File size: 1,716 Bytes
fe00eb8 8a0742e fe00eb8 8a0742e 2479b01 8a0742e 004e064 6df2bcf 004e064 12dde5c 004e064 8a0742e 004e064 8a0742e 004e064 8a0742e 004e064 8a0742e 004e064 8a0742e 004e064 fe00eb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
---
pipeline_tag: image-to-3d
license: apache-2.0
---
# GeoSVR: Taming Sparse Voxels for Geometrically Accurate Surface Reconstruction
This repository provides the reconstructed meshes and resources for the paper [GeoSVR: Taming Sparse Voxels for Geometrically Accurate Surface Reconstruction](https://huggingface.co/papers/2509.18090), which presents an explicit voxel-based framework for accurate, detailed, and complete surface reconstruction.
* [๐ Paper](https://huggingface.co/papers/2509.18090)
* [๐ Project Page](https://fictionarry.github.io/GeoSVR-project/)
* [๐ป Code](https://github.com/Fictionarry/GeoSVR)
## Reconstruction on Tanks and Temples and DTU Datasets
Here we provide the reconstructed meshes of the paper's experiments from GeoSVR.
You can browse all the released meshes at:
- `meshes_complete/`: The complete meshes of the two datasets.
- `DTU_meshes_eval/`: The meshes on DTU datasets, with strict filtering strategy for evaluation.
- `TnT_meshes_eval/`: The meshes on TnT datasets, with strict filtering strategy for evaluation.
Metrics shall be reproduced with the results with postfix of `_eval`.
## Download
```python
from huggingface_hub import snapshot_download
snapshot_download(repo_id="Fictionary/GeoSVR", cache_dir='./GeoSVR/results', local_dir ='./GeoSVR/results')
```
or use Git to clone this repository with LFS.
## Citation
```bibtex
@article{li2025geosvr,
title={GeoSVR: Taming Sparse Voxels for Geometrically Accurate Surface Reconstruction},
author={Li, Jiahe and Zhang, Jiawei and Zhang, Youmin and Bai, Xiao and Zheng, Jin and Yu, Xiaohan and Gu, Lin},
journal={Advances in Neural Information Processing Systems},
year={2025}
}
``` |