File size: 88,843 Bytes
7bed085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
# CRoM-EfficientLLM 전체 ν”„λ‘œμ νŠΈ λ³΄κ³ μ„œ

## 1. ν”„λ‘œμ νŠΈ 전체 ꡬ쑰 (Directory Tree)

```
CRoM-EfficientLLM/
β”œβ”€β”€ .github/
β”‚   └── workflows/
β”‚       β”œβ”€β”€ ci.yml
β”‚       └── release.yml
β”œβ”€β”€ benchmarks/
β”‚   β”œβ”€β”€ efficiency_eval.py
β”‚   β”œβ”€β”€ longbench_eval.py
β”‚   └── sample_results.json
β”œβ”€β”€ dashboard/
β”‚   β”œβ”€β”€ grafana_dashboard.json
β”‚   └── prometheus_config.yml
β”œβ”€β”€ docs/
β”‚   β”œβ”€β”€ architecture.md
β”‚   └── versioning.md
β”œβ”€β”€ examples/
β”‚   └── corpus/
β”‚       β”œβ”€β”€ sample_docs.jsonl
β”‚       └── sample_queries.jsonl
β”œβ”€β”€ scripts/
β”‚   β”œβ”€β”€ gen_release_notes.py
β”‚   └── release.sh
β”œβ”€β”€ src/
β”‚   └── crom_efficientllm/
β”‚       β”œβ”€β”€ budget_packer/
β”‚       β”‚   β”œβ”€β”€ __init__.py
β”‚       β”‚   └── packer.py
β”‚       β”œβ”€β”€ drift_estimator/
β”‚       β”‚   β”œβ”€β”€ __init__.py
β”‚       β”‚   └── estimator.py
β”‚       β”œβ”€β”€ plugins/
β”‚       β”‚   β”œβ”€β”€ evidently_drift.py
β”‚       β”‚   β”œβ”€β”€ flashrank_reranker.py
β”‚       β”‚   └── llmlingua_compressor.py
β”‚       β”œβ”€β”€ rerank_engine/
β”‚       β”‚   β”œβ”€β”€ __init__.py
β”‚       β”‚   └── rerank.py
β”‚       β”œβ”€β”€ __init__.py
β”‚       β”œβ”€β”€ budget_packer.py
β”‚       β”œβ”€β”€ capsule_logger.py
β”‚       β”œβ”€β”€ cli.py
β”‚       β”œβ”€β”€ cross_encoder.py
β”‚       β”œβ”€β”€ demo.py
β”‚       └── server.py
β”œβ”€β”€ tests/
β”‚   β”œβ”€β”€ test_drift.py
β”‚   β”œβ”€β”€ test_packer.py
β”‚   └── test_rerank.py
β”œβ”€β”€ .gitignore
β”œβ”€β”€ CHANGELOG.md
β”œβ”€β”€ crom 1.0.1μˆ˜μ • μ—…λ°μ΄νŠΈ μƒμ„Έλ³΄κ³ μ„œ.md
β”œβ”€β”€ LICENSE
β”œβ”€β”€ pyproject.toml
β”œβ”€β”€ README.md
β”œβ”€β”€ release_notes.md
└── requirements.txt
```

