EvgenyBondarenko commited on
Commit
9571494
·
verified ·
1 Parent(s): b0d6e95

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,461 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:77455
8
+ - loss:ContrastiveLoss
9
+ base_model: deepvk/USER-bge-m3
10
+ widget:
11
+ - source_sentence: Исследование антигена хеликобактера (Helicobacter pylori)
12
+ sentences:
13
+ - 'Токсоплазма (Toxoplasma gondii): Антитела: IgG, (количественно). Метод: ИФА'
14
+ - 'Хеликобактер пилори (Helicobacter pylori): Антитела: IgG, (количественно). Метод:
15
+ ИФА'
16
+ - УЗИ молочных желез с эластографией
17
+ - source_sentence: Антитела к ХГЧ ( IgM и IgG)
18
+ sentences:
19
+ - Общий анализ мочи с микроскопией
20
+ - Антитела к тканевой трансглутаминазе, IgG
21
+ - Прием (осмотр, консультация) врача-онколога в клинике
22
+ - source_sentence: Белок общий в суточной моче
23
+ sentences:
24
+ - Уран в моче
25
+ - Белок общий в сыворотке
26
+ - Исследование уровня антигена фактора Виллебранда
27
+ - source_sentence: 'Развернутая диагностика склеродермии (иммуноблот антинуклеарных
28
+ антител: анти-Scl-70, CENT-A, CENT-B, RP11, RP155, Fibrillarin, NOR90, Th/To,
29
+ PM-Scl 75, Ku, PDGFR, Ro-52) и антинуклеарный фактор (АНФ), иммуноблот'
30
+ sentences:
31
+ - 'Токсоплазма (Toxoplasma gondii): Антитела: IgG, (количественно). Метод: ИФА'
32
+ - 'Эпителий кролика, IgE, аллерген - e82. Метод: ImmunoCAP'
33
+ - Антинуклеарные антитела, IgG (анти-Sm, RNP/Sm, SS-A, SS-B, Scl-70, PM-Scl, PCNA,
34
+ dsDNA, CENT-B, Jo-1, к гистонам, к нуклеосомам, Ribo P, AMA-M2), иммуноблот
35
+ - source_sentence: Определение активности амилазы в моче
36
+ sentences:
37
+ - Амилаза общая в суточной моче
38
+ - 'Микоплазма гениталиум (Mycoplasma genitalium): ДНК, (качественно). Метод: реал-тайм
39
+ ПЦР'
40
+ - 'Пенициллин V, IgE, аллерген - c2. Метод: ИФА'
41
+ pipeline_tag: sentence-similarity
42
+ library_name: sentence-transformers
43
+ metrics:
44
+ - cosine_accuracy
45
+ - cosine_accuracy_threshold
46
+ - cosine_f1
47
+ - cosine_f1_threshold
48
+ - cosine_precision
49
+ - cosine_recall
50
+ - cosine_ap
51
+ - cosine_mcc
52
+ model-index:
53
+ - name: SentenceTransformer based on deepvk/USER-bge-m3
54
+ results:
55
+ - task:
56
+ type: binary-classification
57
+ name: Binary Classification
58
+ dataset:
59
+ name: binary eval test
60
+ type: binary-eval-test
61
+ metrics:
62
+ - type: cosine_accuracy
63
+ value: 0.9442084651302907
64
+ name: Cosine Accuracy
65
+ - type: cosine_accuracy_threshold
66
+ value: 0.7781298160552979
67
+ name: Cosine Accuracy Threshold
68
+ - type: cosine_f1
69
+ value: 0.8599519663764634
70
+ name: Cosine F1
71
+ - type: cosine_f1_threshold
72
+ value: 0.7724614143371582
73
+ name: Cosine F1 Threshold
74
+ - type: cosine_precision
75
+ value: 0.8569932685115931
76
+ name: Cosine Precision
77
+ - type: cosine_recall
78
+ value: 0.8629311643319777
79
+ name: Cosine Recall
80
+ - type: cosine_ap
81
+ value: 0.9223179041268369
82
+ name: Cosine Ap
83
+ - type: cosine_mcc
84
+ value: 0.824796426094371
85
+ name: Cosine Mcc
86
+ ---
87
+
88
+ # SentenceTransformer based on deepvk/USER-bge-m3
89
+
90
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [deepvk/USER-bge-m3](https://huggingface.co/deepvk/USER-bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
91
+
92
+ ## Model Details
93
+
94
+ ### Model Description
95
+ - **Model Type:** Sentence Transformer
96
