from typing import Dict, List, Any from transformers import WhisperForConditionalGeneration, pipeline from peft import LoraConfig, PeftModel, LoraModel, LoraConfig, get_peft_model, PeftConfig class EndpointHandler(): def __init__(self, path=""): # Preload all the elements you are going to need at inference. peft_config = PeftConfig.from_pretrained(path) self.model= WhisperForConditionalGeneration.from_pretrained( peft_config.base_model_name_or_path ) self.model = PeftModel.from_pretrained(self.model, peft_model_id) self.pipeline = pipeline(task= "automatic-speech-recognition", model=self.model) self.pipeline.model.config.forced_decoder_ids = self.pipeline.tokenizer.get_decoder_prompt_ids(language="Chinese", task="transcribe") self.pipeline.model.generation_config.forced_decoder_ids = self.pipeline.model.config.forced_decoder_ids def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: inputs (:obj: `str` | `PIL.Image` | `np.array`) kwargs Return: A :obj:`list` | `dict`: will be serialized and returned """ inputs = data.pop("inputs",data) prediction = self.pipeline(inputs, return_timestamps=False) return prediction