File size: 9,735 Bytes
b08a6ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Standard library imports (if any)
import os
# Third-party library imports
import torch
import torch.nn as nn
from transformers import BertForSequenceClassification, BertTokenizerFast
import torch.optim as optim
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, TensorDataset
# Local application/library s
from FallingPlanet.orbit.utils.Metrics import AdvancedMetrics
from FallingPlanet.orbit.utils.Metrics import TinyEmoBoard
import torchmetrics
from tqdm import tqdm
from FallingPlanet.orbit.utils.callbacks import EarlyStopping
from FallingPlanet.orbit.models import BertFineTuneTiny
from itertools import islice

class Classifier:
    def __init__(self,model, device, num_labels, log_dir):
        self.model = model.to(device)
        self.device = device
        self.loss_criterion = CrossEntropyLoss()
        self.writer = TinyEmoBoard(log_dir=log_dir)
        
        
        self.accuracy = torchmetrics.Accuracy(num_classes=num_labels, task='multiclass').to(device)
        self.precision = torchmetrics.Precision(num_classes=num_labels, task='multiclass').to(device)
        self.recall = torchmetrics.Recall(num_classes=num_labels, task='multiclass').to(device)
        self.f1= torchmetrics.F1Score(num_classes=num_labels, task = 'multiclass').to(device)
        self.mcc = torchmetrics.MatthewsCorrCoef(num_classes=num_labels,task = 'multiclass').to(device)
        self.top2_acc = torchmetrics.Accuracy(top_k=2, num_classes=num_labels,task='multiclass').to(device)
        
    def compute_loss(self,logits, labels):
        loss = self.loss_criterion(logits,labels)
        return loss
    
    def train_step(self, dataloader, optimizer, epoch):
        self.model.train()
        total_loss = 0.0
        # Initialize metric accumulators
        total_accuracy = 0.0
        total_precision = 0.0
        total_recall = 0.0
        total_f1 = 0.0
        total_mcc = 0.0

        pbar = tqdm(dataloader, desc=f"Training Epoch {epoch}")

        for batch in pbar:
            input_ids, attention_masks, labels = [x.to(self.device) for x in batch]

            optimizer.zero_grad()
            outputs = self.model(input_ids, attention_masks)
            loss = self.compute_loss(outputs, labels)
            loss.backward()
            optimizer.step()


            total_loss += loss.item()

            # Update and accumulate metrics
            total_accuracy += self.accuracy(outputs.argmax(dim=1), labels).item()
            total_precision += self.precision(outputs.argmax(dim=1), labels).item()
            total_recall += self.recall(outputs.argmax(dim=1), labels).item()
            total_f1 += self.f1(outputs, labels).item()
            total_mcc += self.mcc(outputs.argmax(dim=1), labels).item()

            # Update tqdm description with current loss and metrics
            pbar.set_postfix(loss=total_loss / (pbar.n + 1))

        # Calculate averages
        num_batches = len(dataloader)
        avg_accuracy = total_accuracy / num_batches
        avg_precision = total_precision / num_batches
        avg_recall = total_recall / num_batches
        avg_f1 = total_f1 / num_batches
        avg_mcc = total_mcc / num_batches
        avg_train_loss = total_loss / num_batches

        # Log metrics to TensorBoard
        self.writer.log_scalar('Training/Average Loss', avg_train_loss, epoch)
        self.writer.log_scalar('Training/Average Accuracy', avg_accuracy, epoch)
        self.writer.log_scalar('Training/Average Precision', avg_precision, epoch)
        self.writer.log_scalar('Training/Average Recall', avg_recall, epoch)
        self.writer.log_scalar('Training/Average F1', avg_f1, epoch)
        self.writer.log_scalar('Training/Average MCC', avg_mcc, epoch)

        pbar.close()


    def val_step(self, dataloader, epoch):
        self.model.eval()
        total_loss = 0.0
        # Initialize metric accumulators
        total_accuracy = 0.0
        total_precision = 0.0
        total_recall = 0.0
        total_f1 = 0.0
        total_mcc = 0.0

        with torch.no_grad():
            pbar = tqdm(dataloader, desc=f"Validation Epoch {epoch}")
            for batch in pbar:
                input_ids, attention_masks, labels = [x.to(self.device) for x in batch]
                
                outputs = self.model(input_ids, attention_masks)
                loss = self.compute_loss(outputs, labels)

                total_loss += loss.item()

                # Update and accumulate metrics
                total_accuracy += self.accuracy(outputs.argmax(dim=1), labels).item()
                total_precision += self.precision(outputs.argmax(dim=1), labels).item()
                total_recall += self.recall(outputs.argmax(dim=1), labels).item()
                total_f1 += self.f1(outputs, labels).item()
                total_mcc += self.mcc(outputs.argmax(dim=1), labels).item()

