File size: 4,611 Bytes
b60b955
 
512baa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b60b955
512baa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
---
license: apache-2.0
base_model: Felladrin/Minueza-32M-Base
pipeline_tag: text-generation
language:
  - en
datasets:
  - HuggingFaceH4/ultrachat_200k
  - Felladrin/ChatML-ultrachat_200k
widget:
  - messages:
      - role: system
        content: >-
          You are a career counselor. The user will provide you with an individual looking for guidance in their professional life, and your task is to assist them in determining what careers they are most suited for based on their skills, interests, and experience. You should also conduct research into the various options available, explain the job market trends in different industries, and advice on which qualifications would be beneficial for pursuing particular fields.
      - role: user
        content: Heya!
      - role: assistant
        content: Hi! How may I help you?
      - role: user
        content: >-
          I am interested in developing a career in software engineering. What
          would you recommend me to do?
  - messages:
      - role: system
        content: You are a highly knowledgeable assistant. Help the user as much as you can.
      - role: user
        content: How I can become a healthier person?
  - messages:
      - role: system
        content: You are a helpful assistant who gives creative responses.
      - role: user
        content: Write the specs of a game about mages in a fantasy world.
  - messages:
      - role: system
        content: You are a helpful assistant who answers user's questions with details.
      - role: user
        content: Tell me about the pros and cons of social media.
  - messages:
      - role: system
        content: You are a helpful assistant who answers user's questions with details and curiosity.
      - role: user
        content: What are some potential applications for quantum computing?
inference:
  parameters:
    max_new_tokens: 250
    do_sample: true
    temperature: 0.65
    top_p: 0.55
    top_k: 35
    repetition_penalty: 1.176
---

# Minueza-32M-UltraChat: A chat model with 32 million parameters

- Base model: [Felladrin/Minueza-32M-Base](https://huggingface.co/Felladrin/Minueza-32M-Base)
- Dataset: [[ChatML](https://huggingface.co/datasets/Felladrin/ChatML-ultrachat_200k)] [HuggingFaceH4/ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
- License: [Apache License 2.0](https://huggingface.co/Felladrin/Minueza-32M-UltraChat/resolve/main/license.txt)
- Availability in other ML formats:
  - GGUF: [Felladrin/gguf-Minueza-32M-UltraChat](https://huggingface.co/Felladrin/gguf-Minueza-32M-UltraChat)
  - ONNX: [Felladrin/onnx-Minueza-32M-UltraChat](https://huggingface.co/Felladrin/onnx-Minueza-32M-UltraChat)

## Recommended Prompt Format

```
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{user_message}<|im_end|>
<|im_start|>assistant
```

## Recommended Inference Parameters

```yml
do_sample: true
temperature: 0.65
top_p: 0.55
top_k: 35
repetition_penalty: 1.176
```

## Usage Example

```python
from transformers import pipeline

generate = pipeline("text-generation", "Felladrin/Minueza-32M-UltraChat")

messages = [
    {
        "role": "system",
        "content": "You are a helpful assistant who answers the user's questions with details and curiosity.",
    },
    {
        "role": "user",
        "content": "What are some potential applications for quantum computing?",
    },
]

prompt = generate.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

output = generate(
    prompt,
    max_new_tokens=256,
    do_sample=True,
    temperature=0.65,
    top_k=35,
    top_p=0.55,
    repetition_penalty=1.176,
)

print(output[0]["generated_text"])
```

## How it was trained

This model was trained with [SFTTrainer](https://huggingface.co/docs/trl/main/en/sft_trainer) using the following settings:

| Hyperparameter         | Value                                         |
| :--------------------- | :-------------------------------------------- |
| Learning rate          | 2e-5                                          |
| Total train batch size | 16                                            |
| Max. sequence length   | 2048                                          |
| Weight decay           | 0                                             |
| Warmup ratio           | 0.1                                           |
| Optimizer              | Adam with betas=(0.9,0.999) and epsilon=1e-08 |
| Scheduler              | cosine                                        |
| Seed                   | 42                                            |