exp: dir: ./exps # directory to save the experiment name: bluearchive # name of the experiment datas: _target_: look2hear.datas.DataModule dataset_type: 1 # 1 or 2. see README for more details sr: 44100 # sample rate segments: 4 # cropped audio in seconds. chunksize = sr * segments num_steps: 1000 # number of samples to be used for training in one epoch. batch_size: 1 # batch size num_workers: 0 # number of workers for data loading pin_memory: true # pin memory for data loading stems: original: original # key for the original audio files, don't change it codec: codec # key for the codec audio files, don't change it train: dir: # dataset where the training audio files are stored - output # list of directories original_format: wav # the format of the original audio files codec_format: mp3 # the format of the codec audio files valid: dir: # dataset where the validation audio files are stored - output_v # list of directories original_format: wav # the format of the original audio files codec_format: mp3 # the format of the codec audio files model: _target_: look2hear.models.apollo.Apollo sr: 44100 # sample rate win: 20 # window size in milliseconds feature_dim: 256 # feature dimension layer: 6 # number of layers discriminator: _target_: look2hear.discriminators.frequencydis.MultiFrequencyDiscriminator nch: 2 window: [32, 64, 128, 256, 512, 1024, 2048] optimizer_g: _target_: torch.optim.AdamW lr: 0.001 weight_decay: 0.01 optimizer_d: _target_: torch.optim.AdamW lr: 0.0001 weight_decay: 0.01 betas: [0.5, 0.99] scheduler_g: _target_: torch.optim.lr_scheduler.StepLR step_size: 2 gamma: 0.98 scheduler_d: _target_: torch.optim.lr_scheduler.StepLR step_size: 2 gamma: 0.98 loss_g: _target_: look2hear.losses.gan_losses.MultiFrequencyGenLoss eps: 1e-8 loss_d: _target_: look2hear.losses.gan_losses.MultiFrequencyDisLoss eps: 1e-8 metrics: _target_: look2hear.losses.MultiSrcNegSDR sdr_type: sisdr # metric for validation, one of [snr, sisdr, sdsdr] system: _target_: look2hear.system.audio_litmodule.AudioLightningModule # comment out the early_topping content below, if you do not wish to have early_topping early_stopping: _target_: pytorch_lightning.callbacks.EarlyStopping monitor: val_loss # metric to monitor patience: 50 # number of epochs with no improvement after which training will be stopped mode: min verbose: true checkpoint: _target_: pytorch_lightning.callbacks.ModelCheckpoint dirpath: ${exp.dir}/${exp.name}/checkpoints monitor: val_loss # metric to monitor mode: min verbose: true save_top_k: 10 # number of best models to save save_last: true # save the last checkpoint filename: '{epoch}-{val_loss:.4f}' logger: _target_: pytorch_lightning.loggers.WandbLogger name: ${exp.name} save_dir: ${exp.dir}/${exp.name}/logs offline: false # if true, the logs will not be uploaded to wandb project: Audio-Restoration trainer: _target_: pytorch_lightning.Trainer devices: [0] # number of GPUs to use max_epochs: 1000 # max number of epochs sync_batchnorm: true default_root_dir: ${exp.dir}/${exp.name}/ accelerator: cuda limit_train_batches: 1.0 fast_dev_run: false precision: bf16 # [16, bf16, 32, 64] enable_model_summary: true