557653427124,
841
+ "learning_rate": 9.317458830288446e-06,
842
+ "loss": 0.3463,
843
+ "step": 1190
844
+ },
845
+ {
846
+ "epoch": 0.7614213197969543,
847
+ "grad_norm": 1.5045950412750244,
848
+ "learning_rate": 9.29872201561538e-06,
849
+ "loss": 0.3682,
850
+ "step": 1200
851
+ },
852
+ {
853
+ "epoch": 0.7677664974619289,
854
+ "grad_norm": 1.9903945922851562,
855
+ "learning_rate": 9.279750865485772e-06,
856
+ "loss": 0.3149,
857
+ "step": 1210
858
+ },
859
+ {
860
+ "epoch": 0.7741116751269036,
861
+ "grad_norm": 1.7139513492584229,
862
+ "learning_rate": 9.260546414070504e-06,
863
+ "loss": 0.2947,
864
+ "step": 1220
865
+ },
866
+ {
867
+ "epoch": 0.7804568527918782,
868
+ "grad_norm": 2.4074273109436035,
869
+ "learning_rate": 9.241109708258362e-06,
870
+ "loss": 0.3451,
871
+ "step": 1230
872
+ },
873
+ {
874
+ "epoch": 0.7868020304568528,
875
+ "grad_norm": 1.736325740814209,
876
+ "learning_rate": 9.221441807598981e-06,
877
+ "loss": 0.3156,
878
+ "step": 1240
879
+ },
880
+ {
881
+ "epoch": 0.7931472081218274,
882
+ "grad_norm": 1.722331166267395,
883
+ "learning_rate": 9.201543784245076e-06,
884
+ "loss": 0.2895,
885
+ "step": 1250
886
+ },
887
+ {
888
+ "epoch": 0.799492385786802,
889
+ "grad_norm": 1.800851583480835,
890
+ "learning_rate": 9.181416722893998e-06,
891
+ "loss": 0.2907,
892
+ "step": 1260
893
+ },
894
+ {
895
+ "epoch": 0.8058375634517766,
896
+ "grad_norm": 2.2214279174804688,
897
+ "learning_rate": 9.161061720728606e-06,
898
+ "loss": 0.3074,
899
+ "step": 1270
900
+ },
901
+ {
902
+ "epoch": 0.8121827411167513,
903
+ "grad_norm": 1.5840632915496826,
904
+ "learning_rate": 9.140479887357454e-06,
905
+ "loss": 0.2684,
906
+ "step": 1280
907
+ },
908
+ {
909
+ "epoch": 0.8185279187817259,
910
+ "grad_norm": 2.0567562580108643,
911
+ "learning_rate": 9.119672344754307e-06,
912
+ "loss": 0.2777,
913
+ "step": 1290
914
+ },
915
+ {
916
+ "epoch": 0.8248730964467005,
917
+ "grad_norm": 2.080697774887085,
918
+ "learning_rate": 9.098640227196978e-06,
919
+ "loss": 0.294,
920
+ "step": 1300
921
+ },
922
+ {
923
+ "epoch": 0.8312182741116751,
924
+ "grad_norm": 2.2059218883514404,
925
+ "learning_rate": 9.077384681205487e-06,
926
+ "loss": 0.3483,
927
+ "step": 1310
928
+ },
929
+ {
930
+ "epoch": 0.8375634517766497,
931
+ "grad_norm": 1.5565263032913208,
932
+ "learning_rate": 9.055906865479574e-06,
933
+ "loss": 0.2744,
934
+ "step": 1320
935
+ },
936
+ {
937
+ "epoch": 0.8439086294416244,
938
+ "grad_norm": 1.5794973373413086,
939
+ "learning_rate": 9.034207950835527e-06,
940
+ "loss": 0.2803,
941
+ "step": 1330
942
+ },
943
+ {
944
+ "epoch": 0.850253807106599,
945
+ "grad_norm": 1.8375296592712402,
946
+ "learning_rate": 9.01228912014236e-06,
947
+ "loss": 0.2805,
948
+ "step": 1340
949
+ },
950
+ {
951
+ "epoch": 0.8565989847715736,
952
+ "grad_norm": 1.5420727729797363,
953
+ "learning_rate": 8.99015156825733e-06,
954
+ "loss": 0.2774,
955
+ "step": 1350
956
+ },
957
+ {
958
+ "epoch": 0.8629441624365483,
959
+ "grad_norm": 1.6844383478164673,
960
+ "learning_rate": 8.967796501960805e-06,
961
+ "loss": 0.2724,
962
+ "step": 1360
963
+ },
964
+ {
965
+ "epoch": 0.8692893401015228,
966
+ "grad_norm": 2.27237606048584,
967
+ "learning_rate": 8.945225139890468e-06,
968
+ "loss": 0.2514,
969
+ "step": 1370
970
+ },
971
+ {
972
+ "epoch": 0.8756345177664975,
973
+ "grad_norm": 1.6022717952728271,
974
+ "learning_rate": 8.92243871247491e-06,
975
+ "loss": 0.2675,
976
+ "step": 1380
977
+ },
978
+ {
979
+ "epoch": 0.881979695431472,
980
+ "grad_norm": 1.3979642391204834,
981
+ "learning_rate": 8.899438461866526e-06,
982
+ "loss": 0.2404,
983
+ "step": 1390
984
+ },
985
+ {
986
+ "epoch": 0.8883248730964467,
987
+ "grad_norm": 1.8629894256591797,
988
+ "learning_rate": 8.876225641873822e-06,
989
+ "loss": 0.2744,
990
+ "step": 1400
991
+ },
992
+ {
993
+ "epoch": 0.8946700507614214,
994
+ "grad_norm": 1.6122556924819946,
995
+ "learning_rate": 8.852801517893063e-06,
996
+ "loss": 0.2814,
997
+ "step": 1410
998
+ },
999
+ {
1000
+ "epoch": 0.9010152284263959,
1001
+ "grad_norm": 2.0331978797912598,
1002
+ "learning_rate": 8.829167366839287e-06,
1003
+ "loss": 0.2728,
1004
+ "step": 1420
1005
+ },
1006
+ {
1007
+ "epoch": 0.9073604060913706,
1008
+ "grad_norm": 1.5905483961105347,
1009
+ "learning_rate": 8.805324477076697e-06,
1010
+ "loss": 0.2503,
1011
+ "step": 1430
1012
+ },
1013
+ {
1014
+ "epoch": 0.9137055837563451,
1015
+ "grad_norm": 1.9675116539001465,
1016
+ "learning_rate": 8.781274148348438e-06,
1017
+ "loss": 0.2241,
1018
+ "step": 1440
1019
+ },
1020
+ {
1021
+ "epoch": 0.9200507614213198,
1022
+ "grad_norm": 1.981604814529419,
1023
+ "learning_rate": 8.757017691705732e-06,
1024
+ "loss": 0.2789,
1025
+ "step": 1450
1026
+ },
1027
+ {
1028
+ "epoch": 0.9263959390862944,
1029
+ "grad_norm": 1.6477928161621094,
1030
+ "learning_rate": 8.732556429436419e-06,
1031
+ "loss": 0.2442,
1032
+ "step": 1460
1033
+ },
1034
+ {
1035
+ "epoch": 0.932741116751269,
1036
+ "grad_norm": 1.875747799873352,
1037
+ "learning_rate": 8.70789169499287e-06,
1038
+ "loss": 0.2372,
1039
+ "step": 1470
1040
+ },
1041
+ {
1042
+ "epoch": 0.9390862944162437,
1043
+ "grad_norm": 1.9763504266738892,
1044
+ "learning_rate": 8.683024832919295e-06,
1045
+ "loss": 0.2493,
1046
+ "step": 1480
1047
+ },
1048
+ {
1049
+ "epoch": 0.9454314720812182,
1050
+ "grad_norm": 2.166445016860962,
1051
+ "learning_rate": 8.657957198778455e-06,
1052
+ "loss": 0.2491,
1053
+ "step": 1490
1054
+ },
1055
+ {
1056
+ "epoch": 0.9517766497461929,
1057
+ "grad_norm": 2.062021493911743,
1058
+ "learning_rate": 8.632690159077758e-06,
1059
+ "loss": 0.2611,
1060
+ "step": 1500
1061
+ },
1062
+ {
1063
+ "epoch": 0.9581218274111675,
1064
+ "grad_norm": 1.5676127672195435,
1065
+ "learning_rate": 8.60722509119478e-06,
1066
+ "loss": 0.2475,
1067
+ "step": 1510
1068
+ },
1069
+ {
1070
+ "epoch": 0.9644670050761421,
1071
+ "grad_norm": 1.734596610069275,
1072
+ "learning_rate": 8.581563383302158e-06,
1073
+ "loss": 0.2499,
1074
+ "step": 1520
1075
+ },
1076
+ {
1077
+ "epoch": 0.9708121827411168,
1078
+ "grad_norm": 2.276888132095337,
1079
+ "learning_rate": 8.555706434291944e-06,
1080
+ "loss": 0.2052,
1081
+ "step": 1530
1082
+ },
1083
+ {
1084
+ "epoch": 0.9771573604060914,
1085
+ "grad_norm": 1.5414533615112305,
1086
+ "learning_rate": 8.529655653699323e-06,
1087
+ "loss": 0.2008,
1088
+ "step": 1540
1089
+ },
1090
+ {
1091
+ "epoch": 0.983502538071066,
1092
+ "grad_norm": 2.0116498470306396,
1093
+ "learning_rate": 8.503412461625792e-06,
1094
+ "loss": 0.2088,
1095
+ "step": 1550
1096
+ },
1097
+ {
1098
+ "epoch": 0.9898477157360406,
1099
+ "grad_norm": 2.507782220840454,
1100
+ "learning_rate": 8.47697828866174e-06,
1101
+ "loss": 0.2212,
1102
+ "step": 1560
1103
+ },
1104
+ {
1105
+ "epoch": 0.9961928934010152,
1106
+ "grad_norm": 1.5416207313537598,
1107
+ "learning_rate": 8.450354575808463e-06,
1108
+ "loss": 0.227,
1109
+ "step": 1570
1110
+ },
1111
+ {
1112
+ "epoch": 1.00253807106599,
1113
+ "grad_norm": 1.7348345518112183,
1114
+ "learning_rate": 8.423542774399606e-06,
1115
+ "loss": 0.2192,
1116
+ "step": 1580
1117
+ },
1118
+ {
1119
+ "epoch": 1.0088832487309645,
1120
+ "grad_norm": 1.8863823413848877,
1121
+ "learning_rate": 8.396544346022055e-06,
1122
+ "loss": 0.159,
1123
+ "step": 1590
1124
+ },
1125
+ {
1126
+ "epoch": 1.015228426395939,
1127
+ "grad_norm": 1.3554282188415527,
1128
+ "learning_rate": 8.36936076243626e-06,
1129
+ "loss": 0.1519,
1130
+ "step": 1600
1131
+ },
1132
+ {
1133
+ "epoch": 1.0215736040609138,
1134
+ "grad_norm": 1.915385127067566,
1135
+ "learning_rate": 8.341993505496e-06,
1136
+ "loss": 0.1667,
1137
+ "step": 1610
1138
+ },
1139
+ {
1140
+ "epoch": 1.0279187817258884,