+ - **Base model:** [deepvk/USER-bge-m3](https://huggingface.co/deepvk/USER-bge-m3) <!-- at revision 0cc6cfe48e260fb0474c753087a69369e88709ae -->
97
+ - **Maximum Sequence Length:** 8192 tokens
98
+ - **Output Dimensionality:** 1024 dimensions
99
+ - **Similarity Function:** Cosine Similarity
100
+ <!-- - **Training Dataset:** Unknown -->
101
+ <!-- - **Language:** Unknown -->
102
+ <!-- - **License:** Unknown -->
103
+
104
+ ### Model Sources
105
+
106
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
107
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
108
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
109
+
110
+ ### Full Model Architecture
111
+
112
+ ```
113
+ SentenceTransformer(
114
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
115
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
116
+ (2): Normalize()
117
+ )
118
+ ```
119
+
120
+ ## Usage
121
+
122
+ ### Direct Usage (Sentence Transformers)
123
+
124
+ First install the Sentence Transformers library:
125
+
126
+ ```bash
127
+ pip install -U sentence-transformers
128
+ ```
129
+
130
+ Then you can load this model and run inference.
131
+ ```python
132
+ from sentence_transformers import SentenceTransformer
133
+
134
+ # Download from the 🤗 Hub
135
+ model = SentenceTransformer("EvgenyBondarenko/BIEncoderRanker")
136
+ # Run inference
137
+ sentences = [
138
+ 'Определение активности амилазы в моче',
139
+ 'Амилаза общая в суточной моче',
140
+ 'Пенициллин V, IgE, аллерген - c2. Метод: ИФА',
141
+ ]
142
+ embeddings = model.encode(sentences)
143
+ print(embeddings.shape)
144
+ # [3, 1024]
145
+
146
+ # Get the similarity scores for the embeddings
147
+ similarities = model.similarity(embeddings, embeddings)
148
+ print(similarities.shape)
149
+ # [3, 3]
150
+ ```
151
+
152
+ <!--
153
+ ### Direct Usage (Transformers)
154
+
155
+ <details><summary>Click to see the direct usage in Transformers</summary>
156
+
157
+ </details>
158
+ -->
159
+
160
+ <!--
161
+ ### Downstream Usage (Sentence Transformers)
162
+
163
+ You can finetune this model on your own dataset.
164
+
165
+ <details><summary>Click to expand</summary>
166
+
167
+ </details>
168
+ -->
169
+
170
+ <!--
171
+ ### Out-of-Scope Use
172
+
173
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
174
+ -->
175
+
176
+ ## Evaluation
177
+
178
+ ### Metrics
179
+
180
+ #### Binary Classification
181
+
182
+ * Dataset: `binary-eval-test`
183
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
184
+
185
+ | Metric | Value |
186
+ |:--------------------------|:-----------|
187
+ | cosine_accuracy | 0.9442 |
188
+ | cosine_accuracy_threshold | 0.7781 |
189
+ | cosine_f1 | 0.86 |
190
+ | cosine_f1_threshold | 0.7725 |
191
+ | cosine_precision | 0.857 |
192
+ | cosine_recall | 0.8629 |
193
+ | **cosine_ap** | **0.9223** |
194
+ | cosine_mcc | 0.8248 |
195
+
196
+ <!--
197
+ ## Bias, Risks and Limitations
198
+
199
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
200
+ -->
201
+
202
+ <!--
203
+ ### Recommendations
204
+
205
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
206
+ -->
207
+
208
+ ## Training Details
209
+
210
+ ### Training Dataset
211
+
212
+ #### Unnamed Dataset
213
+
214
+ * Size: 77,455 training samples
215
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
216
+ * Approximate statistics based on the first 1000 samples:
217
+ | | sentence1 | sentence2 | label |
218
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
219
