Ericu950 commited on
Commit
14ecfc9
·
verified ·
1 Parent(s): 1989555

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -165
README.md CHANGED
@@ -1,199 +1,113 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
4
  ---
 
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
 
 
 
 
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
 
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
 
162
 
163
- #### Hardware
 
164
 
165
- [More Information Needed]
 
 
 
166
 
167
- #### Software
 
 
 
168
 
169
- [More Information Needed]
 
 
 
 
170
 
171
- ## Citation [optional]
 
 
 
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
 
178
 
179
- **APA:**
 
180
 
181
- [More Information Needed]
 
 
 
 
 
 
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ language:
4
+ - grc
5
  ---
6
+ # SyllaBERTa: A Syllable-Based RoBERTa for Ancient Greek
7
 
8
+ **SyllaBERTa** is an experimental Transformer-based masked language model (MLM) trained on Ancient Greek texts, tokenized at the *syllable* level.
9
+ It is specifically designed to tackle tasks involving prosody, meter, and rhyme.
10
 
11
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
+ # Model Summary
14
+
15
+ | Attribute | Value |
16
+ |:------------------------|:----------------------------------|
17
+ | Base architecture | RoBERTa (custom configuration) |
18
+ | Vocabulary size | 42,042 syllabic tokens |
19
+ | Hidden size | 768 |
20
+ | Number of layers | 12 |
21
+ | Attention heads | 12 |
22
+ | Intermediate size | 3,072 |
23
+ | Max sequence length | 514 |
24
+ | Pretraining objective | Masked Language Modeling (MLM) |
25
+ | Optimizer | AdamW |
26
+ | Loss function | CrossEntropy with 15% token masking probability |
27
 
28
+ ---
29
 
30
+ The tokenizer is a custom subclass of `PreTrainedTokenizer`, operating on syllables rather than words or characters.
31
+ It:
32
+ - Maps each syllable to an ID.
33
+ - Supports diphthong merging and Greek orthographic phenomena.
34
+ - Uses space-separated syllable tokens.
35
 
36
+ **Example tokenization:**
37
 
38
+ Input:
39
+ `Κατέβην χθὲς εἰς Πειραιᾶ`
 
 
 
40
 
41
+ Tokens:
42
+ `['κα', 'τέ', 'βην', 'χθὲ', 'σεἰσ', 'πει', 'ραι', 'ᾶ']`
43
 
44
+ > Observe that words are fused at the syllabic level.
45
 
46
+ ---
47
 
48
+ # Usage Example
49
 
50
+ ```python
51
+ from transformers import AutoTokenizer, AutoModelForMaskedLM
52
 
53
+ tokenizer = AutoTokenizer.from_pretrained("your-path/SyllaBERTa", trust_remote_code=True)
54
+ model = AutoModelForMaskedLM.from_pretrained("your-path/SyllaBERTa", trust_remote_code=True)
55
 
56
+ # Encode a sentence
57
+ text = "Κατέβην χθὲς εἰς Πειραιᾶ μετὰ Γλαύκωνος τοῦ Ἀρίστωνος"
58
+ tokens = tokenizer.tokenize(text)
59
+ print(tokens)
60
 
61
+ # Insert a mask at random
62
+ import random
63
+ tokens[random.randint(0, len(tokens)-1)] = tokenizer.mask_token
64
+ masked_text = tokenizer.convert_tokens_to_string(tokens)
65
 
66
+ # Predict masked token
67
+ inputs = tokenizer(masked_text, return_tensors="pt", padding=True, truncation=True)
68
+ inputs.pop("token_type_ids", None)
69
+ with torch.no_grad():
70
+ outputs = model(**inputs)
71
 
72
+ # Fetch prediction
73
+ logits = outputs.logits
74
+ mask_token_index = (inputs['input_ids'] == tokenizer.mask_token_id).nonzero(as_tuple=True)[1]
75
+ top_tokens = logits[0, mask_token_index].topk(5, dim=-1).indices.squeeze(0)
76
+ predicted = tokenizer.convert_ids_to_tokens(top_tokens.tolist())
77
 
78
+ print("Top predictions:", predicted)
79
+ ```
80
 
81
+ It should print:
82
 
83
+ ```
84
+ Original tokens: ['κα', 'τέ', 'βην', 'χθὲ', 'σεἰσ', 'πει', 'ραι', 'ᾶ', 'με', 'τὰγ', 'λαύ', 'κω', 'νοσ', 'τοῦ', 'ἀ', 'ρίσ', 'τω', 'νοσ']
85
 
86
+ Masked at position 6
87
+ Masked text: κα τέ βην χθὲ σεἰσ πει [MASK] ᾶ με τὰγ λαύ κω νοσ τοῦ ἀ ρίσ τω νοσ
88
 
89
+ Top 5 predictions for masked token:
90
+ ραι (score: 23.12)
91
+ ρα (score: 14.69)
92
+ ραισ (score: 12.63)
93
+ σαι (score: 12.43)
94
+ ρη (score: 12.26)
95
+ ```
96
 
97
+ ---
98
 
99
+ # License
100
 
101
+ MIT License.
102
 
103
+ ---
104
 
105
+ # Authors
106
 
107
+ This work is part of ongoing research by **Eric Cullhed** (Uppsala University) and **Albin Thörn Cleland** (Lund University).
108
 
109
+ ---
110
 
111
+ # Acknowledgements
112
 
113
+ The computations were enabled by resources provided by the National Academic Infrastructure for Supercomputing in Sweden (NAISS), partially funded by the Swedish Research Council through grant agreement no. 2022-06725.