1141
+ "grad_norm": 2.683910369873047,
1142
+ "learning_rate": 8.314444067067611e-06,
1143
+ "loss": 0.1672,
1144
+ "step": 1620
1145
+ },
1146
+ {
1147
+ "epoch": 1.034263959390863,
1148
+ "grad_norm": 3.2767446041107178,
1149
+ "learning_rate": 8.286713948948646e-06,
1150
+ "loss": 0.151,
1151
+ "step": 1630
1152
+ },
1153
+ {
1154
+ "epoch": 1.0406091370558375,
1155
+ "grad_norm": 1.7172635793685913,
1156
+ "learning_rate": 8.258804662786031e-06,
1157
+ "loss": 0.1365,
1158
+ "step": 1640
1159
+ },
1160
+ {
1161
+ "epoch": 1.0469543147208122,
1162
+ "grad_norm": 1.9492729902267456,
1163
+ "learning_rate": 8.230717729993637e-06,
1164
+ "loss": 0.1521,
1165
+ "step": 1650
1166
+ },
1167
+ {
1168
+ "epoch": 1.0532994923857868,
1169
+ "grad_norm": 1.3974714279174805,
1170
+ "learning_rate": 8.202454681669352e-06,
1171
+ "loss": 0.1784,
1172
+ "step": 1660
1173
+ },
1174
+ {
1175
+ "epoch": 1.0596446700507614,
1176
+ "grad_norm": 1.5528488159179688,
1177
+ "learning_rate": 8.17401705851163e-06,
1178
+ "loss": 0.145,
1179
+ "step": 1670
1180
+ },
1181
+ {
1182
+ "epoch": 1.0659898477157361,
1183
+ "grad_norm": 4.622862815856934,
1184
+ "learning_rate": 8.14540641073548e-06,
1185
+ "loss": 0.149,
1186
+ "step": 1680
1187
+ },
1188
+ {
1189
+ "epoch": 1.0723350253807107,
1190
+ "grad_norm": 1.4450290203094482,
1191
+ "learning_rate": 8.116624297987973e-06,
1192
+ "loss": 0.1354,
1193
+ "step": 1690
1194
+ },
1195
+ {
1196
+ "epoch": 1.0786802030456852,
1197
+ "grad_norm": 1.5473392009735107,
1198
+ "learning_rate": 8.087672289263228e-06,
1199
+ "loss": 0.1355,
1200
+ "step": 1700
1201
+ },
1202
+ {
1203
+ "epoch": 1.0850253807106598,
1204
+ "grad_norm": 1.55717134475708,
1205
+ "learning_rate": 8.058551962816858e-06,
1206
+ "loss": 0.1533,
1207
+ "step": 1710
1208
+ },
1209
+ {
1210
+ "epoch": 1.0913705583756346,
1211
+ "grad_norm": 2.583096742630005,
1212
+ "learning_rate": 8.029264906079962e-06,
1213
+ "loss": 0.1498,
1214
+ "step": 1720
1215
+ },
1216
+ {
1217
+ "epoch": 1.0977157360406091,
1218
+ "grad_norm": 3.534912109375,
1219
+ "learning_rate": 7.99981271557257e-06,
1220
+ "loss": 0.1653,
1221
+ "step": 1730
1222
+ },
1223
+ {
1224
+ "epoch": 1.1040609137055837,
1225
+ "grad_norm": 1.350325345993042,
1226
+ "learning_rate": 7.970196996816622e-06,
1227
+ "loss": 0.1253,
1228
+ "step": 1740
1229
+ },
1230
+ {
1231
+ "epoch": 1.1104060913705585,
1232
+ "grad_norm": 1.4373643398284912,
1233
+ "learning_rate": 7.940419364248445e-06,
1234
+ "loss": 0.1681,
1235
+ "step": 1750
1236
+ },
1237
+ {
1238
+ "epoch": 1.116751269035533,
1239
+ "grad_norm": 2.416491985321045,
1240
+ "learning_rate": 7.910481441130739e-06,
1241
+ "loss": 0.1382,
1242
+ "step": 1760
1243
+ },
1244
+ {
1245
+ "epoch": 1.1230964467005076,
1246
+ "grad_norm": 1.4168888330459595,
1247
+ "learning_rate": 7.880384859464102e-06,
1248
+ "loss": 0.1286,
1249
+ "step": 1770
1250
+ },
1251
+ {
1252
+ "epoch": 1.1294416243654823,
1253
+ "grad_norm": 1.4525187015533447,
1254
+ "learning_rate": 7.850131259898051e-06,
1255
+ "loss": 0.1454,
1256
+ "step": 1780
1257
+ },
1258
+ {
1259
+ "epoch": 1.135786802030457,
1260
+ "grad_norm": 2.431896448135376,
1261
+ "learning_rate": 7.819722291641591e-06,
1262
+ "loss": 0.159,
1263
+ "step": 1790
1264
+ },
1265
+ {
1266
+ "epoch": 1.1421319796954315,
1267
+ "grad_norm": 1.982692837715149,
1268
+ "learning_rate": 7.789159612373317e-06,
1269
+ "loss": 0.1201,
1270
+ "step": 1800
1271
+ },
1272
+ {
1273
+ "epoch": 1.148477157360406,
1274
+ "grad_norm": 1.786580204963684,
1275
+ "learning_rate": 7.758444888151042e-06,
1276
+ "loss": 0.1274,
1277
+ "step": 1810
1278
+ },
1279
+ {
1280
+ "epoch": 1.1548223350253808,
1281
+ "grad_norm": 1.0583122968673706,
1282
+ "learning_rate": 7.727579793320977e-06,
1283
+ "loss": 0.1246,
1284
+ "step": 1820
1285
+ },
1286
+ {
1287
+ "epoch": 1.1611675126903553,
1288
+ "grad_norm": 1.2649511098861694,
1289
+ "learning_rate": 7.69656601042646e-06,
1290
+ "loss": 0.1296,
1291
+ "step": 1830
1292
+ },
1293
+ {
1294
+ "epoch": 1.16751269035533,
1295
+ "grad_norm": 1.5088468790054321,
1296
+ "learning_rate": 7.665405230116232e-06,
1297
+ "loss": 0.1549,
1298
+ "step": 1840
1299
+ },
1300
+ {
1301
+ "epoch": 1.1738578680203045,
1302
+ "grad_norm": 1.6474385261535645,
1303
+ "learning_rate": 7.634099151052283e-06,
1304
+ "loss": 0.1114,
1305
+ "step": 1850
1306
+ },
1307
+ {
1308
+ "epoch": 1.1802030456852792,
1309
+ "grad_norm": 1.665197730064392,
1310
+ "learning_rate": 7.602649479817242e-06,
1311
+ "loss": 0.119,
1312
+ "step": 1860
1313
+ },
1314
+ {
1315
+ "epoch": 1.1865482233502538,
1316
+ "grad_norm": 1.6402256488800049,
1317
+ "learning_rate": 7.5710579308213576e-06,
1318
+ "loss": 0.105,
1319
+ "step": 1870
1320
+ },
1321
+ {
1322
+ "epoch": 1.1928934010152283,
1323
+ "grad_norm": 1.4458770751953125,
1324
+ "learning_rate": 7.539326226209032e-06,
1325
+ "loss": 0.1574,
1326
+ "step": 1880
1327
+ },
1328
+ {
1329
+ "epoch": 1.1992385786802031,
1330
+ "grad_norm": 1.4857584238052368,
1331
+ "learning_rate": 7.507456095764942e-06,
1332
+ "loss": 0.1265,
1333
+ "step": 1890
1334
+ },
1335
+ {
1336
+ "epoch": 1.2055837563451777,
1337
+ "grad_norm": 1.7672957181930542,
1338
+ "learning_rate": 7.475449276819753e-06,
1339
+ "loss": 0.1152,
1340
+ "step": 1900
1341
+ },
1342
+ {
1343
+ "epoch": 1.2119289340101522,
1344
+ "grad_norm": 1.756518006324768,
1345
+ "learning_rate": 7.443307514155402e-06,
1346
+ "loss": 0.1051,
1347
+ "step": 1910
1348
+ },
1349
+ {
1350
+ "epoch": 1.218274111675127,
1351
+ "grad_norm": 2.3999290466308594,
1352
+ "learning_rate": 7.411032559909991e-06,
1353
+ "loss": 0.1249,
1354
+ "step": 1920
1355
+ },
1356
+ {
1357
+ "epoch": 1.2246192893401016,
1358
+ "grad_norm": 2.726649522781372,
1359
+ "learning_rate": 7.378626173482268e-06,
1360
+ "loss": 0.1065,
1361
+ "step": 1930
1362
+ },
1363
+ {
1364
+ "epoch": 1.2309644670050761,
1365
+ "grad_norm": 1.4104615449905396,
1366
+ "learning_rate": 7.346090121435724e-06,
1367
+ "loss": 0.0982,
1368
+ "step": 1940
1369
+ },
1370
+ {
1371
+ "epoch": 1.2373096446700507,
1372
+ "grad_norm": 1.8831905126571655,
1373
+ "learning_rate": 7.313426177402281e-06,
1374
+ "loss": 0.1091,
1375
+ "step": 1950
1376
+ },
1377
+ {
1378
+ "epoch": 1.2436548223350254,
1379
+ "grad_norm": 2.125528573989868,
1380
+ "learning_rate": 7.2806361219856205e-06,
1381
+ "loss": 0.1197,
1382
+ "step": 1960
1383
+ },
1384
+ {
1385
+ "epoch": 1.25,
1386
+ "grad_norm": 1.8320462703704834,
1387
+ "learning_rate": 7.24772174266411e-06,
1388
+ "loss": 0.0979,
1389
+ "step": 1970
1390
+ },
1391
+ {
1392
+ "epoch": 1.2563451776649746,
1393
+ "grad_norm": 1.6644319295883179,
1394
+ "learning_rate": 7.214684833693362e-06,
1395
+ "loss": 0.1451,
1396
+ "step": 1980
1397
+ },
1398
+ {
1399
+ "epoch": 1.262690355329949,
1400
+ "grad_norm": 1.816611886024475,
1401
+ "learning_rate": 7.181527196008424e-06,
1402
+ "loss": 0.1111,
1403
+ "step": 1990
1404
+ },
1405
+ {
1406
+ "epoch": 1.2690355329949239,
1407
+ "grad_norm": 2.8035154342651367,
1408
+ "learning_rate": 7.148250637125611e-06,
1409
+ "loss": 0.0894,
1410
+ "step": 2000
1411
+ },
1412
+ {
1413
+ "epoch": 1.2753807106598984,
1414
+ "grad_norm": 1.8045902252197266,
1415
+ "learning_rate": 7.114856971043963e-06,
1416
+ "loss": 0.0931,
1417
+ "step": 2010
1418
+ },
1419
+ {
1420
+ "epoch": 1.281725888324873,
1421
+ "grad_norm": 1.637097716331482,
1422
+ "learning_rate": 7.081348018146367e-06,
1423
+ "loss": 0.1572,
1424
+ "step": 2020
1425
+ },
1426
+ {
1427
+ "epoch": 1.2880710659898478,
1428
+ "grad_norm": 1.4267776012420654,
1429
+ "learning_rate": 7.047725605100317e-06,
1430
+ "loss": 0.1071,
1431
+ "step": 2030
1432
+ },
1433
+ {
1434
+ "epoch": 1.2944162436548223,
