Update README.md
Browse files
README.md
CHANGED
@@ -17,7 +17,7 @@ Summary description and brief definition of inputs and outputs.
|
|
17 |
|
18 |
### Description
|
19 |
|
20 |
-
Athene CodeGemma 2 7B v1.
|
21 |
Supervised Fine-tuning with coding datasets.
|
22 |
|
23 |
similar to:
|
@@ -37,8 +37,8 @@ This model is intended to answer questions about code fragments, to generate cod
|
|
37 |
|
38 |
```python
|
39 |
from transformers import GemmaTokenizer, AutoModelForCausalLM
|
40 |
-
tokenizer = GemmaTokenizer.from_pretrained("EpistemeAI/Athene-codegemma-2-7b-it-alpaca-v1.
|
41 |
-
model = AutoModelForCausalLM.from_pretrained("EpistemeAI/Athene-codegemma-2-7b-it-alpaca-v1.
|
42 |
input_text = "Write me a Python function to calculate the nth fibonacci number."
|
43 |
input_ids = tokenizer(input_text, return_tensors="pt")
|
44 |
outputs = model.generate(**input_ids)
|
@@ -56,7 +56,7 @@ Let's load the model and apply the chat template to a conversation. In this exam
|
|
56 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
57 |
import transformers
|
58 |
import torch
|
59 |
-
model_id = "EpistemeAI/Athene-codegemma-2-7b-it-alpaca-v1.
|
60 |
dtype = torch.bfloat16
|
61 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
62 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -110,7 +110,7 @@ Data used for model training and how the data was processed.
|
|
110 |
|
111 |
Supervised Fine-tuning with coding python, java datasets
|
112 |
|
113 |
-
### Example: Athene CodeGemma 2 7B v1.
|
114 |
Athene CodeGemma 2 7B v1.1 successfully created snake game without errors compare to original codegemma-7b-it
|
115 |
|
116 |
|
|
|
17 |
|
18 |
### Description
|
19 |
|
20 |
+
Athene CodeGemma 2 7B v1.2 is a collection of lightweight open code models built on top of Gemma. CodeGemma models are text-to-text and text-to-code decoder-only models and are available as a 7 billion pretrained variant that specializes in code completion and code generation tasks, a 7 billion parameter instruction-tuned variant for code chat and instruction following and a 2 billion parameter pretrained variant for fast code completion.
|
21 |
Supervised Fine-tuning with coding datasets.
|
22 |
|
23 |
similar to:
|
|
|
37 |
|
38 |
```python
|
39 |
from transformers import GemmaTokenizer, AutoModelForCausalLM
|
40 |
+
tokenizer = GemmaTokenizer.from_pretrained("EpistemeAI/Athene-codegemma-2-7b-it-alpaca-v1.2")
|
41 |
+
model = AutoModelForCausalLM.from_pretrained("EpistemeAI/Athene-codegemma-2-7b-it-alpaca-v1.2")
|
42 |
input_text = "Write me a Python function to calculate the nth fibonacci number."
|
43 |
input_ids = tokenizer(input_text, return_tensors="pt")
|
44 |
outputs = model.generate(**input_ids)
|
|
|
56 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
57 |
import transformers
|
58 |
import torch
|
59 |
+
model_id = "EpistemeAI/Athene-codegemma-2-7b-it-alpaca-v1.2"
|
60 |
dtype = torch.bfloat16
|
61 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
62 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
110 |
|
111 |
Supervised Fine-tuning with coding python, java datasets
|
112 |
|
113 |
+
### Example: Athene CodeGemma 2 7B v1.2
|
114 |
Athene CodeGemma 2 7B v1.1 successfully created snake game without errors compare to original codegemma-7b-it
|
115 |
|
116 |
|