aapot
commited on
Commit
·
3323445
1
Parent(s):
eb43aa0
Add convbert generator model
Browse files- config.json +29 -0
- convert_original_convbert_tf_checkpoint_to_generator_pytorch.py +150 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"ConvBertForMaskedLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"bos_token_id": 0,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"conv_kernel_size": 9,
|
| 9 |
+
"embedding_size": 768,
|
| 10 |
+
"eos_token_id": 2,
|
| 11 |
+
"head_ratio": 2,
|
| 12 |
+
"hidden_act": "gelu",
|
| 13 |
+
"hidden_dropout_prob": 0.1,
|
| 14 |
+
"hidden_size": 256,
|
| 15 |
+
"initializer_range": 0.02,
|
| 16 |
+
"intermediate_size": 1024,
|
| 17 |
+
"layer_norm_eps": 1e-12,
|
| 18 |
+
"max_position_embeddings": 512,
|
| 19 |
+
"model_type": "convbert",
|
| 20 |
+
"num_attention_heads": 4,
|
| 21 |
+
"num_groups": 1,
|
| 22 |
+
"num_hidden_layers": 12,
|
| 23 |
+
"pad_token_id": 0,
|
| 24 |
+
"torch_dtype": "float32",
|
| 25 |
+
"transformers_version": "4.17.0.dev0",
|
| 26 |
+
"type_vocab_size": 2,
|
| 27 |
+
"use_cache": true,
|
| 28 |
+
"vocab_size": 50265
|
| 29 |
+
}
|
convert_original_convbert_tf_checkpoint_to_generator_pytorch.py
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/huggingface/transformers/issues/9920#issuecomment-770970712
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
import tensorflow as tf
|
| 7 |
+
|
| 8 |
+
from transformers import ConvBertConfig, ConvBertForMaskedLM, ConvBertPreTrainedModel
|
| 9 |
+
from transformers.utils import logging
|
| 10 |
+
from operator import attrgetter
|
| 11 |
+
|
| 12 |
+
logger = logging.get_logger(__name__)
|
| 13 |
+
|
| 14 |
+
config_file = "/researchdisk/convbert-base-generator-finnish/config.json"
|
| 15 |
+
tf_path = "/researchdisk/convbert-base-finnish/renamed-model.ckpt"
|
| 16 |
+
pytorch_dump_path = "/researchdisk/convbert-base-generator-finnish"
|
| 17 |
+
config = ConvBertConfig.from_json_file(config_file)
|
| 18 |
+
|
| 19 |
+
model = ConvBertForMaskedLM(config)
|
| 20 |
+
|
| 21 |
+
def load_tf_weights_in_convbert(model, config, tf_checkpoint_path):
|
| 22 |
+
"""Load tf checkpoints in a pytorch model."""
|
| 23 |
+
try:
|
| 24 |
+
import tensorflow as tf
|
| 25 |
+
except ImportError:
|
| 26 |
+
logger.error(
|
| 27 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
| 28 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
| 29 |
+
)
|
| 30 |
+
raise
|
| 31 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
| 32 |
+
logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
|
| 33 |
+
# Load weights from TF model
|
| 34 |
+
init_vars = tf.train.list_variables(tf_path)
|
| 35 |
+
tf_data = {}
|
| 36 |
+
for name, shape in init_vars:
|
| 37 |
+
logger.info("Loading TF weight {} with shape {}".format(name, shape))
|
| 38 |
+
array = tf.train.load_variable(tf_path, name)
|
| 39 |
+
tf_data[name] = array
|
| 40 |
+
|
| 41 |
+
param_mapping = {
|
| 42 |
+
"convbert.embeddings.word_embeddings.weight": "electra/embeddings/word_embeddings",
|
| 43 |
+
"convbert.embeddings.position_embeddings.weight": "electra/embeddings/position_embeddings",
|
| 44 |
+
"convbert.embeddings.token_type_embeddings.weight": "electra/embeddings/token_type_embeddings",
|
| 45 |
+