1435
+ "grad_norm": 2.571660280227661,
1436
+ "learning_rate": 7.01399156475834e-06,
1437
+ "loss": 0.1158,
1438
+ "step": 2040
1439
+ },
1440
+ {
1441
+ "epoch": 1.3007614213197969,
1442
+ "grad_norm": 2.324598789215088,
1443
+ "learning_rate": 6.980147736058083e-06,
1444
+ "loss": 0.0959,
1445
+ "step": 2050
1446
+ },
1447
+ {
1448
+ "epoch": 1.3071065989847717,
1449
+ "grad_norm": 1.4909052848815918,
1450
+ "learning_rate": 6.946195963922064e-06,
1451
+ "loss": 0.1202,
1452
+ "step": 2060
1453
+ },
1454
+ {
1455
+ "epoch": 1.3134517766497462,
1456
+ "grad_norm": 1.6092907190322876,
1457
+ "learning_rate": 6.9121380991571065e-06,
1458
+ "loss": 0.0805,
1459
+ "step": 2070
1460
+ },
1461
+ {
1462
+ "epoch": 1.3197969543147208,
1463
+ "grad_norm": 1.2184277772903442,
1464
+ "learning_rate": 6.877975998353433e-06,
1465
+ "loss": 0.1132,
1466
+ "step": 2080
1467
+ },
1468
+ {
1469
+ "epoch": 1.3261421319796955,
1470
+ "grad_norm": 1.2614070177078247,
1471
+ "learning_rate": 6.8437115237834765e-06,
1472
+ "loss": 0.089,
1473
+ "step": 2090
1474
+ },
1475
+ {
1476
+ "epoch": 1.33248730964467,
1477
+ "grad_norm": 1.7008192539215088,
1478
+ "learning_rate": 6.809346543300346e-06,
1479
+ "loss": 0.0787,
1480
+ "step": 2100
1481
+ },
1482
+ {
1483
+ "epoch": 1.3388324873096447,
1484
+ "grad_norm": 1.3894529342651367,
1485
+ "learning_rate": 6.774882930236015e-06,
1486
+ "loss": 0.0962,
1487
+ "step": 2110
1488
+ },
1489
+ {
1490
+ "epoch": 1.3451776649746192,
1491
+ "grad_norm": 1.7126891613006592,
1492
+ "learning_rate": 6.740322563299195e-06,
1493
+ "loss": 0.0952,
1494
+ "step": 2120
1495
+ },
1496
+ {
1497
+ "epoch": 1.351522842639594,
1498
+ "grad_norm": 1.7561262845993042,
1499
+ "learning_rate": 6.705667326472926e-06,
1500
+ "loss": 0.0989,
1501
+ "step": 2130
1502
+ },
1503
+ {
1504
+ "epoch": 1.3578680203045685,
1505
+ "grad_norm": 1.4162139892578125,
1506
+ "learning_rate": 6.6709191089118685e-06,
1507
+ "loss": 0.1046,
1508
+ "step": 2140
1509
+ },
1510
+ {
1511
+ "epoch": 1.364213197969543,
1512
+ "grad_norm": 1.8884022235870361,
1513
+ "learning_rate": 6.636079804839329e-06,
1514
+ "loss": 0.0847,
1515
+ "step": 2150
1516
+ },
1517
+ {
1518
+ "epoch": 1.3705583756345177,
1519
+ "grad_norm": 1.4617987871170044,
1520
+ "learning_rate": 6.601151313443997e-06,
1521
+ "loss": 0.0858,
1522
+ "step": 2160
1523
+ },
1524
+ {
1525
+ "epoch": 1.3769035532994924,
1526
+ "grad_norm": 1.5476235151290894,
1527
+ "learning_rate": 6.566135538776413e-06,
1528
+ "loss": 0.0907,
1529
+ "step": 2170
1530
+ },
1531
+ {
1532
+ "epoch": 1.383248730964467,
1533
+ "grad_norm": 1.8879975080490112,
1534
+ "learning_rate": 6.531034389645175e-06,
1535
+ "loss": 0.1255,
1536
+ "step": 2180
1537
+ },
1538
+ {
1539
+ "epoch": 1.3895939086294415,
1540
+ "grad_norm": 1.563038945198059,
1541
+ "learning_rate": 6.495849779512879e-06,
1542
+ "loss": 0.084,
1543
+ "step": 2190
1544
+ },
1545
+ {
1546
+ "epoch": 1.3959390862944163,
1547
+ "grad_norm": 2.6775851249694824,
1548
+ "learning_rate": 6.460583626391827e-06,
1549
+ "loss": 0.0957,
1550
+ "step": 2200
1551
+ },
1552
+ {
1553
+ "epoch": 1.4022842639593909,
1554
+ "grad_norm": 5.497508525848389,
1555
+ "learning_rate": 6.4252378527394475e-06,
1556
+ "loss": 0.0882,
1557
+ "step": 2210
1558
+ },
1559
+ {
1560
+ "epoch": 1.4086294416243654,
1561
+ "grad_norm": 2.2709615230560303,
1562
+ "learning_rate": 6.3898143853535145e-06,
1563
+ "loss": 0.1038,
1564
+ "step": 2220
1565
+ },
1566
+ {
1567
+ "epoch": 1.4149746192893402,
1568
+ "grad_norm": 2.0166831016540527,
1569
+ "learning_rate": 6.354315155267105e-06,
1570
+ "loss": 0.0778,
1571
+ "step": 2230
1572
+ },
1573
+ {
1574
+ "epoch": 1.4213197969543148,
1575
+ "grad_norm": 1.4909207820892334,
1576
+ "learning_rate": 6.318742097643336e-06,
1577
+ "loss": 0.1091,
1578
+ "step": 2240
1579
+ },
1580
+ {
1581
+ "epoch": 1.4276649746192893,
1582
+ "grad_norm": 2.3677256107330322,
1583
+ "learning_rate": 6.283097151669869e-06,
1584
+ "loss": 0.1019,
1585
+ "step": 2250
1586
+ },
1587
+ {
1588
+ "epoch": 1.434010152284264,
1589
+ "grad_norm": 3.072751045227051,
1590
+ "learning_rate": 6.247382260453203e-06,
1591
+ "loss": 0.1004,
1592
+ "step": 2260
1593
+ },
1594
+ {
1595
+ "epoch": 1.4403553299492386,
1596
+ "grad_norm": 2.3845341205596924,
1597
+ "learning_rate": 6.211599370912752e-06,
1598
+ "loss": 0.0886,
1599
+ "step": 2270
1600
+ },
1601
+ {
1602
+ "epoch": 1.4467005076142132,
1603
+ "grad_norm": 4.395678997039795,
1604
+ "learning_rate": 6.175750433674708e-06,
1605
+ "loss": 0.1095,
1606
+ "step": 2280
1607
+ },
1608
+ {
1609
+ "epoch": 1.4530456852791878,
1610
+ "grad_norm": 1.326743721961975,
1611
+ "learning_rate": 6.139837402965705e-06,
1612
+ "loss": 0.1021,
1613
+ "step": 2290
1614
+ },
1615
+ {
1616
+ "epoch": 1.4593908629441623,
1617
+ "grad_norm": 1.4270453453063965,
1618
+ "learning_rate": 6.103862236506303e-06,
1619
+ "loss": 0.0744,
1620
+ "step": 2300
1621
+ },
1622
+ {
1623
+ "epoch": 1.465736040609137,
1624
+ "grad_norm": 1.5374149084091187,
1625
+ "learning_rate": 6.067826895404249e-06,
1626
+ "loss": 0.0757,
1627
+ "step": 2310
1628
+ },
1629
+ {
1630
+ "epoch": 1.4720812182741116,
1631
+ "grad_norm": 1.5649033784866333,
1632
+ "learning_rate": 6.031733344047581e-06,
1633
+ "loss": 0.1023,
1634
+ "step": 2320
1635
+ },
1636
+ {
1637
+ "epoch": 1.4784263959390862,
1638
+ "grad_norm": 1.169797420501709,
1639
+ "learning_rate": 5.995583549997542e-06,
1640
+ "loss": 0.0654,
1641
+ "step": 2330
1642
+ },
1643
+ {
1644
+ "epoch": 1.484771573604061,
1645
+ "grad_norm": 1.8578475713729858,
1646
+ "learning_rate": 5.959379483881327e-06,
1647
+ "loss": 0.0819,
1648
+ "step": 2340
1649
+ },
1650
+ {
1651
+ "epoch": 1.4911167512690355,
1652
+ "grad_norm": 1.6423859596252441,
1653
+ "learning_rate": 5.923123119284646e-06,
1654
+ "loss": 0.0663,
1655
+ "step": 2350
1656
+ },
1657
+ {
1658
+ "epoch": 1.49746192893401,
1659
+ "grad_norm": 1.1731383800506592,
1660
+ "learning_rate": 5.886816432644155e-06,
1661
+ "loss": 0.0932,
1662
+ "step": 2360
1663
+ },
1664
+ {
1665
+ "epoch": 1.5038071065989849,
1666
+ "grad_norm": 1.0412118434906006,
1667
+ "learning_rate": 5.850461403139702e-06,
1668
+ "loss": 0.0807,
1669
+ "step": 2370
1670
+ },
1671
+ {
1672
+ "epoch": 1.5101522842639594,
1673
+ "grad_norm": 1.5270987749099731,
1674
+ "learning_rate": 5.814060012586443e-06,
1675
+ "loss": 0.0747,
1676
+ "step": 2380
1677
+ },
1678
+ {
1679
+ "epoch": 1.516497461928934,
1680
+ "grad_norm": 1.9564098119735718,
1681
+ "learning_rate": 5.777614245326802e-06,
1682
+ "loss": 0.0715,
1683
+ "step": 2390
1684
+ },
1685
+ {
1686
+ "epoch": 1.5228426395939088,
1687
+ "grad_norm": 1.6264362335205078,
1688
+ "learning_rate": 5.7411260881223045e-06,
1689
+ "loss": 0.0947,
1690
+ "step": 2400
1691
+ },
1692
+ {
1693
+ "epoch": 1.529187817258883,
1694
+ "grad_norm": 1.0679928064346313,
1695
+ "learning_rate": 5.704597530045272e-06,
1696
+ "loss": 0.0669,
1697
+ "step": 2410
1698
+ },
1699
+ {
1700
+ "epoch": 1.5355329949238579,
1701
+ "grad_norm": 1.393947720527649,
1702
+ "learning_rate": 5.6680305623703926e-06,
1703
+ "loss": 0.089,
1704
+ "step": 2420
1705
+ },
1706
+ {
1707
+ "epoch": 1.5418781725888326,
1708
+ "grad_norm": 1.8824158906936646,
1709
+ "learning_rate": 5.631427178466166e-06,
1710
+ "loss": 0.071,
1711
+ "step": 2430
1712
+ },
1713
+ {
1714
+ "epoch": 1.548223350253807,
1715
+ "grad_norm": 1.060774326324463,
1716
+ "learning_rate": 5.594789373686247e-06,
1717
+ "loss": 0.0747,
1718
+ "step": 2440
1719
+ },
1720
+ {
1721
+ "epoch": 1.5545685279187818,
1722
+ "grad_norm": 1.935646891593933,
1723
+ "learning_rate": 5.5581191452606664e-06,
1724
+ "loss": 0.0671,
1725
+ "step": 2450
1726
+ },
1727
+ {
1728
