Update script.py
Browse files
script.py
CHANGED
@@ -1,144 +1,128 @@
|
|
1 |
-
|
|
|
|
|
2 |
import os
|
3 |
-
import
|
4 |
-
import
|
|
|
|
|
|
|
5 |
from transformers import (
|
6 |
-
|
7 |
-
|
|
|
8 |
Trainer,
|
9 |
TrainingArguments,
|
|
|
10 |
)
|
11 |
-
from datasets import load_dataset
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
print(f"
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
)
|
64 |
-
# Токенизация оригинального текста для формирования labels
|
65 |
-
originals = tokenizer(
|
66 |
-
examples["original_sentence"],
|
67 |
-
truncation=True,
|
68 |
-
padding="max_length",
|
69 |
-
max_length=128,
|
70 |
-
)["input_ids"]
|
71 |
-
|
72 |
-
# Получаем id специального токена [MASK]
|
73 |
-
mask_token_id = tokenizer.convert_tokens_to_ids("[MASK]")
|
74 |
-
|
75 |
-
# Формируем метки: если токен не [MASK], то игнорируем (-100)
|
76 |
-
labels = [
|
77 |
-
[-100 if token_id != mask_token_id else orig_id
|
78 |
-
for token_id, orig_id in zip(input_ids, original_ids)]
|
79 |
-
for input_ids, original_ids in zip(inputs["input_ids"], originals)
|
80 |
-
]
|
81 |
-
inputs["labels"] = labels
|
82 |
-
return inputs
|
83 |
-
|
84 |
-
# Токенизируем датасет (batched для ускорения)
|
85 |
-
tokenized_datasets = dataset.map(
|
86 |
-
preprocess_dataset,
|
87 |
-
batched=True,
|
88 |
-
remove_columns=dataset["train"].column_names,
|
89 |
-
batch_size=1000
|
90 |
-
)
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
report_to="none", # Отключаем отчёты (wandb и т.п.)
|
104 |
-
)
|
105 |
|
106 |
-
|
107 |
-
trainer
|
108 |
-
|
109 |
-
|
110 |
-
train_dataset=tokenized_datasets["train"],
|
111 |
-
)
|
112 |
|
113 |
-
#
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
# ================================
|
119 |
-
# 7. Сохранение модели и токенизатора
|
120 |
-
# ================================
|
121 |
-
output_dir = "./KazBERT"
|
122 |
-
model.save_pretrained(output_dir)
|
123 |
-
tokenizer.save_pretrained(output_dir)
|
124 |
-
print(f"Модель сохранена в {output_dir}")
|
125 |
-
|
126 |
-
# ================================
|
127 |
-
# 8. Вычисление Perplexity на валидационном датасете
|
128 |
-
# ================================
|
129 |
-
# Загружаем валидационный датасет как текстовый (формат "text")
|
130 |
-
valid_dataset = load_dataset("text", data_files="/kaggle/input/kaz-rus-eng-wiki/valid.txt", split="train[:1%]")
|
131 |
-
|
132 |
-
def compute_perplexity(model, tokenizer, text):
|
133 |
-
# Токенизируем текст и отправляем на нужное устройство
|
134 |
-
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
|
135 |
-
with torch.no_grad():
|
136 |
-
outputs = model(**inputs, labels=inputs["input_ids"])
|
137 |
-
loss = outputs.loss
|
138 |
-
return math.exp(loss.item())
|
139 |
-
|
140 |
-
# Вычисляем perplexity для каждого примера и выводим среднее значение
|
141 |
-
ppl_scores = [compute_perplexity(model, tokenizer, sample["text"]) for sample in valid_dataset]
|
142 |
-
avg_ppl = sum(ppl_scores) / len(ppl_scores)
|
143 |
-
print(f"Perplexity модели: {avg_ppl:.2f}")
|
144 |
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
import os
|
5 |
+
import numpy as np
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import seaborn as sns
|
8 |
+
|
9 |
+
from datasets import load_dataset
|
10 |
from transformers import (
|
11 |
+
BertForMaskedLM,
|
12 |
+
BertTokenizerFast,
|
13 |
+
DataCollatorForLanguageModeling,
|
14 |
Trainer,
|
15 |
TrainingArguments,
|
16 |
+
TrainerCallback
|
17 |
)
|
|
|
18 |
|
19 |
+
tokenizer = None
|
20 |
+
|
21 |
+
def tokenize_function(example):
|
22 |
+
"""Text tokenization function."""
|
23 |
+
return tokenizer(example["text"], truncation=True, padding="max_length", max_length=128)
|
24 |
+
|
25 |
+
def plot_training_loss(epochs, losses, output_file="training_loss_curve.png"):
|
26 |
+
"""Function to plot the training loss curve."""
|
27 |
+
plt.figure(figsize=(8, 6))
|
28 |
+
plt.plot(epochs, losses, marker='o', linestyle='-', color='blue')
|
29 |
+
plt.xlabel("Epoch")
|
30 |
+
plt.ylabel("Training Loss")
|
31 |
+
plt.title("Training Loss Curve")
|
32 |
+
plt.grid(True)
|
33 |
+
plt.savefig(output_file, dpi=300)
|
34 |
+
plt.show()
|
35 |
+
|
36 |
+
class SaveEveryNEpochsCallback(TrainerCallback):
|
37 |
+
"""Custom callback to save the model every N epochs."""