+ | type | string | string | int |
220
+ | details | <ul><li>min: 5 tokens</li><li>mean: 22.98 tokens</li><li>max: 100 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 22.68 tokens</li><li>max: 87 tokens</li></ul> | <ul><li>0: ~80.00%</li><li>1: ~20.00%</li></ul> |
221
+ * Samples:
222
+ | sentence1 | sentence2 | label |
223
+ |:-------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
224
+ | <code>Посев с кожи на аэробную микрофлору и определение чувствительности к антимикробным препаратам</code> | <code>Посев кожи на аэробную и факультативно-анаэробную флору: Определение чувствительности к антибиотикам. Метод: культуральный</code> | <code>1</code> |
225
+ | <code>Посев с кожи на аэробную микрофлору и определение чувствительности к антимикробным препаратам</code> | <code>Посев отделяемого с кожи/раны на аэробную и факультативно-анаэробную флору: Определение чувствительности к антибиотикам. Метод: культуральный</code> | <code>0</code> |
226
+ | <code>Посев с кожи на аэробную микрофлору и определение чувствительности к антимикробным препаратам</code> | <code>Посев отделяемого из глаза на аэробную и факультативно-анаэробную флору: Определение чувствительности к антибиотикам. Метод: культуральный</code> | <code>0</code> |
227
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
228
+ ```json
229
+ {
230
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
231
+ "margin": 0.5,
232
+ "size_average": true
233
+ }
234
+ ```
235
+
236
+ ### Evaluation Dataset
237
+
238
+ #### Unnamed Dataset
239
+
240
+ * Size: 33,195 evaluation samples
241
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
242
+ * Approximate statistics based on the first 1000 samples:
243
+ | | sentence1 | sentence2 | label |
244
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
245
+ | type | string | string | int |
246
+ | details | <ul><li>min: 6 tokens</li><li>mean: 21.52 tokens</li><li>max: 92 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 23.61 tokens</li><li>max: 140 tokens</li></ul> | <ul><li>0: ~80.00%</li><li>1: ~20.00%</li></ul> |
247
+ * Samples:
248
+ | sentence1 | sentence2 | label |
249
+ |:---------------------------------------------|:-------------------------------------------------------------|:---------------|
250
+ | <code>транскраниальная допплерография</code> | <code>УЗИ сосудов головного мозга</code> | <code>1</code> |
251
+ | <code>транскраниальная допплерография</code> | <code>УЗИ сосудов глаза (доплерография)</code> | <code>0</code> |
252
+ | <code>транскраниальная допплерография</code> | <code>Магнитно-резонансная томография головного мозга</code> | <code>0</code> |
253
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
254
+ ```json
255
+ {
256
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
257
+ "margin": 0.5,
258
+ "size_average": true
259
+ }
260
+ ```
261
+
262
+ ### Training Hyperparameters
263
+ #### Non-Default Hyperparameters
264
+
265
+ - `eval_strategy`: steps
266
+ - `per_device_train_batch_size`: 32
267
+ - `per_device_eval_batch_size`: 32
268
+ - `learning_rate`: 2e-05
269
+ - `num_train_epochs`: 1
270
+ - `warmup_ratio`: 0.1
271
+ - `save_only_model`: True
272
+ - `fp16`: True
273
+ - `load_best_model_at_end`: True
274
+
275
+ #### All Hyperparameters
276
+ <details><summary>Click to expand</summary>
277
+
278
+ - `overwrite_output_dir`: False
279
+ - `do_predict`: False
280
+ - `eval_strategy`: steps
281
+ - `prediction_loss_only`: True
282