## 2. νŒŒμΌλ³„ 상세 λ‚΄μš© 

---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\.github\\workflows\\ci.yml`
```yaml
name: ci
on:
  push:
    branches: [ main ]
  pull_request:

jobs:
  test:
    runs-on: ubuntu-latest
    strategy:
      matrix:
        python-version: ["3.9", "3.10", "3.11", "3.12"]
    steps:
      - uses: actions/checkout@v4
      - uses: actions/setup-python@v5
        with:
          python-version: ${{ matrix.python-version }}
      - run: pip install -e .[dev]
      - run: pre-commit run --all-files || true
      - run: ruff --version && black --version
      - run: pytest -q
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\.github\\workflows\\release.yml`
```yaml
name: release
on:
  push:
    tags:
      - 'v*'
jobs:
  release:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v4
        with:
          fetch-depth: 0
      - uses: actions/setup-python@v5
        with:
          python-version: '3.11'
      - run: pip install -e .[dev]
      - run: pytest -q
      - name: Build distribution
        run: |
          python -m pip install build
          python -m build
      - name: Generate release notes from CHANGELOG
        run: |
          python scripts/gen_release_notes.py "$GITHUB_REF_NAME"
      - name: Publish GitHub Release
        uses: softprops/action-gh-release@v2
        with:
          name: ${{ github.ref_name }}
          body_path: release_notes.md
          files: |
            dist/*.whl
            dist/*.tar.gz
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\.gitignore`
```
# Python
__pycache__/
*.py[cod]
*.egg-info/
.env
.venv/
virtualenv/
.idea/
.vscode/
.ipynb_checkpoints/
.dist/
.build/
.coverage
.pytest_cache/

# OS
.DS_Store
Thumbs.db
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\CHANGELOG.md`
```markdown
# Changelog

## [1.0.1] - 2025-09-06
### Added
- Implemented core modules from scratch based on design documents.
- Implemented FastAPI server with `/process` endpoint (`src/crom_efficientllm/server.py`).
- Added `enhanced_greedy_pack` with detailed statistics for budget packing (`src/crom_efficientllm/budget_packer.py`).
- Implemented `SafeCrossEncoderManager` for robust and observable Cross-Encoder handling (`src/crom_efficientllm/cross_encoder.py`).
- Added `ExplainCapsuleLogger` for structured JSONL logging of all processing events (`src/crom_efficientllm/capsule_logger.py`).

### Changed
- Major version bump to reflect the first functional implementation of core logic.


## [0.2.1] - 2025-09-02
### Added
- CLI `--save-plots` option for `sweep` and `dp-curve`; saves PNG charts to `benchmarks/out/` (or `--out-dir`).
- README Quick Examples mention of plotting flag.
- This CHANGELOG.

### Changed
- Dev tooling: recommend `matplotlib` via dev extra for plotting.

## [0.2.0] - 2025-09-02
### Added
- GitHub Actions CI (3.9–3.12), pre-commit(ruff/black).
- `crom-bench` CLI: `e2e`, `sweep`, `scale`, `dp-curve`, `haystack-compare`.
- Plugins: FlashRank/LLMLingua/Evidently (optional extras).
- Example corpus & queries (JSONL).

