File size: 10,195 Bytes
1989555
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
from pathlib import Path
import json
from transformers import PreTrainedTokenizer

# syllabify.py

# Define the set of Greek consonants
CONSONANTS = set('βγδθκπτφχλρσμν')

def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None):
    """
    Generate token_type_ids to distinguish sequences if token_ids_1 is given.
    RoBERTa doesn't use token_type_ids, so we set them all to 0.
    """
    if token_ids_1 is None:
        return [0] * (len(token_ids_0) + 2)  # +2 for CLS and SEP
    return [0] * (len(token_ids_0) + 2) + [0] * (len(token_ids_1) + 1)
    
def syllabify(tokens):
    """
    Given a list of Greek tokens (letters or diphthongs), returns a list of syllables.
    Each syllable is a list of tokens.
    
    The syllabification follows these rules:
    - A syllable must have a vowel (or diphthong) as its nucleus.
    - A single consonant preceding a vowel is considered onset of that syllable.
    - If there are multiple consonants between vowels, the first consonant is attached as coda 
      to the preceding syllable, and the remaining form the onset of the following syllable.
    - Any trailing consonants are attached to the last syllable.
    """
    syllables = []
    i = 0
    n = len(tokens)
    
    while i < n:
        current = []
        
        # Collect initial consonants for the syllable onset.
        while i < n and tokens[i] in CONSONANTS:
            current.append(tokens[i])
            i += 1
        
        # If no vowel is encountered, attach remaining consonants to previous syllable if available.
        if i >= n:
            if syllables:
                syllables[-1].extend(current)
            else:
                syllables.append(current)
            break
        
        # Add the vowel (nucleus) to the current syllable.
        current.append(tokens[i])
        i += 1
        
        # Look ahead to count following consonants until the next vowel.
        start = i
        count = 0
        while i < n and tokens[i] in CONSONANTS:
            count += 1
            i += 1
        
        if count == 0:
            # No following consonants: the current syllable is complete.
            syllables.append(current)
        elif count == 1:
            # A single consonant between vowels goes with the following syllable.
            syllables.append(current)
            # "Un-read" the single consonant so it will start the next syllable.
            i = start
        else:
            # For two or more consonants, attach the first to the current syllable as coda,
            # and let the remaining consonant(s) start the next syllable.
            current.append(tokens[start])
            syllables.append(current)
            i = start + 1  # Process remaining consonants in the next iteration.
    
    return syllables

def syllabify_joined(tokens):
    """
    Convenience function that returns syllables as joined strings instead of lists.
    """
    syllable_lists = syllabify(tokens)
    return [''.join(syl) for syl in syllable_lists]

if __name__ == '__main__':
    # Test the syllabification with sample input.
    test_tokens = ['σ', 'τ', 'έ', 'ρ', 'κ', 'σ', 'α', 'σ', 'ἀ', 'ν', 'έ', 'χ', 'ει', 'θ', 'ού', 'ρ', 'ι', 'ο', 'σ', 'αἴ', 'α', 'σ']
    
    print("Syllabified (as lists):")
    syllable_lists = syllabify(test_tokens)
    for syl in syllable_lists:
        print(syl)
    
    print("\nSyllabified (joined strings):")
    print(syllabify_joined(test_tokens))


import re
import unicodedata

# === 1. Oxia → Tonos replacements ===
OXIA_TO_TONOS = {
    "ά": "ά",  # U+1F71 → U+03AC (alpha)
    "έ": "έ",  # U+1F73 → U+03AD (epsilon)
    "ή": "ή",  # U+1F75 → U+03AE (eta)
    "ί": "ί",  # U+1F77 → U+03AF (iota)
    "ύ": "ύ",  # U+1F7B → U+03CD (upsilon)
    "ό": "ό",  # U+1F79 → U+03CC (omicron)
    "ώ": "ώ",  # U+1F7D → U+03CE (omega)
}

# === 2. Define diphthong components ===
diphth_y = {'α', 'ε', 'η', 'ο'}
upsilon_forms = {'ὐ','ὔ','υ','ὑ','ύ','ὖ','ῦ','ὕ','ὗ','ὺ','ὒ','ὓ'}

diphth_i = {'α', 'ε', 'ο', 'υ'}
iota_forms = {'ἰ','ί','ι','ῖ','ἴ','ἶ','ἵ','ἱ','ἷ','ὶ','ἲ','ἳ'}

adscr_i_first = {'α','η','ω','ἀ','ἠ','ὠ','ἁ','ἡ','ὡ','ά','ή','ώ','ὰ','ὴ','ὼ','ᾶ','ῆ','ῶ',
                 'ὤ','ὥ','ὢ','ὣ','ἄ','ἅ','ἂ','ἃ','ἤ','ἥ','ἣ','ἢ','ἦ','ἧ','ἆ','ἇ','ὧ','ὦ'}
adscr_i_second = {'ι'}

# === 3. Character expansion and diphthong handling ===
def process_word(word):
    expanded = []
    for char in word:
        if char == 'ζ':
            expanded.extend(['δ', 'σ'])
        elif char == 'ς':
            expanded.append('σ')
        elif char == 'ῥ':
            expanded.append('ρ')
        elif char == 'ξ':
            expanded.extend(['κ', 'σ'])
        elif char == 'ψ':
            expanded.extend(['π', 'σ'])
        else:
            expanded.append(char)

    combined = []
    i = 0
    while i < len(expanded):
        a = expanded[i]
        b = expanded[i+1] if i + 1 < len(expanded) else ''

        if a in diphth_y and b in upsilon_forms:
            combined.append(a + b)
            i += 2
        elif a in diphth_i and b in iota_forms:
            combined.append(a + b)
            i += 2
        elif a in adscr_i_first and b in adscr_i_second:
            combined.append(a + b)
            i += 2
        else:
            combined.append(a)
            i += 1

    return combined
def replace_oxia_with_tonos(text):
    return ''.join(OXIA_TO_TONOS.get(ch, ch) for ch in text)
    
def preprocess_greek_line(line):
    # Step 1: Normalize oxia → tonos
    line = replace_oxia_with_tonos(line)

