|
import torch |
|
from typing import Dict, List, Any |
|
from transformers import ( |
|
AutomaticSpeechRecognitionPipeline, |
|
WhisperForConditionalGeneration, |
|
WhisperTokenizer, |
|
WhisperProcessor, |
|
pipeline |
|
) |
|
from peft import LoraConfig, PeftModel, LoraModel, LoraConfig, get_peft_model, PeftConfig |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
|
|
peft_model_id = path |
|
language = "Chinese" |
|
task = "transcribe" |
|
peft_config = PeftConfig.from_pretrained(peft_model_id) |
|
model= WhisperForConditionalGeneration.from_pretrained( |
|
peft_config.base_model_name_or_path |
|
) |
|
model = PeftModel.from_pretrained(model, peft_model_id) |
|
tokenizer = WhisperTokenizer.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task) |
|
processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task) |
|
feature_extractor = processor.feature_extractor |
|
self.forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task) |
|
self.pipeline = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor) |
|
|
|
self.pipeline.model.config.forced_decoder_ids = self.pipeline.tokenizer.get_decoder_prompt_ids(language="Chinese", task="transcribe") |
|
self.pipeline.model.generation_config.forced_decoder_ids = self.pipeline.model.config.forced_decoder_ids |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:obj: `str` | `PIL.Image` | `np.array`) |
|
kwargs |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
|
|
inputs = data.pop("inputs", data) |
|
with torch.cuda.amp.autocast(): |
|
prediction = self.pipeline(inputs, generate_kwargs={"forced_decoder_ids": self.forced_decoder_ids}, max_new_tokens=255) |
|
|
|
return prediction |