## [0.1.0] - 2025-09-02
- Initial packaging; budget packer, hybrid rerank, drift estimator, demo & metrics.
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\LICENSE`
```

                                 Apache License
                           Version 2.0, January 2004
                        http://www.apache.org/licenses/

   TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

   1. Definitions.

      "License" shall mean the terms and conditions for use, reproduction,
      and distribution as defined by Sections 1 through 9 of this document.

      "Licensor" shall mean the copyright owner or entity authorized by
      the copyright owner that is granting the License.

      "Legal Entity" shall mean the union of the acting entity and all
      other entities that control, are controlled by, or are under common
      control with that entity. For the purposes of this definition,
      "control" means (i) the power, direct or indirect, to cause the
      direction or management of such entity, whether by contract or
      otherwise, or (ii) ownership of fifty percent (50%) or more of the
      outstanding shares, or (iii) beneficial ownership of such entity.

      "You" (or "Your") shall mean an individual or Legal Entity
      exercising permissions granted by this License.

      "Source" form shall mean the preferred form for making modifications,
      including but not limited to software source code, documentation
      source, and configuration files.

      "Object" form shall mean any form resulting from mechanical
      transformation or translation of a Source form, including but
      not limited to compiled object code, generated documentation,
      and conversions to other media types.

      "Work" shall mean the work of authorship, whether in Source or
      Object form, made available under the License, as indicated by a
      copyright notice that is included in or attached to the work
      (an example is provided in the Appendix below).

      "Derivative Works" shall mean any work, whether in Source or Object
      form, that is based on (or derived from) the Work and for which the
      editorial revisions, annotations, elaborations, or other modifications
      represent, as a whole, an original work of authorship. For the purposes
      of this License, Derivative Works shall not include works that remain
      separable from, or merely link (or bind by name) to the interfaces of,
      the Work and Derivative Works thereof.

      "Contribution" shall mean any work of authorship, including
      the original version of the Work and any modifications or additions
      to that Work or Derivative Works thereof, that is intentionally
      submitted to Licensor for inclusion in the Work by the copyright owner
      or by an individual or Legal Entity authorized to submit on behalf of
      the copyright owner. For the purposes of this definition, "submitted" 
      means any form of electronic, verbal, or written communication sent
      to the Licensor or its representatives, including but not limited to
      communication on electronic mailing lists, source code control systems,
      and issue tracking systems that are managed by, or on behalf of, the
      Licensor for the purpose of discussing and improving the Work, but
      excluding communication that is conspicuously marked or otherwise
      designated in writing by the copyright owner as "Not a Contribution."

      "Contributor" shall mean Licensor and any individual or Legal Entity
      on behalf of whom a Contribution has been received by Licensor and
      subsequently incorporated within the Work.

   2. Grant of Copyright License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      copyright license to reproduce, prepare Derivative Works of,
      publicly display, publicly perform, sublicense, and distribute the
      Work and such Derivative Works in Source or Object form.

   3. Grant of Patent License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      (except as stated in this section) patent license to make, have made, 
      use, offer to sell, sell, import, and otherwise transfer the Work,
      where such license applies only to those patent claims licensable
      by such Contributor that are necessarily infringed by their
      Contribution(s) alone or by combination of their Contribution(s)
      with the Work to which such Contribution(s) was submitted. If You
      institute patent litigation against any entity (including a
      cross-claim or counterclaim in a lawsuit) alleging that the Work
      or a Contribution incorporated within the Work constitutes direct
      or contributory patent infringement, then any patent licenses
      granted to You under this License for that Work shall terminate
      as of the date such litigation is filed.

   4. Redistribution. You may reproduce and distribute copies of the
      Work or Derivative Works thereof in any medium, with or without
      modifications, and in Source or Object form, provided that You
      meet the following conditions:

      (a) You must give any other recipients of the Work or
          Derivative Works a copy of this License; and

      (b) You must cause any modified files to carry prominent notices
          stating that You changed the files; and

      (c) You must retain, in the Source form of any Derivative Works
          that You distribute, all copyright, patent, trademark, and
          attribution notices from the Source form of the Work,
          excluding those notices that do not pertain to any part of
          the Derivative Works; and

      (d) If the Work includes a "NOTICE" text file as part of its
          distribution, then any Derivative Works that You distribute must
          include a readable copy of the attribution notices contained
          within such NOTICE file, excluding those notices that do not
          pertain to any part of the Derivative Works, in at least one
          of the following places: within a NOTICE text file distributed
          as part of the Derivative Works; within the Source form or
          documentation, if provided along with the Derivative Works; or,
          within a display generated by the Derivative Works, if and
          wherever such third-party notices normally appear. The contents
          of the NOTICE file are for informational purposes only and
          do not modify the License. You may add Your own attribution
          notices within Derivative Works that You distribute, alongside
          or as an addendum to the NOTICE text from the Work, provided
          that such additional attribution notices cannot be construed
          as modifying the License.

      You may add Your own copyright statement to Your modifications and
      may provide additional or different license terms and conditions
      for use, reproduction, or distribution of Your modifications, or
      for any such Derivative Works as a whole, provided Your use,
      reproduction, and distribution of the Work otherwise complies with
      the conditions stated in this License.

   5. Submission of Contributions. Unless You explicitly state otherwise,
      any Contribution intentionally submitted for inclusion in the Work
      by You to the Licensor shall be under the terms and conditions of
      this License, without any additional terms or conditions.
      Notwithstanding the above, nothing herein shall supersede or modify
      the terms of any separate license agreement you may have executed
      with the Licensor regarding such Contributions.

   6. Trademarks. This License does not grant permission to use the trade
      names, trademarks, service marks, or product names of the Licensor, 
      except as required for reasonable and customary use in describing the
      origin of the Work and reproducing the content of the NOTICE file.

   7. Disclaimer of Warranty. Unless required by applicable law or
      agreed to in writing, Licensor provides the Work (and each
      Contributor provides its Contributions) on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
      implied, including, without limitation, any warranties or conditions
      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
      PARTICULAR PURPOSE. You are solely responsible for determining the
      appropriateness of using or redistributing the Work and assume any
      risks associated with Your exercise of permissions under this License.

   8. Limitation of Liability. In no event and under no legal theory, 
      whether in tort (including negligence), contract, or otherwise, 
      unless required by applicable law (such as deliberate and grossly 
      negligent acts) or agreed to in writing, shall any Contributor be
      liable to You for damages, including any direct, indirect, special,
      incidental, or consequential damages of any character arising as a
      result of this License or out of the use or inability to use the
      Work (including but not limited to damages for loss of goodwill,
      work stoppage, computer failure or malfunction, or any and all
      other commercial damages or losses), even if such Contributor
      has been advised of the possibility of such damages.

   9. Accepting Warranty or Additional Liability. While redistributing
      the Work or Derivative Works thereof, You may choose to offer,
      and charge a fee for, acceptance of support, warranty, indemnity,
      or other liability obligations and/or rights consistent with this
      License. However, in accepting such obligations, You may act only
      on Your own behalf and on Your sole responsibility, not on behalf
      of any other Contributor, and only if You agree to indemnify,
      defend, and hold each Contributor harmless for any liability
      incurred by, or claims asserted against, such Contributor by reason
      of your accepting any such warranty or additional liability.

   END OF TERMS AND CONDITIONS

   APPENDIX: How to apply the Apache License to your work.

      To apply the Apache License to your work, attach the following
      boilerplate notice, with the fields enclosed by brackets "[]" 
      replaced with your own identifying information. (Don't include
      the brackets!)  The text should be enclosed in the appropriate
      comment syntax for the file format. We also recommend that a
      file or class name and description of purpose be included on the
      same "printed page" as the copyright notice for easier
      identification within third-party archives.

   Copyright [yyyy] [name of copyright owner]

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\README.md`
```markdown
---
language: en
license: apache-2.0
library_name: crom-efficientllm
tags:
- rag
- llm
- retrieval
- rerank
- reranker
- context-management
- prompt-engineering
- observability
- python
---
# CRoM-Context-Rot-Mitigation--EfficientLLM: Context Reranking and Management for Efficient LLMs

