Create pipeline.py
Browse files- pipeline.py +64 -0
pipeline.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
| 2 |
+
from tensorflow.keras.models import load_model
|
| 3 |
+
from tensorflow.keras.preprocessing.text import tokenizer_from_json
|
| 4 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 5 |
+
import numpy as np
|
| 6 |
+
import json
|
| 7 |
+
|
| 8 |
+
class NewsClassifierConfig(PretrainedConfig):
|
| 9 |
+
model_type = "news_classifier"
|
| 10 |
+
|
| 11 |
+
def __init__(
|
| 12 |
+
self,
|
| 13 |
+
max_length=41, # Modified to match model input shape
|
| 14 |
+
vocab_size=74934, # Modified based on embedding layer size
|
| 15 |
+
embedding_dim=128, # Added to match model architecture
|
| 16 |
+
hidden_size=64, # Matches final LSTM layer
|
| 17 |
+
num_labels=2,
|
| 18 |
+
**kwargs
|
| 19 |
+
):
|
| 20 |
+
self.max_length = max_length
|
| 21 |
+
self.vocab_size = vocab_size
|
| 22 |
+
self.embedding_dim = embedding_dim
|
| 23 |
+
self.hidden_size = hidden_size
|
| 24 |
+
self.num_labels = num_labels
|
| 25 |
+
super().__init__(**kwargs)
|
| 26 |
+
|
| 27 |
+
class NewsClassifier(PreTrainedModel):
|
| 28 |
+
config_class = NewsClassifierConfig
|
| 29 |
+
base_model_prefix = "news_classifier"
|
| 30 |
+
|
| 31 |
+
def __init__(self, config):
|
| 32 |
+
super().__init__(config)
|
| 33 |
+
self.model = None # Will be loaded in post_init
|
| 34 |
+
self.tokenizer = None
|
| 35 |
+
|
| 36 |
+
def post_init(self):
|
| 37 |
+
"""Load model and tokenizer after initialization"""
|
| 38 |
+
self.model = load_model('news_classifier.h5')
|
| 39 |
+
with open('tokenizer.json', 'r') as f:
|
| 40 |
+
tokenizer_data = json.load(f)
|
| 41 |
+
self.tokenizer = tokenizer_from_json(tokenizer_data)
|
| 42 |
+
|
| 43 |
+
def forward(self, text_input):
|
| 44 |
+
if not self.model or not self.tokenizer:
|
| 45 |
+
self.post_init()
|
| 46 |
+
|
| 47 |
+
if isinstance(text_input, str):
|
| 48 |
+
text_input = [text_input]
|
| 49 |
+
|
| 50 |
+
sequences = self.tokenizer.texts_to_sequences(text_input)
|
| 51 |
+
padded = pad_sequences(sequences, maxlen=self.config.max_length)
|
| 52 |
+
predictions = self.model.predict(padded, verbose=0)
|
| 53 |
+
|
| 54 |
+
results = []
|
| 55 |
+
for pred in predictions:
|
| 56 |
+
# Convert from 2-class output to single score
|
| 57 |
+
score = float(pred[1]) # Assuming pred[1] is the probability for "foxnews"
|
| 58 |
+
label = "foxnews" if score > 0.5 else "nbc"
|
| 59 |
+
results.append({
|
| 60 |
+
"label": label,
|
| 61 |
+
"score": score if label == "foxnews" else 1 - score
|
| 62 |
+
})
|
| 63 |
+
|
| 64 |
+
return results[0] if len(text_input) == 1 else results
|