File size: 1,534 Bytes
269b323
 
71fe7fb
 
 
 
 
 
 
269b323
 
71fe7fb
 
269b323
71fe7fb
269b323
71fe7fb
 
 
 
 
 
 
 
 
 
269b323
71fe7fb
269b323
71fe7fb
269b323
71fe7fb
269b323
71fe7fb
269b323
71fe7fb
269b323
71fe7fb
269b323
71fe7fb
269b323
71fe7fb
269b323
71fe7fb
 
 
 
 
 
 
 
 
 
 
 
269b323
71fe7fb
269b323
71fe7fb
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
model-index:
- name: w2v-bert-2.0_swahili_alpha
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v-bert-2.0_swahili_alpha

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.1048
- eval_cer: 0.0237
- eval_wer: 0.1083
- eval_runtime: 174.2236
- eval_samples_per_second: 28.567
- eval_steps_per_second: 3.576
- epoch: 2.1958
- step: 2400

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 800
- num_epochs: 16
- mixed_precision_training: Native AMP

### Framework versions

- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.1