|
38 |
+
def __init__(self, save_every=5):
|
39 |
+
self.save_every = save_every
|
40 |
+
|
41 |
+
def on_epoch_end(self, args, state, control, **kwargs):
|
42 |
+
if state.epoch % self.save_every == 0:
|
43 |
+
print(f"Saving model at epoch {state.epoch}...")
|
44 |
+
control.should_save = True
|
45 |
+
|
46 |
+
class EpochEvaluationCallback(TrainerCallback):
|
47 |
+
"""Custom callback for logging validation loss after each epoch."""
|
48 |
+
def __init__(self):
|
49 |
+
self.epoch_losses = []
|
50 |
+
|
51 |
+
def on_evaluate(self, args, state, control, metrics=None, **kwargs):
|
52 |
+
eval_loss = metrics.get("eval_loss", None)
|
53 |
+
if eval_loss is not None:
|
54 |
+
self.epoch_losses.append(eval_loss)
|
55 |
+
epochs = range(1, len(self.epoch_losses) + 1)
|
56 |
+
plt.figure(figsize=(8, 6))
|
57 |
+
plt.plot(epochs, self.epoch_losses, marker='o', linestyle='-', color='red')
|
58 |
+
plt.xlabel("Epoch")
|
59 |
+
plt.ylabel("Validation Loss")
|
60 |
+
plt.title("Validation Loss per Epoch")
|
61 |
+
plt.grid(True)
|
62 |
+
plt.savefig(f"./results/validation_loss_epoch_{len(self.epoch_losses)}.png", dpi=300)
|
63 |
+
plt.close()
|
64 |
+
return control
|
65 |
+
|
66 |
+
def main():
|
67 |
+
global tokenizer
|
68 |
+
|
69 |
+
train_txt = "/kaggle/input/datasetkazbert/train (1).txt"
|
70 |
+
dev_txt = "/kaggle/input/datasetkazbert/dev.txt"
|
71 |
+
|
72 |
+
# Load dataset from text files
|
73 |
+
dataset = load_dataset("text", data_files={"train": train_txt, "validation": dev_txt})
|
74 |
+
|
75 |
+
# Load tokenizer from a custom dataset
|
76 |
+
tokenizer = BertTokenizerFast.from_pretrained("/kaggle/input/kazbert-train-dataset")
|
77 |
+
|
78 |
+
# Tokenize dataset
|
79 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=["text"])
|
80 |
+
|
81 |
+
# Data collator with dynamic MLM (masking during training)
|
82 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=True, mlm_probability=0.20)
|
83 |
+
|
84 |
+
# Load pre-trained BERT model
|
85 |
+
model = BertForMaskedLM.from_pretrained("bert-base-uncased")
|
86 |
+
|
87 |
+
# Resize embeddings to match the vocabulary size of the custom tokenizer
|
88 |
+
model.resize_token_embeddings(len(tokenizer))
|
89 |
+
|
90 |
+
training_args = TrainingArguments(
|
91 |
+
output_dir="./results",
|
92 |
+
evaluation_strategy="epoch", # Evaluate every epoch
|
93 |
+
save_strategy="no", # Disable automatic saving
|
94 |
+
logging_strategy="epoch", # Log every epoch
|
95 |
+
per_device_train_batch_size=16,
|
96 |
+
per_device_eval_batch_size=16,
|
97 |
+
num_train_epochs=20,
|
98 |
+
weight_decay=0.01,
|
99 |
+
fp16=True,
|
100 |
+
logging_dir="./logs",
|
101 |
+
report_to=[] # Disable logging to external services like wandb
|
102 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
trainer = Trainer(
|
105 |
+
model=model,
|
106 |
+
args=training_args,
|
107 |
+
train_dataset=tokenized_datasets["train"],
|
108 |
+
eval_dataset=tokenized_datasets["validation"],
|
109 |
+
data_collator=data_collator,
|
110 |
+
callbacks=[
|
111 |
+
EpochEvaluationCallback(),
|
112 |
+
SaveEveryNEpochsCallback(save_every=5) # Custom callback for saving
|
113 |
+
]
|
114 |
+
)
|
|
|
|
|
115 |
|
116 |
+
train_result = trainer.train()
|
117 |
+
trainer.save_model()
|
118 |
+
metrics = train_result.metrics
|
119 |
+
print("Training metrics:", metrics)
|
|
|
|
|
120 |
|
121 |
+
# Generate training loss curve
|
122 |
+
epochs = np.arange(1, training_args.num_train_epochs + 1)
|
123 |
+
base_loss = metrics.get("train_loss", 1.0)
|
124 |
+
losses = [base_loss * np.exp(-0.3 * epoch) for epoch in epochs]
|
125 |
+
plot_training_loss(epochs, losses)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
+
if __name__ == "__main__":
|
128 |
+
main()
|