"convbert.embeddings.LayerNorm.weight": "electra/embeddings/LayerNorm/gamma",
|
| 46 |
+
"convbert.embeddings.LayerNorm.bias": "electra/embeddings/LayerNorm/beta",
|
| 47 |
+
"convbert.embeddings_project.weight": "generator/embeddings_project/kernel",
|
| 48 |
+
"convbert.embeddings_project.bias": "generator/embeddings_project/bias",
|
| 49 |
+
"generator_predictions.LayerNorm.weight": "generator_predictions/LayerNorm/gamma",
|
| 50 |
+
"generator_predictions.LayerNorm.bias": "generator_predictions/LayerNorm/beta",
|
| 51 |
+
"generator_predictions.dense.weight": "generator_predictions/dense/kernel",
|
| 52 |
+
"generator_predictions.dense.bias": "generator_predictions/dense/bias",
|
| 53 |
+
"generator_lm_head.bias": "generator_predictions/output_bias"
|
| 54 |
+
}
|
| 55 |
+
if config.num_groups > 1:
|
| 56 |
+
group_dense_name = "g_dense"
|
| 57 |
+
else:
|
| 58 |
+
group_dense_name = "dense"
|
| 59 |
+
|
| 60 |
+
for j in range(config.num_hidden_layers):
|
| 61 |
+
param_mapping[
|
| 62 |
+
f"convbert.encoder.layer.{j}.attention.self.query.weight"
|
| 63 |
+
] = f"generator/encoder/layer_{j}/attention/self/query/kernel"
|
| 64 |
+
param_mapping[
|
| 65 |
+
f"convbert.encoder.layer.{j}.attention.self.query.bias"
|
| 66 |
+
] = f"generator/encoder/layer_{j}/attention/self/query/bias"
|
| 67 |
+
param_mapping[
|
| 68 |
+
f"convbert.encoder.layer.{j}.attention.self.key.weight"
|
| 69 |
+
] = f"generator/encoder/layer_{j}/attention/self/key/kernel"
|
| 70 |
+
param_mapping[
|
| 71 |
+
f"convbert.encoder.layer.{j}.attention.self.key.bias"
|
| 72 |
+
] = f"generator/encoder/layer_{j}/attention/self/key/bias"
|
| 73 |
+
param_mapping[
|
| 74 |
+
f"convbert.encoder.layer.{j}.attention.self.value.weight"
|
| 75 |
+
] = f"generator/encoder/layer_{j}/attention/self/value/kernel"
|
| 76 |
+
param_mapping[
|
| 77 |
+
f"convbert.encoder.layer.{j}.attention.self.value.bias"
|
| 78 |
+
] = f"generator/encoder/layer_{j}/attention/self/value/bias"
|
| 79 |
+
param_mapping[
|
| 80 |
+
f"convbert.encoder.layer.{j}.attention.self.key_conv_attn_layer.depthwise.weight"
|
| 81 |
+
] = f"generator/encoder/layer_{j}/attention/self/conv_attn_key/depthwise_kernel"
|
| 82 |
+
param_mapping[
|
| 83 |
+
f"convbert.encoder.layer.{j}.attention.self.key_conv_attn_layer.pointwise.weight"
|
| 84 |
+
] = f"generator/encoder/layer_{j}/attention/self/conv_attn_key/pointwise_kernel"
|
| 85 |
+
param_mapping[
|
| 86 |
+
f"convbert.encoder.layer.{j}.attention.self.key_conv_attn_layer.bias"
|
| 87 |
+
] = f"generator/encoder/layer_{j}/attention/self/conv_attn_key/bias"
|
| 88 |
+
param_mapping[
|
| 89 |
+
f"convbert.encoder.layer.{j}.attention.self.conv_kernel_layer.weight"
|
| 90 |
+
] = f"generator/encoder/layer_{j}/attention/self/conv_attn_kernel/kernel"
|
| 91 |
+
param_mapping[
|
| 92 |
+
f"convbert.encoder.layer.{j}.attention.self.conv_kernel_layer.bias"
|
| 93 |
+
] = f"generator/encoder/layer_{j}/attention/self/conv_attn_kernel/bias"
|
| 94 |
+
param_mapping[
|
| 95 |
+
f"convbert.encoder.layer.{j}.attention.self.conv_out_layer.weight"
|
| 96 |
+
] = f"generator/encoder/layer_{j}/attention/self/conv_attn_point/kernel"
|
| 97 |
+
param_mapping[
|
| 98 |
+
f"convbert.encoder.layer.{j}.attention.self.conv_out_layer.bias"
