File size: 5,171 Bytes
f4afa91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c89705c
8cee664
c89705c
8cee664
c89705c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d051c6
 
61ad699
7d051c6
 
c89705c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
base_model: unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
---

# Uploaded  model

- **Developed by:** EpistemeAI2
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit

This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)

# Model Card for EpistemeAI2's Fireball-Mistral-Nemo-Instruct-emo-PHD, fine tuned Mistral-Nemo-Instruct-2407

The EpistemeAI2's Fireball-Mistral-Nemo-Instruct-emo-PHD , fine tuned Mistral-Nemo-Instruct-2407 Large Language Model (LLM) is an instruct fine-tuned version of the [Mistral-Nemo-Base-2407](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407). Trained jointly by Mistral AI and NVIDIA, it significantly outperforms existing models smaller or similar in size.

For more details about this model please refer to our release [blog post](https://mistral.ai/news/mistral-nemo/).

## Key features
- Released under the **Apache 2 License**
- Pre-trained and instructed versions
- Trained with a **128k context window**
- Trained on a large proportion of **multilingual and code data**
- Drop-in replacement of Mistral 7B

## Model Architecture
Mistral Nemo is a transformer model, with the following architecture choices:
- **Layers:** 40
- **Dim:** 5,120
- **Head dim:** 128
- **Hidden dim:** 14,336
- **Activation Function:** SwiGLU
- **Number of heads:** 32
- **Number of kv-heads:** 8 (GQA)
- **Vocabulary size:** 2**17 ~= 128k
- **Rotary embeddings (theta = 1M)**

## Training data

Fireball-Mistral-Nemo-Instruct-emo-PHD is fine tuned by **simulated-emotions and philsophy in deduction reasoning, math and science** dataset


### Mistral Inference

#### Install

```
pip install mistral_inference
```

#### Download

```py
from huggingface_hub import snapshot_download
from pathlib import Path
mistral_models_path = Path.home().joinpath('mistral_models', 'Nemo-Instruct')
mistral_models_path.mkdir(parents=True, exist_ok=True)
snapshot_download(repo_id="EpistemeAI2/Fireball-Mistral-Nemo-Instruct-emo-PHD", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path)
```



### Transformers

> [!IMPORTANT]
> NOTE: Until a new release has been made, you need to install transformers from source:
> ```sh
> pip install git+https://github.com/huggingface/transformers.git
> ```

If you want to use Hugging Face `transformers` to generate text, you can do something like this.

```py
from transformers import pipeline
messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]
chatbot = pipeline("text-generation", model="EpistemeAI2/Fireball-Mistral-Nemo-Instruct-emo-PHD",max_new_tokens=128)
chatbot(messages)
```

## Function calling with `transformers`

To use this example, you'll need `transformers` version 4.42.0 or higher. Please see the 
[function calling guide](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling)
in the `transformers` docs for more information.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_id = "EpistemeAI2/Fireball-Mistral-Nemo-Instruct-emo-PHD"
tokenizer = AutoTokenizer.from_pretrained(model_id)
def get_current_weather(location: str, format: str):
    """
    Get the current weather
    Args:
        location: The city and state, e.g. San Francisco, CA
        format: The temperature unit to use. Infer this from the users location. (choices: ["celsius", "fahrenheit"])
    """
    pass
conversation = [{"role": "user", "content": "What's the weather like in Paris?"}]
tools = [get_current_weather]
# format and tokenize the tool use prompt 
inputs = tokenizer.apply_chat_template(
            conversation,
            tools=tools,
            add_generation_prompt=True,
            return_dict=True,
            return_tensors="pt",
)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
inputs.to(model.device)
outputs = model.generate(**inputs, max_new_tokens=1000)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

Note that, for reasons of space, this example does not show a complete cycle of calling a tool and adding the tool call and tool
results to the chat history so that the model can use them in its next generation. For a full tool calling example, please
see the [function calling guide](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling), 
and note that Mistral **does** use tool call IDs, so these must be included in your tool calls and tool results. They should be
exactly 9 alphanumeric characters.

> [!TIP]
> Unlike previous Mistral models, Mistral Nemo requires smaller temperatures. We recommend to use a temperature of 0.3.