<p align="left">
  <a href="https://github.com/Flamehaven/CRoM-Context-Rot-Mitigation--EfficientLLM/actions">
    <img alt="CI" src="https://img.shields.io/github/actions/workflow/status/Flamehaven/CRoM-Context-Rot-Mitigation--EfficientLLM/ci.yml?branch=main" />
  </a>
  <a href="#-benchmarks">
    <img alt="Bench" src="https://img.shields.io/badge/benchmarks-ready-success" />
  </a>
  <a href="LICENSE">
    <img alt="License" src="https://img.shields.io/badge/license-Apache%202.0-blue" />
  </a>
  <a href="https://github.com/Flamehaven/CRoM-Context-Rot-Mitigation--EfficientLLM/releases">
    <img alt="Release" src="https://img.shields.io/github/v/release/Flamehaven/CRoM-Context-Rot-Mitigation--EfficientLLM?display_name=tag" />
  </a>
  <a href="CHANGELOG.md">
    <img alt="Versioning" src="https://img.shields.io/badge/semver-0.2.x-lightgrey" />
  </a>
  <a href="https://github.com/Flamehaven/CRoM-Context-Rot-Mitigation--EfficientLLM/releases/latest">
    <img alt="Wheel" src="https://img.shields.io/badge/wheel-available-success" />
  </a>
</p>

**CRoM (Context Rot Mitigation)-EfficientLLM** is a Python toolkit designed to optimize the context provided to Large Language Models (LLMs). It provides a suite of tools to intelligently select, re-rank, and manage text chunks to fit within a model\'s context budget while maximizing relevance and minimizing performance drift.

