cathyi commited on
Commit
9ff07f0
·
1 Parent(s): fc2889e

update handler for testing

Browse files
Files changed (1) hide show
  1. handler.py +29 -34
handler.py CHANGED
@@ -1,53 +1,48 @@
1
- from typing import Dict, List, Any
2
- from transformers import pipeline
3
-
4
- import sys
5
  import torch
 
6
  from transformers import (
7
- AutomaticSpeechRecognitionPipeline,
8
- WhisperForConditionalGeneration,
9
- WhisperTokenizer,
10
- WhisperProcessor
 
11
  )
12
  from peft import LoraConfig, PeftModel, LoraModel, LoraConfig, get_peft_model, PeftConfig
13
 
14
  class EndpointHandler():
15
  def __init__(self, path=""):
16
-
 
17
  language = "Chinese"
18
- task = "transcribe"
19
- peft_config = PeftConfig.from_pretrained(path)
20
- model = WhisperForConditionalGeneration.from_pretrained(
21
  peft_config.base_model_name_or_path
22
  )
23
- model = PeftModel.from_pretrained(model, path)
24
  tokenizer = WhisperTokenizer.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task)
25
  processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task)
26
  feature_extractor = processor.feature_extractor
27
  self.forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task)
28
- self.pipeline = pipeline(task= "automatic-speech-recognition", model=model, tokenizer=tokenizer, feature_extractor = feature_extractor)
29
- self.pipeline.model.config.forced_decoder_ids = self.pipeline.tokenizer.get_decoder_prompt_ids(language=language, task=task)
30
- self.pipeline.model.generation_config.forced_decoder_ids = self.pipeline.model.config.forced_decoder_ids
31
-
 
 
 
 
32
  def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
33
  """
34
- data args:
35
- inputs (:obj: `str`)
36
- date (:obj: `str`)
37
- Return:
38
  A :obj:`list` | `dict`: will be serialized and returned
39
  """
40
- # get inputs
41
-
42
- # run normal prediction
43
- inputs = data.pop("inputs", data)
44
- print("a1", inputs)
45
- print("a2", inputs, file=sys.stderr)
46
- print("a3", inputs, file=sys.stdout)
47
-
48
- prediction = self.pipeline(inputs, return_timestamps=False)
49
 
50
- print("b1", prediction)
51
- print("b2", prediction, file=sys.stderr)
52
- print("b3", prediction, file=sys.stdout)
53
- return prediction
 
 
 
 
 
 
1
  import torch
2
+ from typing import Dict, List, Any
3
  from transformers import (
4
+ AutomaticSpeechRecognitionPipeline,
5
+ WhisperForConditionalGeneration,
6
+ WhisperTokenizer,
7
+ WhisperProcessor,
8
+ pipeline
9
  )
10
  from peft import LoraConfig, PeftModel, LoraModel, LoraConfig, get_peft_model, PeftConfig
11
 
12
  class EndpointHandler():
13
  def __init__(self, path=""):
14
+ # Preload all the elements you are going to need at inference.
15
+ peft_model_id = "cathyi/openai-whisper-large-v2-Lora"
16
  language = "Chinese"
17
+ task = "transcribe"
18
+ peft_config = PeftConfig.from_pretrained(peft_model_id)
19
+ model= WhisperForConditionalGeneration.from_pretrained(
20
  peft_config.base_model_name_or_path
21
  )
22
+ model = PeftModel.from_pretrained(model, peft_model_id)
23
  tokenizer = WhisperTokenizer.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task)
24
  processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task)
25
  feature_extractor = processor.feature_extractor
26
  self.forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task)
27
+ # self.pipeline = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
28
+ self.pipeline = pipeline(task= "automatic-speech-recognition", model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
29
+ self.pipeline.model.config.forced_decoder_ids = self.pipeline.tokenizer.get_decoder_prompt_ids(language="Chinese", task="transcribe")
30
+ self.pipeline.model.generation_config.forced_decoder_ids = self.pipeline.model.config.forced_decoder_ids # just to be sure!
31
+ # self.pipeline = pipeline(task= "automatic-speech-recognition", model=self.model)
32
+ # self.pipeline.model.config.forced_decoder_ids = self.pipeline.tokenizer.get_decoder_prompt_ids(language="Chinese", task="transcribe")
33
+ # self.pipeline.model.generation_config.forced_decoder_ids = self.pipeline.model.config.forced_decoder_ids
34
+
35
  def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
36
  """
37
+ data args:
38
+ inputs (:obj: `str` | `PIL.Image` | `np.array`)
39
+ kwargs
40
+ Return:
41
  A :obj:`list` | `dict`: will be serialized and returned
42
  """
 
 
 
 
 
 
 
 
 
43
 
44
+ inputs = data.pop("inputs", data)
45
+ with torch.cuda.amp.autocast():
46
+ # prediction = self.pipeline(inputs, generate_kwargs={"forced_decoder_ids": self.forced_decoder_ids}, max_new_tokens=255)["text"]
47
+ prediction = self.pipeline(inputs, return_timestamps=False)
48
+ return [prediction, {"test": 0}]