    # Step 2: Extract Greek words
    words = re.findall(
        r"[ΆΐΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩάέήίΰαβγδεζηθικλμνξοπρςστυφχψωϊϋόύώ"
        r"ἀἁἂἃἄἅἆἇἈἉἊἋἌἍἎ"
        r"ἐἑἒἓἔἕἘἙἜἝ"
        r"ἠἡἢἣἤἥἦἧἨἩἪἫἬἭἮ"
        r"ἰἱἲἳἴἵἶἷἸἹἺἻἼἽἾ"
        r"ὀὁὂὃὄὅὈὉὊὋὌὍ"
        r"ὐὑὒὓὔὕὖὗὙὛὝ"
        r"ὠὡὢὣὤὥὦὧὨὩὪὫὬὭὮὯ"
        r"ὰὲὴὶὸὺὼᾀᾁᾂᾃᾄᾅᾆᾇᾈᾉᾊᾋᾌᾍ"
        r"ᾐᾑᾒᾓᾔᾕᾖᾗᾘᾙᾚᾛᾜᾝ"
        r"ᾠᾡᾢᾣᾤᾥᾦᾧᾨᾩᾪᾫᾬᾭᾮᾯ"
        r"ᾲᾳᾴᾶᾷῂῃῄῆῇῒῖῗῢῤῥῦῧῬῲῳῴῶῷ]+",
        line.lower()
    )

    # Step 3: Tokenize & flatten
    token_lists = [process_word(word) for word in words]
    return [token for tokens in token_lists for token in tokens]


class GreekSyllableTokenizer(PreTrainedTokenizer):
    vocab_files_names = {"vocab_file": "vocab.json"}

    def __init__(self, vocab_file: str, **kwargs):
        # --- 1. ladda vokab -----------------------------------------
        with Path(vocab_file).open(encoding="utf-8") as f:
            self.vocab = json.load(f)
        self.ids_to_tokens = {idx: tok for tok, idx in self.vocab.items()}

        # --- 2. sätt default-specials om de inte redan kom i kwargs --
        kwargs.setdefault("pad_token",  "[PAD]")
        kwargs.setdefault("unk_token",  "[UNK]")
        kwargs.setdefault("bos_token",  "[CLS]")
        kwargs.setdefault("eos_token",  "[SEP]")
        kwargs.setdefault("cls_token",  "[CLS]")
        kwargs.setdefault("sep_token",  "[SEP]")
        kwargs.setdefault("mask_token", "[MASK]")

        # se till att specials finns i vokab med rätt id-ordning
        for sp in [kwargs["bos_token"], kwargs["eos_token"],
                   kwargs["unk_token"], kwargs["pad_token"], kwargs["mask_token"]]:
            if sp not in self.vocab:
                self.vocab[sp] = len(self.vocab)
                self.ids_to_tokens[self.vocab[sp]] = sp

        # --- 3. initiera basklassen en gång, utan dubbletter ---------
        super().__init__(**kwargs)

    # ---------- obligatoriska krokar -------------------------------
    def _tokenize(self, text):
        return syllabify_joined(preprocess_greek_line(text))

    def _convert_token_to_id(self, token):
        return self.vocab.get(token, self.vocab[self.unk_token])

    def _convert_id_to_token(self, idx):
        return self.ids_to_tokens.get(idx, self.unk_token)

    # ---------- LÄGG TILL CLS/SEP AUTOMATISKT -----------------------
    def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
        """
        [CLS]  tokens_0  [SEP]      (enkel sekvens)
        [CLS]  tokens_0  [SEP] tokens_1 [SEP]   (par-sekvens)
        """
        if token_ids_1 is None:
            return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
        return ([self.cls_token_id] +
                token_ids_0 +
                [self.sep_token_id] +
                token_ids_1 +
                [self.sep_token_id])

    def get_special_tokens_mask(self,
                                token_ids_0,
                                token_ids_1=None,
                                already_has_special_tokens=False):
        if already_has_special_tokens:
            return [
                1 if tid in (self.cls_token_id, self.sep_token_id) else 0
                for tid in (token_ids_0 + (token_ids_1 or []))
            ]
        if token_ids_1 is None:
            return [1] + [0]*len(token_ids_0) + [1]
        return [1] + [0]*len(token_ids_0) + [1] + [0]*len(token_ids_1) + [1]

    def save_vocabulary(self, save_directory, filename_prefix=None):
        path = Path(save_directory) / (("" if filename_prefix is None else filename_prefix) + "vocab.json")
        path.parent.mkdir(parents=True, exist_ok=True)
        with path.open("w", encoding="utf-8") as f:
            json.dump(
                {str(k): v for k, v in self.vocab.items()},  # <- fix här
                f,
                ensure_ascii=False,
                indent=2
            )
        return (str(path),)
    def get_vocab(self):
        return self.vocab

    @property
    def vocab_size(self):
        return len(self.vocab)