This project is ideal for developers building RAG (Retrieval-Augmented Generation) pipelines who need to make the most of limited context windows.

## Key Features

*   **Budget Packer:** Greedily packs the highest-scoring text chunks into a defined token budget using a stable sorting algorithm.
*   **Hybrid Reranker:** Combines sparse (TF-IDF) and dense (Sentence-Transformers) retrieval scores for robust and high-quality reranking of documents.
*   **Drift Estimator:** Monitors the semantic drift between sequential model responses using L2 or cosine distance with EWMA smoothing.
*   **Observability:** Exposes Prometheus metrics for monitoring token savings and drift alerts in production.
*   **Extensible Plugins:** Supports optional plugins for advanced reranking (`FlashRank`), compression (`LLMLingua`), and drift analysis (`Evidently`).
*   **Comprehensive Benchmarking:** Includes a CLI for end-to-end pipeline evaluation, budget sweeps, and quality-vs-optimal analysis.

## Installation

Install the package directly from source using pip. For development, it\'s recommended to install in editable mode with the `[dev]` extras.

```bash
# Clone the repository
git clone https://github.com/Flamehaven/CRoM-Context-Rot-Mitigation--EfficientLLM.git
cd CRoM-Context-Rot-Mitigation--EfficientLLM

# Install in editable mode with development and plugin dependencies
pip install -e .[dev,plugins]
```

## Quickstart

### Demo

Run a simple, self-contained demonstration of the core components:

```bash
# Run the demo script
crom-demo demo
```

### CLI Benchmarking Examples

The package includes a powerful `crom-bench` CLI for evaluation.

```bash
# Default E2E (Search→Rerank→Pack→Mock LLM)
crom-bench e2e --budget 0.3

# Optional: High-precision configuration with plugins
crom-bench e2e --budget 0.3 \
  --use-flashrank --flashrank-model ms-marco-TinyBERT-L-2-v2 \
  --use-llmlingua --compress-ratio=0.6 \
  --use-evidently
```

### Plotting

If `matplotlib` is installed (`pip install -e .[dev]`), you can save benchmark plots directly:

```bash
# Save budget sweep result plots
crom-bench sweep --save-plots

# Save DP-curve plots
crom-bench dp-curve --save-plots
```

## Release & Changelog

This project follows semantic versioning. For detailed changes, see the [**CHANGELOG.md**](CHANGELOG.md).

Releases are automated via GitHub Actions when a `v*` tag is pushed.

