|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
Processor class for Qwen2-VL.
|
|
"""
|
|
|
|
from typing import List, Union
|
|
|
|
try:
|
|
from typing import Unpack
|
|
except ImportError:
|
|
from typing_extensions import Unpack
|
|
|
|
from transformers.feature_extraction_utils import BatchFeature
|
|
from .image_utils import ImageInput, VideoInput
|
|
from transformers.processing_utils import (
|
|
ProcessingKwargs,
|
|
ProcessorMixin,
|
|
)
|
|
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
|
from transformers.utils import logging
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class Qwen2VLProcessorKwargs(ProcessingKwargs, total=False):
|
|
_defaults = {
|
|
"text_kwargs": {
|
|
"padding": False,
|
|
},
|
|
}
|
|
|
|
|
|
class Qwen2VLProcessor(ProcessorMixin):
|
|
r"""
|
|
Constructs a Qwen2-VL processor which wraps a Qwen2-VL image processor and a Qwen2 tokenizer into a single processor.
|
|
[`Qwen2VLProcessor`] offers all the functionalities of [`Qwen2VLImageProcessor`] and [`Qwen2TokenizerFast`]. See the
|
|
[`~Qwen2VLProcessor.__call__`] and [`~Qwen2VLProcessor.decode`] for more information.
|
|
Args:
|
|
image_processor ([`Qwen2VLImageProcessor`], *optional*):
|
|
The image processor is a required input.
|
|
tokenizer ([`Qwen2TokenizerFast`], *optional*):
|
|
The tokenizer is a required input.
|
|
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
|
|
in a chat into a tokenizable string.
|
|
"""
|
|
|
|
attributes = ["image_processor", "tokenizer"]
|
|
valid_kwargs = ["chat_template"]
|
|
image_processor_class = "Qwen2VLImageProcessor"
|
|
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
|
|
|
|
def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs):
|
|
super().__init__(image_processor, tokenizer, chat_template=chat_template)
|
|
|
|
def __call__(
|
|
self,
|
|
images: ImageInput = None,
|
|
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
|
videos: VideoInput = None,
|
|
**kwargs: Unpack[Qwen2VLProcessorKwargs],
|
|
) -> BatchFeature:
|
|
"""
|
|
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
|
and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode
|
|
the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
|
|
Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`.
|
|
|
|
Args:
|
|
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
|
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
|
tensor. Both channels-first and channels-last formats are supported.
|
|
text (`str`, `List[str]`, `List[List[str]]`):
|
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
|
videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
|
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
|
|
tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported.
|
|
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
|
If set, will return tensors of a particular framework. Acceptable values are:
|
|
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
|
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
|
- `'np'`: Return NumPy `np.ndarray` objects.
|
|
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
|
|
|
Returns:
|
|
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
|
|
|
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
|
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
|
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
|
`None`).
|
|
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
|
- **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`.
|
|
- **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
|
|
- **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`.
|
|
"""
|
|
output_kwargs = self._merge_kwargs(
|
|
Qwen2VLProcessorKwargs,
|
|
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
|
**kwargs,
|
|
)
|
|
if images is not None:
|
|
image_inputs = self.image_processor(images=images, videos=None, **output_kwargs["images_kwargs"])
|
|
image_grid_thw = image_inputs["image_grid_thw"]
|
|
else:
|
|
image_inputs = {}
|
|
image_grid_thw = None
|
|
|
|
if videos is not None:
|
|
videos_inputs = self.image_processor(images=None, videos=videos, **output_kwargs["videos_kwargs"])
|
|
video_grid_thw = videos_inputs["video_grid_thw"]
|
|
else:
|
|
videos_inputs = {}
|
|
video_grid_thw = None
|
|
|
|
if not isinstance(text, list):
|
|
text = [text]
|
|
|
|
if image_grid_thw is not None:
|
|
merge_length = self.image_processor.merge_size ** 2
|
|
index = 0
|
|
for i in range(len(text)):
|
|
while "<|image_pad|>" in text[i]:
|
|
text[i] = text[i].replace(
|
|
"<|image_pad|>", "<|placeholder|>" * (image_grid_thw[index].prod() // merge_length), 1
|
|
)
|
|
index += 1
|
|
text[i] = text[i].replace("<|placeholder|>", "<|image_pad|>")
|
|
|
|
if video_grid_thw is not None:
|
|
merge_length = self.image_processor.merge_size ** 2
|
|
index = 0
|
|
for i in range(len(text)):
|
|
while "<|video_pad|>" in text[i]:
|
|
text[i] = text[i].replace(
|
|
"<|video_pad|>", "<|placeholder|>" * (video_grid_thw[index].prod() // merge_length), 1
|
|
)
|
|
index += 1
|
|
text[i] = text[i].replace("<|placeholder|>", "<|video_pad|>")
|
|
|
|
_ = output_kwargs["text_kwargs"].pop("padding_side", None)
|
|
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
|
|
|
|
return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs})
|
|
|
|
def batch_decode(self, *args, **kwargs):
|
|
"""
|
|
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
|
refer to the docstring of this method for more information.
|
|
"""
|
|
return self.tokenizer.batch_decode(*args, **kwargs)
|
|
|
|
def decode(self, *args, **kwargs):
|
|
"""
|
|
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
|
the docstring of this method for more information.
|
|
"""
|
|
return self.tokenizer.decode(*args, **kwargs)
|
|
|
|
@property
|
|
def model_input_names(self):
|
|
tokenizer_input_names = self.tokenizer.model_input_names
|
|
image_processor_input_names = self.image_processor.model_input_names
|
|
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
|
|