                # Update tqdm description with current loss and metrics
                pbar.set_postfix(loss=total_loss / (pbar.n + 1))

        # Calculate averages
        num_batches = len(dataloader)
        avg_val_loss = total_loss / num_batches
        avg_accuracy = total_accuracy / num_batches
        avg_precision = total_precision / num_batches
        avg_recall = total_recall / num_batches
        avg_f1 = total_f1 / num_batches
        avg_mcc = total_mcc / num_batches

        # Log metrics to TensorBoard
        self.writer.log_scalar('Validation/Average Loss', avg_val_loss, epoch)
        self.writer.log_scalar('Validation/Average Accuracy', avg_accuracy, epoch)
        self.writer.log_scalar('Validation/Average Precision', avg_precision, epoch)
        self.writer.log_scalar('Validation/Average Recall', avg_recall, epoch)
        self.writer.log_scalar('Validation/Average F1', avg_f1, epoch)
        self.writer.log_scalar('Validation/Average MCC', avg_mcc, epoch)

        pbar.close()
        return avg_val_loss
 
        
    def test_step(self, dataloader):
        self.model.eval()
        # Initialize aggregated metrics
        aggregated_metrics = {
            'total_accuracy': 0.0,
            'total_precision': 0.0,
            'total_recall': 0.0,
            'total_f1': 0.0,
            'total_mcc': 0.0,
            'total_top_2_acc': 0.0
        }

        with torch.no_grad():
            pbar = tqdm(dataloader, desc="Testing")
            for batch in pbar:
                input_ids, attention_masks, labels = [x.to(self.device) for x in batch]
                outputs = self.model(input_ids, attention_masks)

                # Update and accumulate metrics
                aggregated_metrics['total_accuracy'] += self.accuracy(outputs.argmax(dim=1), labels).item()
                aggregated_metrics['total_precision'] += self.precision(outputs.argmax(dim=1), labels).item()
                aggregated_metrics['total_recall'] += self.recall(outputs.argmax(dim=1), labels).item()
                aggregated_metrics['total_f1'] += self.f1(outputs, labels).item()
                aggregated_metrics['total_mcc'] += self.mcc(outputs.argmax(dim=1), labels).item()
                aggregated_metrics['total_top_2_acc'] += self.top2_acc(outputs, labels).item()

                # Update tqdm description with current metrics
                pbar.set_postfix({
                    'Accuracy': aggregated_metrics['total_accuracy'] / (pbar.n + 1),
                    'MCC': aggregated_metrics['total_mcc'] / (pbar.n + 1)
                })

        # Calculate average metrics
        num_batches = len(dataloader)
        for key in aggregated_metrics:
            aggregated_metrics[key] /= num_batches

        return aggregated_metrics


    
def main(mode = "full"):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
 
    emotion_data_train = torch.load(r"E:\text_datasets\saved\train_emotion_no_batch_no_batch.pt")
    emotion_data_val = torch.load(r"E:\text_datasets\saved\val_emotion_no_batch_no_batch.pt")
    emotion_data_test = torch.load(r"E:\text_datasets\saved\test_emotion_no_batch_no_batch.pt")
    
    

   
    
    
    dataloader_train = DataLoader(emotion_data_train, batch_size=512, shuffle=True)
    dataloader_val = DataLoader(emotion_data_val, batch_size=512)
    dataloader_test = DataLoader(emotion_data_test, batch_size=512)
 
    NUM_EMOTION_LABELS = 9
    LOG_DIR = r"EmoBERTv2-tiny\logging"
    

    model = BertFineTuneTiny(num_tasks=1, num_labels=[9])
    optimizer = torch.optim.AdamW(model.parameters(),lr =1e-5, weight_decay=1e-6)
    classifier = Classifier(model, device,  NUM_EMOTION_LABELS, LOG_DIR)

    if mode in ["train", "full"]:
        # Your training logic here
        early_stopping = EarlyStopping(patience=50, min_delta=1e-8)  # Initialize Early Stopping
        num_epochs = 75
        for epoch in range(num_epochs):
            classifier.train_step(dataloader_train, optimizer, epoch)
            val_loss = classifier.val_step(dataloader_val, epoch)

            if early_stopping.step(val_loss, classifier.model):
                print("Early stopping triggered. Restoring best model weights.")
                classifier.model.load_state_dict(early_stopping.best_state)
                break

        if early_stopping.best_state is not None:
            torch.save(early_stopping.best_state, 'EmoBERTv2-tiny.pth')

    if mode in ["test", "full"]:
        if os.path.exists('EmoBERTv2-tiny.pth'):
            classifier.model.load_state_dict(torch.load('EmoBERTv2-tiny.pth'))
    # Assuming you have test_step implemented in classifier
    test_results = classifier.test_step(dataloader_test)
    print("Test Results:", test_results)


if __name__ == "__main__":
    main(mode="full")  # or "train" or "test"