## License

This project is licensed under the Apache 2.0 License. See the [LICENSE](LICENSE) file for details.
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\benchmarks\\efficiency_eval.py`
```python
"""
Efficiency Evaluation for CRoM-EfficientLLM
- Synthetic workload to measure token savings, selection quality, and runtime.
- No third-party deps beyond numpy/matplotlib (pandas optional for CSVs).

Usage:
  python benchmarks/efficiency_eval.py --budget 0.3 --n 5000 --seed 123 --plot --save
"""
from __future__ import annotations

import argparse
import math
import time
from dataclasses import dataclass
from typing import List, Sequence, Tuple, Union

import numpy as np

try:
    import pandas as pd  # optional
except Exception:  # pragma: no cover
    pd = None

try:
    import matplotlib.pyplot as plt  # optional
except Exception:  # pragma: no cover
    plt = None

# --- Local packers (self-contained to avoid imports during quick eval) ---
@dataclass(frozen=True)
class Chunk:
    text: str
    score: float
    tokens: int

def _estimate_tokens(text: str) -> int:
    return max(1, len(text) // 4)

def _coerce_chunk(obj: Union[Chunk, dict], idx: int) -> Chunk:
    if isinstance(obj, Chunk):
        return obj
    if not isinstance(obj, dict):
        raise TypeError(f"Chunk #{idx} must be Chunk or dict, got {type(obj)}")
    text = str(obj.get("text", ""))
    if not text:
        raise ValueError(f"Chunk #{idx} has empty text")
    score = float(obj.get("score", 0.0))
    tokens = int(obj["tokens"]) if "tokens" in obj else _estimate_tokens(text)
    if tokens <= 0:
        raise ValueError(f"Chunk #{idx} has non-positive tokens: {tokens}")
    return Chunk(text=text, score=score, tokens=tokens)

def budget_pack(text_chunks: Sequence[Union[Chunk, dict]], budget: int = 1000) -> List[Chunk]:
    if budget <= 0:
        raise ValueError("budget must be > 0")
    coerced: List[Chunk] = [_coerce_chunk(c, i) for i, c in enumerate(text_chunks)]
    indexed = list(enumerate(coerced))
    indexed.sort(key=lambda it: (-it[1].score, it[1].tokens, it[0]))
    selected: List[Chunk] = []
    total = 0
    for _, ch in indexed:
        if total + ch.tokens <= budget:
            selected.append(ch)
            total += ch.tokens
    return selected

def pack_fcfs(text_chunks: Sequence[Union[Chunk, dict]], budget: int) -> List[Chunk]:
    sel, total = [], 0
    for i, obj in enumerate(text_chunks):
        ch = _coerce_chunk(obj, i)
        if total + ch.tokens <= budget:
            sel.append(ch)
            total += ch.tokens
    return sel

def pack_random(text_chunks: Sequence[Union[Chunk, dict]], budget: int, seed: int = 0) -> List[Chunk]:
    rng = np.random.default_rng(seed)
    indices = np.arange(len(text_chunks))
    rng.shuffle(indices)
    sel, total = [], 0
    for i in indices:
        ch = _coerce_chunk(text_chunks[i], i)
        if total + ch.tokens <= budget:
            sel.append(ch)
            total += ch.tokens
    return sel

# --- Data generation and metrics ---

def make_synthetic_chunks(n=2000, seed=42, corr=0.6):
    rng = np.random.default_rng(seed)
    true_rel = rng.normal(0, 1, size=n)
    noise = rng.normal(0, 1, size=n) * math.sqrt(1 - corr**2)
    score = corr * true_rel + noise
    tokens = np.clip(rng.lognormal(mean=4.0, sigma=0.6, size=n).astype(int), 5, 2000)
    chunks = [Chunk(text=("x"*int(t*4)), score=float(s), tokens=int(t)) for s, t in zip(score, tokens)]
    return chunks, true_rel

def eval_once(n=5000, budget_ratio=0.3, seed=123, corr=0.6):
    chunks, true_rel = make_synthetic_chunks(n=n, seed=seed, corr=corr)
    total_tokens = sum(c.tokens for c in chunks)
    budget = int(total_tokens * budget_ratio)

    def run(name, fn):
        t0 = time.perf_counter()
        sel = fn(chunks, budget)
        dt = time.perf_counter() - t0
        idx_map = {id(c): i for i, c in enumerate(chunks)}
        picked_idx = [idx_map[id(c)] for c in sel]
        rel_sum = float(np.sum(true_rel[picked_idx])) if picked_idx else 0.0
        sel_tokens = sum(c.tokens for c in sel)
