--- datasets: - FBK-MT/mosel - facebook/covost2 - openslr/librispeech_asr - facebook/voxpopuli language: - en - it license: cc-by-4.0 metrics: - wer tags: - speech - speech recognition - ASR pipeline_tag: automatic-speech-recognition library_name: transformers --- # FAMA-small-asr
FAMA
## Table of Contents 1. [Overview](#overview) 2. [Usage](#Usage) 3. [Results](#Results) 4. [License](#license) 5. [Citation](#citation) ## Overview FAMA is the first family of large-scale open-science SFMs for English and Italian trained on [over 150k hours of exclusively open-source(OS)-compliant speech data](https://huggingface.co/datasets/FBK-MT/fama-data). FAMA models achieve [remarkable results](#results), with ASR and ST improvements on average across languages compared to OWSM, and is competitive in terms of ASR performance with the Whisper model family while being up to 8 times faster. All the artifacts used for realizing FAMA models, including codebase, datasets, and models themself are [released under OS-compliant licenses](#license), promoting a more responsible creation of models in our community. It is available in 2 sizes, with 2 variants for ASR only: - [FAMA-small](https://huggingface.co/FBK-MT/fama-small) - 475 million parameters - [FAMA-medium](https://huggingface.co/FBK-MT/fama-medium) - 878 million parameters - [FAMA-small-asr](https://huggingface.co/FBK-MT/fama-small-asr) - 475 million parameters - [FAMA-medium-asr](https://huggingface.co/FBK-MT/fama-medium-asr) - 878 million parameters For further details, please refer to the paper [FAMA: The First Large-Scale Open-Science Speech Foundation Model for English and Italian](https://huggingface.co/papers/2505.22759). The code is available in the [Github repository](https://github.com/hlt-mt/FBK-fairseq). ## Usage FAMA models are supported in Hugging Face 🤗 Transformers. To run the model, first install the Transformers and Datasets libraries. ```sh pip install transformers==4.48.1 datasets ``` To perform a single inference on a sample audio file using the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline) class, run: ```python import torch from transformers import AutoProcessor, pipeline from datasets import load_dataset model_id = "FBK-MT/fama-small-asr" processor = AutoProcessor.from_pretrained(model_id) device = "cuda:0" if torch.cuda.is_available() else "cpu" tgt_lang = "en" # Force the model to start with the language tag lang_tag = "".format(tgt_lang) lang_tag_id = processor.tokenizer.convert_tokens_to_ids(lang_tag) generate_kwargs = {"num_beams": 5, "no_repeat_ngram_size": 5, "forced_bos_token_id": lang_tag_id} pipe = pipeline( "automatic-speech-recognition", model=model_id, trust_remote_code=True, torch_dtype=torch.float32, device=device, return_timestamps=False, generate_kwargs=generate_kwargs ) dataset = load_dataset("distil-whisper/librispeech_asr_dummy", "clean", split="validation") sample = dataset[0]["audio"] result = pipe(sample) print(result["text"]) ``` Where `tgt_lang` is the target language (either `en` or `it`). The source languages has not to be specified. To run the inference on a local audio file `audio.wav`, call the pipeline with: ```python result = pipe("audio.wav") ``` To perform a batch inference with size `batch_size`, run: ```python result = pipe(["audio_1.wav", "audio_2.wav"], batch_size=2) ``` For the inference, we suggest converting the audio files in wav format with 16kHz sampling rate and 1 channel. ## Results We evaluate FAMA-ASR on ASR using popular open-source datasets such as CommonVoice, Multilingual LibriSpeech (MLS), and VoxPopuli. The metric used is WER (↓). We also benchmark FAMA in terms of computational time and maximum batch size supported on HuggingFace against Whisper and SeamlessM4T models. The metric used is the inverse real time factor (xRTF). **Key highlights:** - FAMA achieves up to 4.2 WER improvement on average across languages compared to OWSM v3.1 - FAMA is up to 8 times faster than Whisper large-v3 while achieving comparable performance ### Automatic Speech Recogniton (ASR) | ***Model/Dataset WER (↓)*** | **CommonVoice**-*en* | **CommonVoice**-*it* | **MLS**-*en* | **MLS**-*it* | **VoxPopuli**-*en* | **VoxPopuli**-*it* | **AVG**-*en* | **AVG**-*it* | |-----------------------------------------|---------|---------|---------|---------|---------|----------|---------|----------| | Whisper *medium* | 14.5 | 10.4 | 14.2 | 15.9 | 8.1 | 26.8 | 12.3 | 17.7 | | Whisper *large-v3* | 11.2 | 6.5 | **5.0** | 8.8 | 7.1 | 18.8 | 7.8 | 11.4 | | OWSM v3.1 *medium* | 11.9 | 12.5 | 6.6 | 19.3 | 8.4 | 24.0 | 9.0 | 18.6 | | SeamlessM4T *medium* | 10.7 | 7.8 | 8.8 | 11.3 | 10.2 | 18.2 | 9.9 | 12.4 | | SeamlessM4T *v2-large* | **7.7** | **5.0** | 6.4 | **8.5** | **6.9** | 16.6 | **7.0** | **10.0** | | FAMA-ASR *small* | 13.8 | 8.9 | 5.8 | 12.6 | 7.2 | 15.7 | 8.9 | 12.4 | | FAMA-ASR *medium* | 11.7 | 7.1 | 5.1 | 12.2 | 7.0 | 15.9 | 7.9 | 11.7 | | FAMA *small* | 13.7 | 8.6 | 5.8 | 12.8 | 7.3 | **15.6** | 8.9 | 12.3 | | FAMA *medium* | 11.5 | 7.0 | 5.2 | 13.9 | 7.2 | 15.9 | 8.0 | 12.3 | ### Computational Time and Maximum Batch Size | ***Model*** | ***Batch Size*** | ***xRTF en (↑)*** | ***xRTF it (↑)*** | ***xRTF AVG (↑)*** | |------------------------|------------|-------------|-------------|--------------| | Whisper *medium* | 8 | 13.3 | 10.9 | 12.1 | | Whisper *large-v3* | 4 | 7.9 | 6.5 | 7.2 | | SeamlessM4T *medium* | 2 | 28.5 | 26.2 | 27.4 | | SeamlessM4T *v2-large* | 2 | 13.7 | 13.3 | 13.5 | | FAMA *small* | 16 | **57.4** | **56.0** | **56.7** | | FAMA *medium* | 8 | 39.5 | 41.2 | 40.4 | ## License We release the FAMA model weights, and training data under the CC-BY 4.0 license. The training data can be found in [FAMA Training Data](https://huggingface.co/datasets/FBK-MT/fama-data). The [original FBK-fairseq codebase](https://github.com/hlt-mt/FBK-fairseq) used to train the model is released under the Apache 2.0 license. ## Citation If you use FAMA in your work, please cite: ``` @misc{papi2025fama, title={FAMA: The First Large-Scale Open-Science Speech Foundation Model for English and Italian}, author={Sara Papi and Marco Gaido and Luisa Bentivogli and Alessio Brutti and Mauro Cettolo and Roberto Gretter and Marco Matassoni and Mohamed Nabih and Matteo Negri}, year={2025} } ```