+ "epoch": 1.5609137055837563,
1729
+ "grad_norm": 1.2591124773025513,
1730
+ "learning_rate": 5.521418492186962e-06,
1731
+ "loss": 0.0796,
1732
+ "step": 2460
1733
+ },
1734
+ {
1735
+ "epoch": 1.5672588832487309,
1736
+ "grad_norm": 2.050698757171631,
1737
+ "learning_rate": 5.484689415121204e-06,
1738
+ "loss": 0.0724,
1739
+ "step": 2470
1740
+ },
1741
+ {
1742
+ "epoch": 1.5736040609137056,
1743
+ "grad_norm": 1.2225536108016968,
1744
+ "learning_rate": 5.447933916268933e-06,
1745
+ "loss": 0.0591,
1746
+ "step": 2480
1747
+ },
1748
+ {
1749
+ "epoch": 1.5799492385786802,
1750
+ "grad_norm": 4.785628318786621,
1751
+ "learning_rate": 5.411153999276016e-06,
1752
+ "loss": 0.0873,
1753
+ "step": 2490
1754
+ },
1755
+ {
1756
+ "epoch": 1.5862944162436547,
1757
+ "grad_norm": 2.2066152095794678,
1758
+ "learning_rate": 5.374351669119425e-06,
1759
+ "loss": 0.057,
1760
+ "step": 2500
1761
+ },
1762
+ {
1763
+ "epoch": 1.5926395939086295,
1764
+ "grad_norm": 1.9447569847106934,
1765
+ "learning_rate": 5.337528931997934e-06,
1766
+ "loss": 0.0548,
1767
+ "step": 2510
1768
+ },
1769
+ {
1770
+ "epoch": 1.598984771573604,
1771
+ "grad_norm": 2.1758713722229004,
1772
+ "learning_rate": 5.3006877952227585e-06,
1773
+ "loss": 0.0674,
1774
+ "step": 2520
1775
+ },
1776
+ {
1777
+ "epoch": 1.6053299492385786,
1778
+ "grad_norm": 1.5067161321640015,
1779
+ "learning_rate": 5.263830267108129e-06,
1780
+ "loss": 0.0583,
1781
+ "step": 2530
1782
+ },
1783
+ {
1784
+ "epoch": 1.6116751269035534,
1785
+ "grad_norm": 1.6991007328033447,
1786
+ "learning_rate": 5.226958356861819e-06,
1787
+ "loss": 0.0521,
1788
+ "step": 2540
1789
+ },
1790
+ {
1791
+ "epoch": 1.618020304568528,
1792
+ "grad_norm": 1.2602826356887817,
1793
+ "learning_rate": 5.190074074475606e-06,
1794
+ "loss": 0.0674,
1795
+ "step": 2550
1796
+ },
1797
+ {
1798
+ "epoch": 1.6243654822335025,
1799
+ "grad_norm": 2.1869382858276367,
1800
+ "learning_rate": 5.153179430615716e-06,
1801
+ "loss": 0.062,
1802
+ "step": 2560
1803
+ },
1804
+ {
1805
+ "epoch": 1.6307106598984773,
1806
+ "grad_norm": 1.6224417686462402,
1807
+ "learning_rate": 5.116276436513201e-06,
1808
+ "loss": 0.0718,
1809
+ "step": 2570
1810
+ },
1811
+ {
1812
+ "epoch": 1.6370558375634516,
1813
+ "grad_norm": 2.291430711746216,
1814
+ "learning_rate": 5.079367103854311e-06,
1815
+ "loss": 0.0722,
1816
+ "step": 2580
1817
+ },
1818
+ {
1819
+ "epoch": 1.6434010152284264,
1820
+ "grad_norm": 1.0190826654434204,
1821
+ "learning_rate": 5.042453444670829e-06,
1822
+ "loss": 0.0612,
1823
+ "step": 2590
1824
+ },
1825
+ {
1826
+ "epoch": 1.649746192893401,
1827
+ "grad_norm": 1.6983177661895752,
1828
+ "learning_rate": 5.005537471230387e-06,
1829
+ "loss": 0.06,
1830
+ "step": 2600
1831
+ },
1832
+ {
1833
+ "epoch": 1.6560913705583755,
1834
+ "grad_norm": 1.5693427324295044,
1835
+ "learning_rate": 4.968621195926779e-06,
1836
+ "loss": 0.0674,
1837
+ "step": 2610
1838
+ },
1839
+ {
1840
+ "epoch": 1.6624365482233503,
1841
+ "grad_norm": 1.4258981943130493,
1842
+ "learning_rate": 4.931706631170246e-06,
1843
+ "loss": 0.0602,
1844
+ "step": 2620
1845
+ },
1846
+ {
1847
+ "epoch": 1.6687817258883249,
1848
+ "grad_norm": 1.9744484424591064,
1849
+ "learning_rate": 4.894795789277789e-06,
1850
+ "loss": 0.0657,
1851
+ "step": 2630
1852
+ },
1853
+ {
1854
+ "epoch": 1.6751269035532994,
1855
+ "grad_norm": 1.0477792024612427,
1856
+ "learning_rate": 4.857890682363461e-06,
1857
+ "loss": 0.0643,
1858
+ "step": 2640
1859
+ },
1860
+ {
1861
+ "epoch": 1.6814720812182742,
1862
+ "grad_norm": 1.2517801523208618,
1863
+ "learning_rate": 4.820993322228691e-06,
1864
+ "loss": 0.0574,
1865
+ "step": 2650
1866
+ },
1867
+ {
1868
+ "epoch": 1.6878172588832487,
1869
+ "grad_norm": 1.339064359664917,
1870
+ "learning_rate": 4.784105720252602e-06,
1871
+ "loss": 0.0639,
1872
+ "step": 2660
1873
+ },
1874
+ {
1875
+ "epoch": 1.6941624365482233,
1876
+ "grad_norm": 1.0788367986679077,
1877
+ "learning_rate": 4.747229887282379e-06,
1878
+ "loss": 0.044,
1879
+ "step": 2670
1880
+ },
1881
+ {
1882
+ "epoch": 1.700507614213198,
1883
+ "grad_norm": 0.8012908697128296,
1884
+ "learning_rate": 4.7103678335236395e-06,
1885
+ "loss": 0.0642,
1886
+ "step": 2680
1887
+ },
1888
+ {
1889
+ "epoch": 1.7068527918781726,
1890
+ "grad_norm": 1.975696086883545,
1891
+ "learning_rate": 4.673521568430859e-06,
1892
+ "loss": 0.0655,
1893
+ "step": 2690
1894
+ },
1895
+ {
1896
+ "epoch": 1.7131979695431472,
1897
+ "grad_norm": 1.7474173307418823,
1898
+ "learning_rate": 4.63669310059783e-06,
1899
+ "loss": 0.0447,
1900
+ "step": 2700
1901
+ },
1902
+ {
1903
+ "epoch": 1.719543147208122,
1904
+ "grad_norm": 0.9429912567138672,
1905
+ "learning_rate": 4.5998844376481665e-06,
1906
+ "loss": 0.0588,
1907
+ "step": 2710
1908
+ },
1909
+ {
1910
+ "epoch": 1.7258883248730963,
1911
+ "grad_norm": 2.345489025115967,
1912
+ "learning_rate": 4.5630975861258605e-06,
1913
+ "loss": 0.0637,
1914
+ "step": 2720
1915
+ },
1916
+ {
1917
+ "epoch": 1.732233502538071,
1918
+ "grad_norm": 0.8988242149353027,
1919
+ "learning_rate": 4.526334551385902e-06,
1920
+ "loss": 0.0613,
1921
+ "step": 2730
1922
+ },
1923
+ {
1924
+ "epoch": 1.7385786802030458,
1925
+ "grad_norm": 2.0134191513061523,
1926
+ "learning_rate": 4.489597337484961e-06,
1927
+ "loss": 0.0533,
1928
+ "step": 2740
1929
+ },
1930
+ {
1931
+ "epoch": 1.7449238578680202,
1932
+ "grad_norm": 1.8432866334915161,
1933
+ "learning_rate": 4.452887947072142e-06,
1934
+ "loss": 0.0684,
1935
+ "step": 2750
1936
+ },
1937
+ {
1938
+ "epoch": 1.751269035532995,
1939
+ "grad_norm": 3.151284694671631,
1940
+ "learning_rate": 4.416208381279812e-06,
1941
+ "loss": 0.0556,
1942
+ "step": 2760
1943
+ },
1944
+ {
1945
+ "epoch": 1.7576142131979695,
1946
+ "grad_norm": 1.051060676574707,
1947
+ "learning_rate": 4.379560639614513e-06,
1948
+ "loss": 0.0498,
1949
+ "step": 2770
1950
+ },
1951
+ {
1952
+ "epoch": 1.763959390862944,
1953
+ "grad_norm": 1.5683525800704956,
1954
+ "learning_rate": 4.3429467198479665e-06,
1955
+ "loss": 0.0524,
1956
+ "step": 2780
1957
+ },
1958
+ {
1959
+ "epoch": 1.7703045685279188,
1960
+ "grad_norm": 1.0461344718933105,
1961
+ "learning_rate": 4.306368617908163e-06,
1962
+ "loss": 0.0445,
1963
+ "step": 2790
1964
+ },
1965
+ {
1966
+ "epoch": 1.7766497461928934,
1967
+ "grad_norm": 1.2296735048294067,
1968
+ "learning_rate": 4.2698283277705655e-06,
1969
+ "loss": 0.0464,
1970
+ "step": 2800
1971
+ },
1972
+ {
1973
+ "epoch": 1.782994923857868,
1974
+ "grad_norm": 0.9869544506072998,
1975
+ "learning_rate": 4.23332784134941e-06,
1976
+ "loss": 0.0506,
1977
+ "step": 2810
1978
+ },
1979
+ {
1980
+ "epoch": 1.7893401015228427,
1981
+ "grad_norm": 2.624345541000366,
1982
+ "learning_rate": 4.196869148389114e-06,
1983
+ "loss": 0.0455,
1984
+ "step": 2820
1985
+ },
1986
+ {
1987
+ "epoch": 1.7956852791878173,
1988
+ "grad_norm": 2.0790648460388184,
1989
+ "learning_rate": 4.160454236355822e-06,
1990
+ "loss": 0.0465,
1991
+ "step": 2830
1992
+ },
1993
+ {
1994
+ "epoch": 1.8020304568527918,
1995
+ "grad_norm": 1.0878472328186035,
1996
+ "learning_rate": 4.124085090329056e-06,
1997
+ "loss": 0.0354,
1998
+ "step": 2840
1999
+ },
2000
+ {
2001
+ "epoch": 1.8083756345177666,
2002
+ "grad_norm": 1.4148125648498535,
2003
+ "learning_rate": 4.087763692893498e-06,
2004
+ "loss": 0.0378,
2005
+ "step": 2850
2006
+ },
2007
+ {
2008
+ "epoch": 1.8147208121827412,
2009
+ "grad_norm": 0.8988755941390991,
2010
+ "learning_rate": 4.051492024030925e-06,
2011
+ "loss": 0.0421,
2012
+ "step": 2860
2013
+ },
2014
+ {
2015
+ "epoch": 1.8210659898477157,
2016
+ "grad_norm": 2.1405270099639893,
2017
+ "learning_rate": 4.015272061012271e-06,
2018
+ "loss": 0.0647,
2019
+ "step": 2870
