Update README.md
Browse files
README.md
CHANGED
@@ -36,8 +36,8 @@ This model is intended to answer questions about code fragments, to generate cod
|
|
36 |
|
37 |
```python
|
38 |
from transformers import GemmaTokenizer, AutoModelForCausalLM
|
39 |
-
tokenizer = GemmaTokenizer.from_pretrained("EpistemeAI/Athene-codegemma-7b-it-alpaca-v1.1")
|
40 |
-
model = AutoModelForCausalLM.from_pretrained("EpistemeAI/Athene-codegemma-7b-it-alpaca-v1.1")
|
41 |
input_text = "Write me a Python function to calculate the nth fibonacci number."
|
42 |
input_ids = tokenizer(input_text, return_tensors="pt")
|
43 |
outputs = model.generate(**input_ids)
|
@@ -55,7 +55,7 @@ Let's load the model and apply the chat template to a conversation. In this exam
|
|
55 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
56 |
import transformers
|
57 |
import torch
|
58 |
-
model_id = "EpistemeAI/Athene-codegemma-2-7b-it-alpaca-v1"
|
59 |
dtype = torch.bfloat16
|
60 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
61 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
36 |
|
37 |
```python
|
38 |
from transformers import GemmaTokenizer, AutoModelForCausalLM
|
39 |
+
tokenizer = GemmaTokenizer.from_pretrained("EpistemeAI/Athene-codegemma-2-7b-it-alpaca-v1.1")
|
40 |
+
model = AutoModelForCausalLM.from_pretrained("EpistemeAI/Athene-codegemma-2-7b-it-alpaca-v1.1")
|
41 |
input_text = "Write me a Python function to calculate the nth fibonacci number."
|
42 |
input_ids = tokenizer(input_text, return_tensors="pt")
|
43 |
outputs = model.generate(**input_ids)
|
|
|
55 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
56 |
import transformers
|
57 |
import torch
|
58 |
+
model_id = "EpistemeAI/Athene-codegemma-2-7b-it-alpaca-v1.1"
|
59 |
dtype = torch.bfloat16
|
60 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
61 |
model = AutoModelForCausalLM.from_pretrained(
|