+ - `per_device_train_batch_size`: 32
283
+ - `per_device_eval_batch_size`: 32
284
+ - `per_gpu_train_batch_size`: None
285
+ - `per_gpu_eval_batch_size`: None
286
+ - `gradient_accumulation_steps`: 1
287
+ - `eval_accumulation_steps`: None
288
+ - `torch_empty_cache_steps`: None
289
+ - `learning_rate`: 2e-05
290
+ - `weight_decay`: 0.0
291
+ - `adam_beta1`: 0.9
292
+ - `adam_beta2`: 0.999
293
+ - `adam_epsilon`: 1e-08
294
+ - `max_grad_norm`: 1.0
295
+ - `num_train_epochs`: 1
296
+ - `max_steps`: -1
297
+ - `lr_scheduler_type`: linear
298
+ - `lr_scheduler_kwargs`: {}
299
+ - `warmup_ratio`: 0.1
300
+ - `warmup_steps`: 0
301
+ - `log_level`: passive
302
+ - `log_level_replica`: warning
303
+ - `log_on_each_node`: True
304
+ - `logging_nan_inf_filter`: True
305
+ - `save_safetensors`: True
306
+ - `save_on_each_node`: False
307
+ - `save_only_model`: True
308
+ - `restore_callback_states_from_checkpoint`: False
309
+ - `no_cuda`: False
310
+ - `use_cpu`: False
311
+ - `use_mps_device`: False
312
+ - `seed`: 42
313
+ - `data_seed`: None
314
+ - `jit_mode_eval`: False
315
+ - `use_ipex`: False
316
+ - `bf16`: False
317
+ - `fp16`: True
318
+ - `fp16_opt_level`: O1
319
+ - `half_precision_backend`: auto
320
+ - `bf16_full_eval`: False
321
+ - `fp16_full_eval`: False
322
+ - `tf32`: None
323
+ - `local_rank`: 0
324
+ - `ddp_backend`: None
325
+ - `tpu_num_cores`: None
326
+ - `tpu_metrics_debug`: False
327
+ - `debug`: []
328
+ - `dataloader_drop_last`: False
329
+ - `dataloader_num_workers`: 0
330
+ - `dataloader_prefetch_factor`: None
331
+ - `past_index`: -1
332
+ - `disable_tqdm`: False
333
+ - `remove_unused_columns`: True
334
+ - `label_names`: None
335
+ - `load_best_model_at_end`: True
336
+ - `ignore_data_skip`: False
337
+ - `fsdp`: []
338
+ - `fsdp_min_num_params`: 0
339
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
340
+ - `fsdp_transformer_layer_cls_to_wrap`: None
341
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
342
+ - `deepspeed`: None
343
+ - `label_smoothing_factor`: 0.0
344
+ - `optim`: adamw_torch
345
+ - `optim_args`: None
346
+ - `adafactor`: False
347
+ - `group_by_length`: False
348
+ - `length_column_name`: length
349
+ - `ddp_find_unused_parameters`: None
350
+ - `ddp_bucket_cap_mb`: None
351
+ - `ddp_broadcast_buffers`: False
352
+ - `dataloader_pin_memory`: True
353
+ - `dataloader_persistent_workers`: False
354
+ - `skip_memory_metrics`: True
355
+ - `use_legacy_prediction_loop`: False
356
+ - `push_to_hub`: False
357
+ - `resume_from_checkpoint`: None
358
+ - `hub_model_id`: None
359
+ - `hub_strategy`: every_save
360
+ - `hub_private_repo`: None
361
+ - `hub_always_push`: False
362
+ - `gradient_checkpointing`: False
363
+ - `gradient_checkpointing_kwargs`: None
364
+ - `include_inputs_for_metrics`: False
365
+ - `include_for_metrics`: []
366
+ - `eval_do_concat_batches`: True
367
+ - `fp16_backend`: auto
368
+ - `push_to_hub_model_id`: None
369
+ - `push_to_hub_organization`: None
370
+ - `mp_parameters`:
371
+ - `auto_find_batch_size`: False
372
+ - `full_determinism`: False
373
+ - `torchdynamo`: None
374
+ - `ray_scope`: last
375
+ - `ddp_timeout`: 1800
376
+ - `torch_compile`: False
377
+ - `torch_compile_backend`: None
378
+ - `torch_compile_mode`: None
379
+ - `dispatch_batches`: None
380
+ - `split_batches`: None
381
+ - `include_tokens_per_second`: False
382
+ - `include_num_input_tokens_seen`: False
383