2020
+ },
2021
+ {
2022
+ "epoch": 1.8274111675126905,
2023
+ "grad_norm": 0.8886227607727051,
2024
+ "learning_rate": 3.979105778289832e-06,
2025
+ "loss": 0.0547,
2026
+ "step": 2880
2027
+ },
2028
+ {
2029
+ "epoch": 1.8337563451776648,
2030
+ "grad_norm": 1.402446985244751,
2031
+ "learning_rate": 3.942995147389648e-06,
2032
+ "loss": 0.0378,
2033
+ "step": 2890
2034
+ },
2035
+ {
2036
+ "epoch": 1.8401015228426396,
2037
+ "grad_norm": 1.283605933189392,
2038
+ "learning_rate": 3.9069421368040115e-06,
2039
+ "loss": 0.0488,
2040
+ "step": 2900
2041
+ },
2042
+ {
2043
+ "epoch": 1.8464467005076142,
2044
+ "grad_norm": 1.226680874824524,
2045
+ "learning_rate": 3.870948711884178e-06,
2046
+ "loss": 0.0382,
2047
+ "step": 2910
2048
+ },
2049
+ {
2050
+ "epoch": 1.8527918781725887,
2051
+ "grad_norm": 1.871385097503662,
2052
+ "learning_rate": 3.835016834733216e-06,
2053
+ "loss": 0.0441,
2054
+ "step": 2920
2055
+ },
2056
+ {
2057
+ "epoch": 1.8591370558375635,
2058
+ "grad_norm": 1.125570297241211,
2059
+ "learning_rate": 3.7991484640990506e-06,
2060
+ "loss": 0.0429,
2061
+ "step": 2930
2062
+ },
2063
+ {
2064
+ "epoch": 1.865482233502538,
2065
+ "grad_norm": 1.131261944770813,
2066
+ "learning_rate": 3.763345555267692e-06,
2067
+ "loss": 0.0404,
2068
+ "step": 2940
2069
+ },
2070
+ {
2071
+ "epoch": 1.8718274111675126,
2072
+ "grad_norm": 1.5131438970565796,
2073
+ "learning_rate": 3.727610059956641e-06,
2074
+ "loss": 0.0359,
2075
+ "step": 2950
2076
+ },
2077
+ {
2078
+ "epoch": 1.8781725888324874,
2079
+ "grad_norm": 0.8379979133605957,
2080
+ "learning_rate": 3.691943926208494e-06,
2081
+ "loss": 0.0508,
2082
+ "step": 2960
2083
+ },
2084
+ {
2085
+ "epoch": 1.884517766497462,
2086
+ "grad_norm": 1.1895625591278076,
2087
+ "learning_rate": 3.6563490982847577e-06,
2088
+ "loss": 0.034,
2089
+ "step": 2970
2090
+ },
2091
+ {
2092
+ "epoch": 1.8908629441624365,
2093
+ "grad_norm": 0.7952091097831726,
2094
+ "learning_rate": 3.620827516559854e-06,
2095
+ "loss": 0.0494,
2096
+ "step": 2980
2097
+ },
2098
+ {
2099
+ "epoch": 1.8972081218274113,
2100
+ "grad_norm": 1.2926766872406006,
2101
+ "learning_rate": 3.58538111741535e-06,
2102
+ "loss": 0.0483,
2103
+ "step": 2990
2104
+ },
2105
+ {
2106
+ "epoch": 1.9035532994923858,
2107
+ "grad_norm": 1.165218472480774,
2108
+ "learning_rate": 3.550011833134399e-06,
2109
+ "loss": 0.0446,
2110
+ "step": 3000
2111
+ },
2112
+ {
2113
+ "epoch": 1.9098984771573604,
2114
+ "grad_norm": 1.2693628072738647,
2115
+ "learning_rate": 3.5147215917964037e-06,
2116
+ "loss": 0.0296,
2117
+ "step": 3010
2118
+ },
2119
+ {
2120
+ "epoch": 1.9162436548223352,
2121
+ "grad_norm": 0.7264485955238342,
2122
+ "learning_rate": 3.4795123171719142e-06,
2123
+ "loss": 0.0488,
2124
+ "step": 3020
2125
+ },
2126
+ {
2127
+ "epoch": 1.9225888324873095,
2128
+ "grad_norm": 0.9121705889701843,
2129
+ "learning_rate": 3.4443859286177545e-06,
2130
+ "loss": 0.0299,
2131
+ "step": 3030
2132
+ },
2133
+ {
2134
+ "epoch": 1.9289340101522843,
2135
+ "grad_norm": 1.2310829162597656,
2136
+ "learning_rate": 3.4093443409723985e-06,
2137
+ "loss": 0.0389,
2138
+ "step": 3040
2139
+ },
2140
+ {
2141
+ "epoch": 1.9352791878172588,
2142
+ "grad_norm": 1.087215542793274,
2143
+ "learning_rate": 3.374389464451583e-06,
2144
+ "loss": 0.0367,
2145
+ "step": 3050
2146
+ },
2147
+ {
2148
+ "epoch": 1.9416243654822334,
2149
+ "grad_norm": 1.1739871501922607,
2150
+ "learning_rate": 3.339523204544176e-06,
2151
+ "loss": 0.0407,
2152
+ "step": 3060
2153
+ },
2154
+ {
2155
+ "epoch": 1.9479695431472082,
2156
+ "grad_norm": 0.9143801927566528,
2157
+ "learning_rate": 3.3047474619083043e-06,
2158
+ "loss": 0.0361,
2159
+ "step": 3070
2160
+ },
2161
+ {
2162
+ "epoch": 1.9543147208121827,
2163
+ "grad_norm": 0.9468094706535339,
2164
+ "learning_rate": 3.2700641322677405e-06,
2165
+ "loss": 0.0309,
2166
+ "step": 3080
2167
+ },
2168
+ {
2169
+ "epoch": 1.9606598984771573,
2170
+ "grad_norm": 1.2729860544204712,
2171
+ "learning_rate": 3.235475106308569e-06,
2172
+ "loss": 0.0194,
2173
+ "step": 3090
2174
+ },
2175
+ {
2176
+ "epoch": 1.967005076142132,
2177
+ "grad_norm": 1.381415843963623,
2178
+ "learning_rate": 3.200982269576111e-06,
2179
+ "loss": 0.0495,
2180
+ "step": 3100
2181
+ },
2182
+ {
2183
+ "epoch": 1.9733502538071066,
2184
+ "grad_norm": 1.4151417016983032,
2185
+ "learning_rate": 3.1665875023721453e-06,
2186
+ "loss": 0.0344,
2187
+ "step": 3110
2188
+ },
2189
+ {
2190
+ "epoch": 1.9796954314720812,
2191
+ "grad_norm": 0.9717885851860046,
2192
+ "learning_rate": 3.1322926796524016e-06,
2193
+ "loss": 0.0376,
2194
+ "step": 3120
2195
+ },
2196
+ {
2197
+ "epoch": 1.986040609137056,
2198
+ "grad_norm": 0.9146430492401123,
2199
+ "learning_rate": 3.0980996709243517e-06,
2200
+ "loss": 0.028,
2201
+ "step": 3130
2202
+ },
2203
+ {
2204
+ "epoch": 1.9923857868020305,
2205
+ "grad_norm": 1.5948601961135864,
2206
+ "learning_rate": 3.0640103401453035e-06,
2207
+ "loss": 0.0511,
2208
+ "step": 3140
2209
+ },
2210
+ {
2211
+ "epoch": 1.998730964467005,
2212
+ "grad_norm": 1.120682716369629,
2213
+ "learning_rate": 3.030026545620787e-06,
2214
+ "loss": 0.0411,
2215
+ "step": 3150
2216
+ },
2217
+ {
2218
+ "epoch": 2.00507614213198,
2219
+ "grad_norm": 0.8402583003044128,
2220
+ "learning_rate": 2.9961501399032546e-06,
2221
+ "loss": 0.0272,
2222
+ "step": 3160
2223
+ },
2224
+ {
2225
+ "epoch": 2.011421319796954,
2226
+ "grad_norm": 1.102598786354065,
2227
+ "learning_rate": 2.9623829696910867e-06,
2228
+ "loss": 0.0207,
2229
+ "step": 3170
2230
+ },
2231
+ {
2232
+ "epoch": 2.017766497461929,
2233
+ "grad_norm": 0.9598972201347351,
2234
+ "learning_rate": 2.928726875727937e-06,
2235
+ "loss": 0.0197,
2236
+ "step": 3180
2237
+ },
2238
+ {
2239
+ "epoch": 2.0241116751269037,
2240
+ "grad_norm": 0.8507049679756165,
2241
+ "learning_rate": 2.8951836927023703e-06,
2242
+ "loss": 0.0161,
2243
+ "step": 3190
2244
+ },
2245
+ {
2246
+ "epoch": 2.030456852791878,
2247
+ "grad_norm": 0.9228895902633667,
2248
+ "learning_rate": 2.861755249147862e-06,
2249
+ "loss": 0.023,
2250
+ "step": 3200
2251
+ },
2252
+ {
2253
+ "epoch": 2.036802030456853,
2254
+ "grad_norm": 0.8271005749702454,
2255
+ "learning_rate": 2.828443367343119e-06,
2256
+ "loss": 0.0148,
2257
+ "step": 3210
2258
+ },
2259
+ {
2260
+ "epoch": 2.0431472081218276,
2261
+ "grad_norm": 1.2311136722564697,
2262
+ "learning_rate": 2.7952498632127324e-06,
2263
+ "loss": 0.0202,
2264
+ "step": 3220
2265
+ },
2266
+ {
2267
+ "epoch": 2.049492385786802,
2268
+ "grad_norm": 1.3220641613006592,
2269
+ "learning_rate": 2.762176546228198e-06,
2270
+ "loss": 0.0235,
2271
+ "step": 3230
2272
+ },
2273
+ {
2274
+ "epoch": 2.0558375634517767,
2275
+ "grad_norm": 1.2385421991348267,
2276
+ "learning_rate": 2.7292252193092693e-06,
2277
+ "loss": 0.0205,
2278
+ "step": 3240
2279
+ },
2280
+ {
2281
+ "epoch": 2.0621827411167515,
2282
+ "grad_norm": 1.238295316696167,
2283
+ "learning_rate": 2.6963976787256726e-06,
2284
+ "loss": 0.0157,
2285
+ "step": 3250
2286
+ },
2287
+ {
2288
+ "epoch": 2.068527918781726,
2289
+ "grad_norm": 0.7305588126182556,
2290
+ "learning_rate": 2.6636957139992003e-06,
2291
+ "loss": 0.0183,
2292
+ "step": 3260
2293
+ },
2294
+ {
2295
+ "epoch": 2.0748730964467006,
2296
+ "grad_norm": 0.8512719869613647,
2297
+ "learning_rate": 2.631121107806144e-06,
2298
+ "loss": 0.0204,
2299
+ "step": 3270
2300
+ },
2301
+ {
2302
+ "epoch": 2.081218274111675,
2303
+ "grad_norm": 0.8006191849708557,
2304
+ "learning_rate": 2.598675635880129e-06,
2305
+ "loss": 0.0223,
2306
+ "step": 3280
2307
+ },
2308
+ {
2309
+ "epoch": 2.0875634517766497,
2310
+ "grad_norm": 1.4886091947555542,
2311
+ "learning_rate": 2.5663610669153043e-06,