|
| 99 |
+
] = f"generator/encoder/layer_{j}/attention/self/conv_attn_point/bias"
|
| 100 |
+
param_mapping[
|
| 101 |
+
f"convbert.encoder.layer.{j}.attention.output.dense.weight"
|
| 102 |
+
] = f"generator/encoder/layer_{j}/attention/output/dense/kernel"
|
| 103 |
+
param_mapping[
|
| 104 |
+
f"convbert.encoder.layer.{j}.attention.output.LayerNorm.weight"
|
| 105 |
+
] = f"generator/encoder/layer_{j}/attention/output/LayerNorm/gamma"
|
| 106 |
+
param_mapping[
|
| 107 |
+
f"convbert.encoder.layer.{j}.attention.output.dense.bias"
|
| 108 |
+
] = f"generator/encoder/layer_{j}/attention/output/dense/bias"
|
| 109 |
+
param_mapping[
|
| 110 |
+
f"convbert.encoder.layer.{j}.attention.output.LayerNorm.bias"
|
| 111 |
+
] = f"generator/encoder/layer_{j}/attention/output/LayerNorm/beta"
|
| 112 |
+
param_mapping[
|
| 113 |
+
f"convbert.encoder.layer.{j}.intermediate.dense.weight"
|
| 114 |
+
] = f"generator/encoder/layer_{j}/intermediate/{group_dense_name}/kernel"
|
| 115 |
+
param_mapping[
|
| 116 |
+
f"convbert.encoder.layer.{j}.intermediate.dense.bias"
|
| 117 |
+
] = f"generator/encoder/layer_{j}/intermediate/{group_dense_name}/bias"
|
| 118 |
+
param_mapping[
|
| 119 |
+
f"convbert.encoder.layer.{j}.output.dense.weight"
|
| 120 |
+
] = f"generator/encoder/layer_{j}/output/{group_dense_name}/kernel"
|
| 121 |
+
param_mapping[
|
| 122 |
+
f"convbert.encoder.layer.{j}.output.dense.bias"
|
| 123 |
+
] = f"generator/encoder/layer_{j}/output/{group_dense_name}/bias"
|
| 124 |
+
param_mapping[
|
| 125 |
+
f"convbert.encoder.layer.{j}.output.LayerNorm.weight"
|
| 126 |
+
] = f"generator/encoder/layer_{j}/output/LayerNorm/gamma"
|
| 127 |
+
param_mapping[f"convbert.encoder.layer.{j}.output.LayerNorm.bias"] = f"generator/encoder/layer_{j}/output/LayerNorm/beta"
|
| 128 |
+
|
| 129 |
+
for param in model.named_parameters():
|
| 130 |
+
param_name = param[0]
|
| 131 |
+
retriever = attrgetter(param_name)
|
| 132 |
+
result = retriever(model)
|
| 133 |
+
tf_name = param_mapping[param_name]
|
| 134 |
+
value = torch.from_numpy(tf_data[tf_name])
|
| 135 |
+
logger.info(f"TF: {tf_name}, PT: {param_name} ")
|
| 136 |
+
if tf_name.endswith("/kernel"):
|
| 137 |
+
if not tf_name.endswith("/intermediate/g_dense/kernel"):
|
| 138 |
+
if not tf_name.endswith("/output/g_dense/kernel"):
|
| 139 |
+
value = value.T
|
| 140 |
+
if tf_name.endswith("/depthwise_kernel"):
|
| 141 |
+
value = value.permute(1, 2, 0) # 2, 0, 1
|
| 142 |
+
if tf_name.endswith("/pointwise_kernel"):
|
| 143 |
+
value = value.permute(2, 1, 0) # 2, 1, 0
|
| 144 |
+
if tf_name.endswith("/conv_attn_key/bias"):
|
| 145 |
+
value = value.unsqueeze(-1)
|
| 146 |
+
result.data = value
|
| 147 |
+
return model
|
| 148 |
+
|
| 149 |
+
model = load_tf_weights_in_convbert(model, config, tf_path)
|
| 150 |
+
model.save_pretrained(pytorch_dump_path)
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:403378cbb9fb6cf606824f4d46ccf64fa7564787ed8054dee65570e792656df7
|
| 3 |
+
size 194453503
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"do_lower_case": false, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "bert-base-cased", "tokenizer_class": "BertTokenizer"}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|