+ - `neftune_noise_alpha`: None
384
+ - `optim_target_modules`: None
385
+ - `batch_eval_metrics`: False
386
+ - `eval_on_start`: False
387
+ - `use_liger_kernel`: False
388
+ - `eval_use_gather_object`: False
389
+ - `average_tokens_across_devices`: False
390
+ - `prompts`: None
391
+ - `batch_sampler`: batch_sampler
392
+ - `multi_dataset_batch_sampler`: proportional
393
+
394
+ </details>
395
+
396
+ ### Training Logs
397
+ | Epoch | Step | Training Loss | Validation Loss | binary-eval-test_cosine_ap |
398
+ |:------:|:----:|:-------------:|:---------------:|:--------------------------:|
399
+ | 0.2065 | 500 | 0.0125 | 0.0096 | 0.8634 |
400
+ | 0.4131 | 1000 | 0.0094 | 0.0082 | 0.8940 |
401
+ | 0.6196 | 1500 | 0.0086 | 0.0073 | 0.9150 |
402
+ | 0.8261 | 2000 | 0.0078 | 0.0068 | 0.9223 |
403
+
404
+
405
+ ### Framework Versions
406
+ - Python: 3.10.12
407
+ - Sentence Transformers: 3.4.1
408
+ - Transformers: 4.49.0
409
+ - PyTorch: 2.6.0+cu118
410
+ - Accelerate: 1.4.0
411
+ - Datasets: 3.3.2
412
+ - Tokenizers: 0.21.0
413
+
414
+ ## Citation
415
+
416
+ ### BibTeX
417
+
418
+ #### Sentence Transformers
419
+ ```bibtex
420
+ @inproceedings{reimers-2019-sentence-bert,
421
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
422
+ author = "Reimers, Nils and Gurevych, Iryna",
423
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
424
+ month = "11",
425
+ year = "2019",
426
+ publisher = "Association for Computational Linguistics",
427
+ url = "https://arxiv.org/abs/1908.10084",
428
+ }
429
+ ```
430
+
431
+ #### ContrastiveLoss
432
+ ```bibtex
433
+ @inproceedings{hadsell2006dimensionality,
434
+ author={Hadsell, R. and Chopra, S. and LeCun, Y.},
435
+ booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
436
+ title={Dimensionality Reduction by Learning an Invariant Mapping},
437
+ year={2006},
438
+ volume={2},
439
+ number={},
440
+ pages={1735-1742},
441
+ doi={10.1109/CVPR.2006.100}
442
+ }
443
+ ```
444
+
445
+ <!--
446
+ ## Glossary
447
+
448
+ *Clearly define terms in order to be accessible across audiences.*
449
+ -->
450
+
451
+ <!--
452
+ ## Model Card Authors
453
+
454
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
455
+ -->
456
+
457
+ <!--
458
+ ## Model Card Contact
459
+
460
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
461
+ -->
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "XLMRobertaModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "classifier_dropout": null,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 8194,
16
+ "model_type": "xlm-roberta",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 24,
19
+ "output_past": true,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.50.0",
24
+ "type_vocab_size": 1,
25
+ "use_cache": true,
26
+ "vocab_size": 46166
27
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.50.0",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:747b6ff0c5efba28dfbbcd648ccd6d66446a9c0d5e29c1e04948ecf616dbfcf0
3
+ size 1436151696
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "46165": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": true,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "max_length": 512,
51
+ "model_max_length": 8192,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "sp_model_kwargs": {},
58
+ "stride": 0,
59
+ "tokenizer_class": "XLMRobertaTokenizer",
60
+ "truncation_side": "right",
61
+ "truncation_strategy": "longest_first",
62
+ "unk_token": "<unk>"
63
+ }