2312
+ "loss": 0.0197,
2313
+ "step": 3290
2314
+ },
2315
+ {
2316
+ "epoch": 2.0939086294416245,
2317
+ "grad_norm": 0.7531688213348389,
2318
+ "learning_rate": 2.534179162469924e-06,
2319
+ "loss": 0.0222,
2320
+ "step": 3300
2321
+ },
2322
+ {
2323
+ "epoch": 2.100253807106599,
2324
+ "grad_norm": 0.6706914305686951,
2325
+ "learning_rate": 2.502131676870335e-06,
2326
+ "loss": 0.019,
2327
+ "step": 3310
2328
+ },
2329
+ {
2330
+ "epoch": 2.1065989847715736,
2331
+ "grad_norm": 0.8195891380310059,
2332
+ "learning_rate": 2.470220357115327e-06,
2333
+ "loss": 0.0099,
2334
+ "step": 3320
2335
+ },
2336
+ {
2337
+ "epoch": 2.1129441624365484,
2338
+ "grad_norm": 0.8743392825126648,
2339
+ "learning_rate": 2.438446942780911e-06,
2340
+ "loss": 0.0145,
2341
+ "step": 3330
2342
+ },
2343
+ {
2344
+ "epoch": 2.1192893401015227,
2345
+ "grad_norm": 0.5079776048660278,
2346
+ "learning_rate": 2.4068131659254803e-06,
2347
+ "loss": 0.0164,
2348
+ "step": 3340
2349
+ },
2350
+ {
2351
+ "epoch": 2.1256345177664975,
2352
+ "grad_norm": 0.512514054775238,
2353
+ "learning_rate": 2.3753207509953963e-06,
2354
+ "loss": 0.0287,
2355
+ "step": 3350
2356
+ },
2357
+ {
2358
+ "epoch": 2.1319796954314723,
2359
+ "grad_norm": 0.7019079923629761,
2360
+ "learning_rate": 2.3439714147309845e-06,
2361
+ "loss": 0.0189,
2362
+ "step": 3360
2363
+ },
2364
+ {
2365
+ "epoch": 2.1383248730964466,
2366
+ "grad_norm": 0.8089588284492493,
2367
+ "learning_rate": 2.312766866072947e-06,
2368
+ "loss": 0.0255,
2369
+ "step": 3370
2370
+ },
2371
+ {
2372
+ "epoch": 2.1446700507614214,
2373
+ "grad_norm": 0.9173935651779175,
2374
+ "learning_rate": 2.2817088060692094e-06,
2375
+ "loss": 0.0149,
2376
+ "step": 3380
2377
+ },
2378
+ {
2379
+ "epoch": 2.151015228426396,
2380
+ "grad_norm": 1.1662015914916992,
2381
+ "learning_rate": 2.2507989277821847e-06,
2382
+ "loss": 0.0201,
2383
+ "step": 3390
2384
+ },
2385
+ {
2386
+ "epoch": 2.1573604060913705,
2387
+ "grad_norm": 0.5388917922973633,
2388
+ "learning_rate": 2.2200389161964795e-06,
2389
+ "loss": 0.0198,
2390
+ "step": 3400
2391
+ },
2392
+ {
2393
+ "epoch": 2.1637055837563453,
2394
+ "grad_norm": 1.1195067167282104,
2395
+ "learning_rate": 2.189430448127055e-06,
2396
+ "loss": 0.0196,
2397
+ "step": 3410
2398
+ },
2399
+ {
2400
+ "epoch": 2.1700507614213196,
2401
+ "grad_norm": 0.7136582732200623,
2402
+ "learning_rate": 2.1589751921277925e-06,
2403
+ "loss": 0.0188,
2404
+ "step": 3420
2405
+ },
2406
+ {
2407
+ "epoch": 2.1763959390862944,
2408
+ "grad_norm": 0.773573100566864,
2409
+ "learning_rate": 2.128674808400565e-06,
2410
+ "loss": 0.0212,
2411
+ "step": 3430
2412
+ },
2413
+ {
2414
+ "epoch": 2.182741116751269,
2415
+ "grad_norm": 0.7614580392837524,
2416
+ "learning_rate": 2.098530948704714e-06,
2417
+ "loss": 0.021,
2418
+ "step": 3440
2419
+ },
2420
+ {
2421
+ "epoch": 2.1890862944162435,
2422
+ "grad_norm": 0.6622429490089417,
2423
+ "learning_rate": 2.068545256267015e-06,
2424
+ "loss": 0.0169,
2425
+ "step": 3450
2426
+ },
2427
+ {
2428
+ "epoch": 2.1954314720812182,
2429
+ "grad_norm": 0.3882254660129547,
2430
+ "learning_rate": 2.0387193656921063e-06,
2431
+ "loss": 0.023,
2432
+ "step": 3460
2433
+ },
2434
+ {
2435
+ "epoch": 2.201776649746193,
2436
+ "grad_norm": 1.2883610725402832,
2437
+ "learning_rate": 2.0090549028733685e-06,
2438
+ "loss": 0.0179,
2439
+ "step": 3470
2440
+ },
2441
+ {
2442
+ "epoch": 2.2081218274111674,
2443
+ "grad_norm": 1.0185002088546753,
2444
+ "learning_rate": 1.9795534849043054e-06,
2445
+ "loss": 0.0206,
2446
+ "step": 3480
2447
+ },
2448
+ {
2449
+ "epoch": 2.214467005076142,
2450
+ "grad_norm": 0.7340651154518127,
2451
+ "learning_rate": 1.950216719990383e-06,
2452
+ "loss": 0.0159,
2453
+ "step": 3490
2454
+ },
2455
+ {
2456
+ "epoch": 2.220812182741117,
2457
+ "grad_norm": 0.8917669057846069,
2458
+ "learning_rate": 1.921046207361365e-06,
2459
+ "loss": 0.014,
2460
+ "step": 3500
2461
+ },
2462
+ {
2463
+ "epoch": 2.2271573604060912,
2464
+ "grad_norm": 0.8342999815940857,
2465
+ "learning_rate": 1.8920435371841394e-06,
2466
+ "loss": 0.0168,
2467
+ "step": 3510
2468
+ },
2469
+ {
2470
+ "epoch": 2.233502538071066,
2471
+ "grad_norm": 0.49451372027397156,
2472
+ "learning_rate": 1.8632102904760241e-06,
2473
+ "loss": 0.0202,
2474
+ "step": 3520
2475
+ },
2476
+ {
2477
+ "epoch": 2.239847715736041,
2478
+ "grad_norm": 0.8475871086120605,
2479
+ "learning_rate": 1.8345480390185865e-06,
2480
+ "loss": 0.0228,
2481
+ "step": 3530
2482
+ },
2483
+ {
2484
+ "epoch": 2.246192893401015,
2485
+ "grad_norm": 0.6851008534431458,
2486
+ "learning_rate": 1.806058345271962e-06,
2487
+ "loss": 0.016,
2488
+ "step": 3540
2489
+ },
2490
+ {
2491
+ "epoch": 2.25253807106599,
2492
+ "grad_norm": 1.2128303050994873,
2493
+ "learning_rate": 1.7777427622896764e-06,
2494
+ "loss": 0.0183,
2495
+ "step": 3550
2496
+ },
2497
+ {
2498
+ "epoch": 2.2588832487309647,
2499
+ "grad_norm": 0.3974970877170563,
2500
+ "learning_rate": 1.749602833633992e-06,
2501
+ "loss": 0.0221,
2502
+ "step": 3560
2503
+ },
2504
+ {
2505
+ "epoch": 2.265228426395939,
2506
+ "grad_norm": 0.6373499631881714,
2507
+ "learning_rate": 1.7216400932917544e-06,
2508
+ "loss": 0.0184,
2509
+ "step": 3570
2510
+ },
2511
+ {
2512
+ "epoch": 2.271573604060914,
2513
+ "grad_norm": 0.6473302245140076,
2514
+ "learning_rate": 1.6938560655907743e-06,
2515
+ "loss": 0.0156,
2516
+ "step": 3580
2517
+ },
2518
+ {
2519
+ "epoch": 2.277918781725888,
2520
+ "grad_norm": 0.5753197073936462,
2521
+ "learning_rate": 1.6662522651167345e-06,
2522
+ "loss": 0.0137,
2523
+ "step": 3590
2524
+ },
2525
+ {
2526
+ "epoch": 2.284263959390863,
2527
+ "grad_norm": 0.9094467759132385,
2528
+ "learning_rate": 1.6388301966306215e-06,
2529
+ "loss": 0.0147,
2530
+ "step": 3600
2531
+ },
2532
+ {
2533
+ "epoch": 2.2906091370558377,
2534
+ "grad_norm": 0.5902413725852966,
2535
+ "learning_rate": 1.6115913549867025e-06,
2536
+ "loss": 0.0224,
2537
+ "step": 3610
2538
+ },
2539
+ {
2540
+ "epoch": 2.296954314720812,
2541
+ "grad_norm": 0.875133752822876,
2542
+ "learning_rate": 1.5845372250510287e-06,
2543
+ "loss": 0.0232,
2544
+ "step": 3620
2545
+ },
2546
+ {
2547
+ "epoch": 2.303299492385787,
2548
+ "grad_norm": 1.241910696029663,
2549
+ "learning_rate": 1.557669281620497e-06,
2550
+ "loss": 0.0099,
2551
+ "step": 3630
2552
+ },
2553
+ {
2554
+ "epoch": 2.3096446700507616,
2555
+ "grad_norm": 0.6328564882278442,
2556
+ "learning_rate": 1.5309889893424563e-06,
2557
+ "loss": 0.0132,
2558
+ "step": 3640
2559
+ },
2560
+ {
2561
+ "epoch": 2.315989847715736,
2562
+ "grad_norm": 0.5470057725906372,
2563
+ "learning_rate": 1.5044978026348527e-06,
2564
+ "loss": 0.0164,
2565
+ "step": 3650
2566
+ },
2567
+ {
2568
+ "epoch": 2.3223350253807107,
2569
+ "grad_norm": 1.0264612436294556,
2570
+ "learning_rate": 1.4781971656069665e-06,
2571
+ "loss": 0.0203,
2572
+ "step": 3660
2573
+ },
2574
+ {
2575
+ "epoch": 2.3286802030456855,
2576
+ "grad_norm": 0.6052107810974121,
2577
+ "learning_rate": 1.4520885119806704e-06,
2578
+ "loss": 0.026,
2579
+ "step": 3670
2580
+ },
2581
+ {
2582
+ "epoch": 2.33502538071066,
2583
+ "grad_norm": 0.4180527329444885,
2584
+ "learning_rate": 1.4261732650122795e-06,
2585
+ "loss": 0.0204,
2586
+ "step": 3680
2587
+ },
2588
+ {
2589
+ "epoch": 2.3413705583756346,
2590
+ "grad_norm": 0.6096001267433167,
2591
+ "learning_rate": 1.4004528374149745e-06,
2592
+ "loss": 0.0095,
2593
+ "step": 3690
2594
+ },
2595
+ {
2596
+ "epoch": 2.347715736040609,
2597
+ "grad_norm": 0.5584781765937805,
2598
+ "learning_rate": 1.3749286312817722e-06,
2599
+ "loss": 0.0126,
2600
+ "step": 3700
2601
+ },
2602
+ {
2603
+ "epoch": 2.3540609137055837,
2604
+ "grad_norm": 0.3657080829143524,
2605
+ "learning_rate": 1.349602038009114e-06,
2606
+ "loss": 0.0108,
2607
+ "step": 3710
2608
+ },
2609
+ {
2610
+ "epoch": 2.3604060913705585,
2611
+ "grad_norm": 0.9728971719741821,
2612
+ "learning_rate": 1.3244744382210017e-06,
2613
+ "loss": 0.0104,
2614
+ "step": 3720
2615
+ },
2616
+ {
2617
+ "epoch": 2.3667512690355332,
2618
+ "grad_norm": 0.8524286150932312,
2619
+ "learning_rate": 1.2995472016937405e-06,
2620
+ "loss": 0.0167,
2621
+ "step": 3730
2622
+ },
2623
+ {
2624
+ "epoch": 2.3730964467005076,
2625
+ "grad_norm": 0.6725841164588928,
2626
+ "learning_rate": 1.2748216872812747e-06,
2627
+ "loss": 0.0131,
2628
+ "step": 3740
2629
+ },
2630
+ {
2631
+ "epoch": 2.3794416243654823,
2632
+ "grad_norm": 0.8610649704933167,
2633
+ "learning_rate": 1.2502992428411022e-06,
2634
+ "loss": 0.018,
2635
+ "step": 3750
2636
+ },
2637
+ {
2638
+ "epoch": 2.3857868020304567,
2639
+ "grad_norm": 0.4205199182033539,
2640
+ "learning_rate": 1.2259812051608066e-06,
2641
+ "loss": 0.0158,
2642
+ "step": 3760
2643
+ },
2644
+ {
2645
+ "epoch": 2.3921319796954315,
2646
+ "grad_norm": 0.7805858850479126,
2647
+ "learning_rate": 1.2018688998851802e-06,
2648
+ "loss": 0.0203,
2649
+ "step": 3770
2650
+ },
2651
+ {
2652
+ "epoch": 2.3984771573604062,
2653
+ "grad_norm": 0.2444067746400833,
2654
+ "learning_rate": 1.1779636414439672e-06,
2655
+ "loss": 0.0147,
2656
+ "step": 3780
2657
+ },
2658
+ {
2659
+ "epoch": 2.4048223350253806,
2660
+ "grad_norm": 0.40047794580459595,
2661
+ "learning_rate": 1.1542667329801998e-06,
2662
+ "loss": 0.011,
2663
+ "step": 3790
2664
+ },
2665
+ {
2666
+ "epoch": 2.4111675126903553,
2667
+ "grad_norm": 0.7459643483161926,
2668
+ "learning_rate": 1.130779466279166e-06,
2669
+ "loss": 0.0126,
2670
+ "step": 3800
2671
+ },
2672
+ {
2673
+ "epoch": 2.41751269035533,
2674
+ "grad_norm": 0.6922224760055542,
2675
+ "learning_rate": 1.107503121697997e-06,
2676
+ "loss": 0.0163,
2677
+ "step": 3810
2678
+ },
2679
+ {
2680
+ "epoch": 2.4238578680203045,
2681
+ "grad_norm": 1.863350749015808,
2682
+ "learning_rate": 1.0844389680958533e-06,
2683
+ "loss": 0.0194,
2684
+ "step": 3820
2685
+ },
2686
+ {
2687
+ "epoch": 2.4302030456852792,
2688
+ "grad_norm": 0.29856589436531067,
2689
+ "learning_rate": 1.0615882627647766e-06,
2690
+ "loss": 0.0155,
2691
+ "step": 3830
2692
+ },
2693
+ {
2694
+ "epoch": 2.436548223350254,
2695
+ "grad_norm": 0.377093642950058,
2696
+ "learning_rate": 1.0389522513611372e-06,
2697
+ "loss": 0.015,
2698
+ "step": 3840
2699
+ },
2700
+ {
2701
+ "epoch": 2.4428934010152283,
2702
+ "grad_norm": 0.5333195924758911,
2703
+ "learning_rate": 1.0165321678377332e-06,
2704
+ "loss": 0.0137,
2705
+ "step": 3850
2706
+ },
2707
+ {
2708
+ "epoch": 2.449238578680203,
2709
+ "grad_norm": 0.32329970598220825,
2710
+ "learning_rate": 9.943292343765293e-07,
2711
+ "loss": 0.0084,
2712
+ "step": 3860
2713
+ },
2714
+ {
2715
+ "epoch": 2.4555837563451774,
2716
+ "grad_norm": 0.3231019377708435,
2717
+ "learning_rate": 9.723446613220249e-07,
2718
+ "loss": 0.0126,
2719
+ "step": 3870
2720
+ },
2721
+ {
2722
+ "epoch": 2.4619289340101522,
2723
+ "grad_norm": 0.6870127320289612,
2724
+ "learning_rate": 9.505796471152783e-07,
2725
+ "loss": 0.0137,
2726
+ "step": 3880
2727
+ },
2728
+ {
2729
+ "epoch": 2.468274111675127,
2730
+ "grad_norm": 0.6023297309875488,
2731
+ "learning_rate": 9.290353782285766e-07,
2732
+ "loss": 0.0148,
2733
+ "step": 3890
2734
+ },
2735
+ {
2736
+ "epoch": 2.4746192893401013,
2737
+ "grad_norm": 0.46455860137939453,
2738
+ "learning_rate": 9.077130291007553e-07,
2739
+ "loss": 0.022,
2740
+ "step": 3900
2741
+ },
2742
+ {
2743
+ "epoch": 2.480964467005076,
2744
+ "grad_norm": 0.5320664048194885,
2745
+ "learning_rate": 8.86613762073183e-07,
2746
+ "loss": 0.0096,
2747
+ "step": 3910
2748
+ },
2749
+ {
2750
+ "epoch": 2.487309644670051,
2751
+ "grad_norm": 0.6012682914733887,
2752
+ "learning_rate": 8.657387273263895e-07,
2753
+ "loss": 0.0099,
2754
+ "step": 3920
2755
+ },
2756
+ {
2757
+ "epoch": 2.4936548223350252,
2758
+ "grad_norm": 0.8949501514434814,
2759
+ "learning_rate": 8.450890628173725e-07,
2760
+ "loss": 0.0111,
2761
+ "step": 3930
2762
+ },
2763
+ {
2764
+ "epoch": 2.5,
2765
+ "grad_norm": 0.8802683353424072,
2766
+ "learning_rate": 8.246658942175611e-07,
2767
+ "loss": 0.0143,
2768
+ "step": 3940
2769
+ },
2770
+ {
2771
+ "epoch": 2.5063451776649748,
2772
+ "grad_norm": 0.9922573566436768,
2773
+ "learning_rate": 8.04470334851456e-07,
2774
+ "loss": 0.0234,
2775
+ "step": 3950
2776
+ },
2777
+ {
2778
+ "epoch": 2.512690355329949,
2779
+ "grad_norm": 0.23940332233905792,
2780
+ "learning_rate": 7.845034856359368e-07,
2781
+ "loss": 0.011,
2782
+ "step": 3960
2783
+ },
2784
+ {
2785
+ "epoch": 2.519035532994924,
2786
+ "grad_norm": 0.2019755095243454,
2787
+ "learning_rate": 7.647664350202461e-07,
2788
+ "loss": 0.0135,
2789
+ "step": 3970
2790
+ },
2791
+ {
2792
+ "epoch": 2.525380710659898,
2793
+ "grad_norm": 0.17184686660766602,
2794
+ "learning_rate": 7.452602589266583e-07,
2795
+ "loss": 0.0074,
2796
+ "step": 3980
2797
+ },
2798
+ {
2799
+ "epoch": 2.531725888324873,
2800
+ "grad_norm": 0.8647210597991943,
2801
+ "learning_rate": 7.259860206918268e-07,
2802
+ "loss": 0.0101,
2803
+ "step": 3990
2804
+ },
2805
+ {
2806
+ "epoch": 2.5380710659898478,
2807
+ "grad_norm": 0.9781297445297241,
2808
+ "learning_rate": 7.069447710088167e-07,
2809
+ "loss": 0.0147,
2810
+ "step": 4000
2811
+ },
2812
+ {
2813
+ "epoch": 2.5444162436548226,
2814
+ "grad_norm": 0.7230397462844849,
2815
+ "learning_rate": 6.881375478698332e-07,
2816
+ "loss": 0.0159,
2817
+ "step": 4010
2818
+ },
2819
+ {
2820
+ "epoch": 2.550761421319797,
2821
+ "grad_norm": 1.1674317121505737,
2822
+ "learning_rate": 6.695653765096327e-07,
2823
+ "loss": 0.0125,
2824
+ "step": 4020
2825
+ },
2826
+ {
2827
+ "epoch": 2.5571065989847717,
2828
+ "grad_norm": 0.38593119382858276,
2829
+ "learning_rate": 6.512292693496353e-07,
2830
+ "loss": 0.0071,
2831
+ "step": 4030
2832
+ },
2833
+ {
2834
+ "epoch": 2.563451776649746,
2835
+ "grad_norm": 0.3000188171863556,
2836
+ "learning_rate": 6.331302259427418e-07,
2837
+ "loss": 0.0086,
2838
+ "step": 4040
2839
+ },
2840
+ {
2841
+ "epoch": 2.5697969543147208,
2842
+ "grad_norm": 0.6724553108215332,
2843
+ "learning_rate": 6.152692329188297e-07,
2844
+ "loss": 0.0076,
2845
+ "step": 4050
2846
+ },
2847
+ {
2848
+ "epoch": 2.5761421319796955,
2849
+ "grad_norm": 1.0246587991714478,
2850
+ "learning_rate": 5.976472639309888e-07,
2851
+ "loss": 0.02,
2852
+ "step": 4060
2853
+ },
2854
+ {
2855
+ "epoch": 2.5824873096446703,
2856
+ "grad_norm": 0.5962472558021545,
2857
+ "learning_rate": 5.802652796024294e-07,
2858
+ "loss": 0.0208,
2859
+ "step": 4070
2860
+ },
2861
+ {
2862
+ "epoch": 2.5888324873096447,
2863
+ "grad_norm": 0.44684454798698425,
2864
+ "learning_rate": 5.631242274741211e-07,
2865
+ "loss": 0.0179,
2866
+ "step": 4080
2867
+ },
2868
+ {
2869
+ "epoch": 2.5951776649746194,
2870
+ "grad_norm": 0.446123331785202,
2871
+ "learning_rate": 5.46225041953145e-07,
2872
+ "loss": 0.0065,
2873
+ "step": 4090
2874
+ },
2875
+ {
2876
+ "epoch": 2.6015228426395938,
2877
+ "grad_norm": 0.28516885638237,
2878
+ "learning_rate": 5.295686442617442e-07,
2879
+ "loss": 0.0084,
2880
+ "step": 4100
2881
+ },
2882
+ {
2883
+ "epoch": 2.6078680203045685,
2884
+ "grad_norm": 0.42138996720314026,
2885
+ "learning_rate": 5.131559423871191e-07,
2886
+ "loss": 0.0119,
2887
+ "step": 4110
2888
+ },
2889
+ {
2890
+ "epoch": 2.6142131979695433,
2891
+ "grad_norm": 0.857070803642273,
2892
+ "learning_rate": 4.969878310319204e-07,
2893
+ "loss": 0.0116,
2894
+ "step": 4120
2895
+ },
2896
+ {
2897
+ "epoch": 2.6205583756345177,
2898
+ "grad_norm": 0.4262557327747345,
2899
+ "learning_rate": 4.810651915654807e-07,
2900
+ "loss": 0.013,
2901
+ "step": 4130
2902
+ },
2903
+ {
2904
+ "epoch": 2.6269035532994924,
2905
+ "grad_norm": 0.08034439384937286,
2906
+ "learning_rate": 4.6538889197576985e-07,
2907
+ "loss": 0.0085,
2908
+ "step": 4140
2909
+ },
2910
+ {
2911
+ "epoch": 2.6332487309644668,
2912
+ "grad_norm": 0.4999110698699951,
2913
+ "learning_rate": 4.4995978682207396e-07,
2914
+ "loss": 0.0104,
2915
+ "step": 4150
2916
+ },
2917
+ {
2918
+ "epoch": 2.6395939086294415,
2919
+ "grad_norm": 0.47301802039146423,
2920
+ "learning_rate": 4.347787171884149e-07,
2921
+ "loss": 0.013,
2922
+ "step": 4160
2923
+ },
2924
+ {
2925
+ "epoch": 2.6459390862944163,
2926
+ "grad_norm": 0.2837192416191101,
2927
+ "learning_rate": 4.1984651063769864e-07,
2928
+ "loss": 0.0123,
2929
+ "step": 4170
2930
+ },
2931
+ {
2932
+ "epoch": 2.652284263959391,
2933
+ "grad_norm": 0.4908500611782074,
2934
+ "learning_rate": 4.0516398116660196e-07,
2935
+ "loss": 0.0137,
2936
+ "step": 4180
2937
+ },
2938
+ {
2939
+ "epoch": 2.6586294416243654,
2940
+ "grad_norm": 0.38162919878959656,
2941
+ "learning_rate": 3.907319291612027e-07,
2942
+ "loss": 0.0108,
2943
+ "step": 4190
2944
+ },
2945
+ {
2946
+ "epoch": 2.66497461928934,
2947
+ "grad_norm": 0.9448516368865967,
2948
+ "learning_rate": 3.765511413533429e-07,
2949
+ "loss": 0.0139,
2950
+ "step": 4200
2951
+ },
2952
+ {
2953
+ "epoch": 2.6713197969543145,
2954
+ "grad_norm": 0.4047912359237671,
2955
+ "learning_rate": 3.626223907777482e-07,
2956
+ "loss": 0.0147,
2957
+ "step": 4210
2958
+ },
2959
+ {
2960
+ "epoch": 2.6776649746192893,
2961
+ "grad_norm": 0.1890551596879959,
2962
+ "learning_rate": 3.489464367298795e-07,
2963
+ "loss": 0.0135,
2964
+ "step": 4220
2965
+ },
2966
+ {
2967
+ "epoch": 2.684010152284264,
2968
+ "grad_norm": 0.3367404341697693,
2969
+ "learning_rate": 3.3552402472454893e-07,
2970
+ "loss": 0.017,
2971
+ "step": 4230
2972
+ },
2973
+ {
2974
+ "epoch": 2.6903553299492384,
2975
+ "grad_norm": 0.5344458818435669,
2976
+ "learning_rate": 3.2235588645527893e-07,
2977
+ "loss": 0.0201,
2978
+ "step": 4240
2979
+ },
2980
+ {
2981
+ "epoch": 2.696700507614213,
2982
+ "grad_norm": 0.8313795328140259,
2983
+ "learning_rate": 3.094427397544103e-07,
2984
+ "loss": 0.0162,
2985
+ "step": 4250
2986
+ },
2987
+ {
2988
+ "epoch": 2.703045685279188,
2989
+ "grad_norm": 0.35280096530914307,
2990
+ "learning_rate": 2.967852885539768e-07,
2991
+ "loss": 0.0064,
2992
+ "step": 4260
2993
+ },
2994
+ {
2995
+ "epoch": 2.7093908629441623,
2996
+ "grad_norm": 0.6538042426109314,
2997
+ "learning_rate": 2.843842228473293e-07,
2998
+ "loss": 0.0145,
2999
+ "step": 4270
3000
+ },
3001
+ {
3002
+ "epoch": 2.715736040609137,
3003
+ "grad_norm": 0.6905611753463745,
3004
+ "learning_rate": 2.7224021865151996e-07,
3005
+ "loss": 0.0128,
3006
+ "step": 4280
3007
+ },
3008
+ {
3009
+ "epoch": 2.722081218274112,
3010
+ "grad_norm": 0.5076076984405518,
3011
+ "learning_rate": 2.603539379704567e-07,
3012
+ "loss": 0.0171,
3013
+ "step": 4290
3014
+ },
3015
+ {
3016
+ "epoch": 2.728426395939086,
3017
+ "grad_norm": 0.6590428352355957,
3018
+ "learning_rate": 2.4872602875881004e-07,
3019
+ "loss": 0.0077,
3020
+ "step": 4300
3021
+ },
3022
+ {
3023
+ "epoch": 2.734771573604061,
3024
+ "grad_norm": 0.3470360338687897,
3025
+ "learning_rate": 2.373571248866946e-07,
3026
+ "loss": 0.0115,
3027
+ "step": 4310
3028
+ },
3029
+ {
3030
+ "epoch": 2.7411167512690353,
3031
+ "grad_norm": 0.5780541896820068,
3032
+ "learning_rate": 2.262478461051132e-07,
3033
+ "loss": 0.0191,
3034
+ "step": 4320
3035
+ },
3036
+ {
3037
+ "epoch": 2.74746192893401,
3038
+ "grad_norm": 1.4629708528518677,
3039
+ "learning_rate": 2.153987980121719e-07,
3040
+ "loss": 0.0189,
3041
+ "step": 4330
3042
+ },
3043
+ {
3044
+ "epoch": 2.753807106598985,
3045
+ "grad_norm": 1.3563203811645508,
3046
+ "learning_rate": 2.0481057202006992e-07,
3047
+ "loss": 0.0116,
3048
+ "step": 4340
3049
+ },
3050
+ {
3051
+ "epoch": 2.7601522842639596,
3052
+ "grad_norm": 0.4442911744117737,
3053
+ "learning_rate": 1.9448374532285707e-07,
3054
+ "loss": 0.0153,
3055
+ "step": 4350
3056
+ },
3057
+ {
3058
+ "epoch": 2.766497461928934,
3059
+ "grad_norm": 0.26719120144844055,
3060
+ "learning_rate": 1.8441888086497162e-07,
3061
+ "loss": 0.0156,
3062
+ "step": 4360
3063
+ },
3064
+ {
3065
+ "epoch": 2.7728426395939088,
3066
+ "grad_norm": 0.4203988015651703,
3067
+ "learning_rate": 1.7461652731055157e-07,
3068
+ "loss": 0.0162,
3069
+ "step": 4370
3070
+ },
3071
+ {
3072
+ "epoch": 2.779187817258883,
3073
+ "grad_norm": 1.0901730060577393,
3074
+ "learning_rate": 1.650772190135247e-07,
3075
+ "loss": 0.0131,
3076
+ "step": 4380
3077
+ },
3078
+ {
3079
+ "epoch": 2.785532994923858,
3080
+ "grad_norm": 0.3400239944458008,
3081
+ "learning_rate": 1.5580147598848018e-07,
3082
+ "loss": 0.0141,
3083
+ "step": 4390
3084
+ },
3085
+ {
3086
+ "epoch": 2.7918781725888326,
3087
+ "grad_norm": 0.38450250029563904,
3088
+ "learning_rate": 1.4678980388232233e-07,
3089
+ "loss": 0.0099,
3090
+ "step": 4400
3091
+ },
3092
+ {
3093
+ "epoch": 2.798223350253807,
3094
+ "grad_norm": 0.4401623606681824,
3095
+ "learning_rate": 1.3804269394670388e-07,
3096
+ "loss": 0.0166,
3097
+ "step": 4410
3098
+ },
3099
+ {
3100
+ "epoch": 2.8045685279187818,
3101
+ "grad_norm": 0.765143871307373,
3102
+ "learning_rate": 1.295606230112495e-07,
3103
+ "loss": 0.015,
3104
+ "step": 4420
3105
+ },
3106
+ {
3107
+ "epoch": 2.810913705583756,
3108
+ "grad_norm": 0.47553789615631104,
3109
+ "learning_rate": 1.2134405345755773e-07,
3110
+ "loss": 0.0104,
3111
+ "step": 4430
3112
+ },
3113
+ {
3114
+ "epoch": 2.817258883248731,
3115
+ "grad_norm": 1.053678274154663,
3116
+ "learning_rate": 1.1339343319400175e-07,
3117
+ "loss": 0.0085,
3118
+ "step": 4440
3119
+ },
3120
+ {
3121
+ "epoch": 2.8236040609137056,
3122
+ "grad_norm": 0.5694789290428162,
3123
+ "learning_rate": 1.057091956313061e-07,
3124
+ "loss": 0.0131,
3125
+ "step": 4450
3126
+ },
3127
+ {
3128
+ "epoch": 2.8299492385786804,
3129
+ "grad_norm": 0.41042569279670715,
3130
+ "learning_rate": 9.829175965892557e-08,
3131
+ "loss": 0.0162,
3132
+ "step": 4460
3133
+ },
3134
+ {
3135
+ "epoch": 2.8362944162436547,
3136
+ "grad_norm": 0.30753186345100403,
3137
+ "learning_rate": 9.114152962220734e-08,
3138
+ "loss": 0.0085,
3139
+ "step": 4470
3140
+ },
3141
+ {
3142
+ "epoch": 2.8426395939086295,
3143
+ "grad_norm": 1.1423698663711548,
3144
+ "learning_rate": 8.425889530034815e-08,
3145
+ "loss": 0.0111,
3146
+ "step": 4480
3147
+ },
3148
+ {
3149
+ "epoch": 2.848984771573604,
3150
+ "grad_norm": 0.9772459864616394,
3151
+ "learning_rate": 7.764423188515058e-08,
3152
+ "loss": 0.0137,
3153
+ "step": 4490
3154
+ },
3155
+ {
3156
+ "epoch": 2.8553299492385786,
3157
+ "grad_norm": 0.2530859112739563,
3158
+ "learning_rate": 7.129789996056568e-08,
3159
+ "loss": 0.0148,
3160
+ "step": 4500
3161
+ }
3162
+ ],
3163
+ "logging_steps": 10,
3164
+ "max_steps": 4728,
3165
+ "num_input_tokens_seen": 0,
3166
+ "num_train_epochs": 3,
3167
+ "save_steps": 500,
3168
+ "stateful_callbacks": {
3169
+ "TrainerControl": {
3170
+ "args": {
3171
+ "should_epoch_stop": false,
3172
+ "should_evaluate": false,
3173
+ "should_log": false,
3174
+ "should_save": true,
3175
+ "should_training_stop": false
3176
+ },
3177
+ "attributes": {}
3178
+ }
3179
+ },
3180
+ "total_flos": 391740982493184.0,
3181
+ "train_batch_size": 1,
3182
+ "trial_name": null,
3183
+ "trial_params": null
3184
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddfb641a3858b4d87703e8b63d389c469e300e2afe6cce5876835fc3ee89fe0e
3
+ size 8145
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)