        return {
            "name": name,
            "time_ms": dt*1000,
            "selected_chunks": len(sel),
            "selected_tokens": sel_tokens,
            "tokens_budget": budget,
            "tokens_total_unpacked": total_tokens,
            "tokens_saved": total_tokens - sel_tokens,
            "save_ratio": (total_tokens - sel_tokens)/total_tokens,
            "relevance_sum": rel_sum,
        }

    rows = [
        run("budget_pack", budget_pack),
        run("fcfs", pack_fcfs),
        run("random", lambda ch, b: pack_random(ch, b, seed=seed)),
    ]
    return rows

def quality_vs_optimal(n=200, budget_ratio=0.3, seed=123, corr=0.6):
    chunks, true_rel = make_synthetic_chunks(n=n, seed=seed, corr=corr)
    budget = int(sum(c.tokens for c in chunks) * budget_ratio)
    values = np.maximum(true_rel, 0.0)

    def optimal(chunks_sub, values, budget):
        items = chunks_sub
        vals = list(values)
        B = budget
        dp = [0.0]*(B+1)
        keep = [[False]*(B+1) for _ in range(len(items))]
        for i, it in enumerate(items):
            wt = it.tokens
            val = vals[i]
            for b in range(B, wt-1, -1):
                alt = dp[b - wt] + val
                if alt > dp[b]:
                    dp[b] = alt
                    keep[i][b] = True
        b = B
        picked_idx = []
        for i in range(len(items)-1, -1, -1):
            if keep[i][b]:
                picked_idx.append(i)
                b -= items[i].tokens
        picked_idx.reverse()
        rel_sum = float(np.sum([values[i] for i in picked_idx])) if picked_idx else 0.0
        total_tokens = sum(items[i].tokens for i in picked_idx)
        return picked_idx, rel_sum, total_tokens

    opt_idx, opt_rel, opt_tokens = optimal(chunks, values, budget)

    # selections
    idx_map = {id(c): i for i, c in enumerate(chunks)}
    def rel_of(selection):
        pid = [idx_map[id(c)] for c in selection]
        return float(np.sum(values[pid])) if pid else 0.0

    sel_bp = budget_pack(chunks, budget)
    sel_fc = pack_fcfs(chunks, budget)
    sel_rd = pack_random(chunks, budget, seed=seed)

    rows = [
        {"name":"optimal_true_rel", "relevance_sum": opt_rel, "selected_tokens": opt_tokens, "selected_chunks": len(opt_idx)},
        {"name":"budget_pack_small", "relevance_sum": rel_of(sel_bp), "selected_tokens": sum(c.tokens for c in sel_bp), "selected_chunks": len(sel_bp)},
        {"name":"fcfs_small", "relevance_sum": rel_of(sel_fc), "selected_tokens": sum(c.tokens for c in sel_fc), "selected_chunks": len(sel_fc)},
        {"name":"random_small", "relevance_sum": rel_of(sel_rd), "selected_tokens": sum(c.tokens for c in sel_rd), "selected_chunks": len(sel_rd)},
    ]
    return rows

def main():
    ap = argparse.ArgumentParser()
    ap.add_argument("--n", type=int, default=5000)
    ap.add_argument("--budget", type=float, default=0.3)
    ap.add_argument("--seed", type=int, default=123)
    ap.add_argument("--corr", type=float, default=0.6)
    ap.add_argument("--plot", action="store_true")
    ap.add_argument("--save", action="store_true")
    args = ap.parse_args()

    rows = eval_once(n=args.n, budget_ratio=args.budget, seed=args.seed, corr=args.corr)
    rows_q = quality_vs_optimal(n=min(200, args.n), budget_ratio=args.budget, seed=args.seed, corr=args.corr)

    print("\n=== Efficiency (n={}, budget={{:.0%}}) ===".format(args.n, args.budget))
    for r in rows:
        print("{name:12s} time={{time_ms:7.2f}}ms  save_ratio={{save_ratio:6.3f}}  tokens_saved={{tokens_saved:8d}}  rel_sum={{relevance_sum:8.3f}}".format(**r))

    print("\n=== Quality vs Optimal (subset) ===")
    for r in rows_q:
        print("{name:18s} rel_sum={{relevance_sum:8.3f}}  tokens={{selected_tokens:5d}} chunks={{selected_chunks:4d}}".format(**r))

    if pd is not None and args.save:
        pd.DataFrame(rows).to_csv("benchmarks/results_efficiency.csv", index=False)
        pd.DataFrame(rows_q).to_csv("benchmarks/results_quality.csv", index=False)
        print("Saved CSVs to benchmarks Ψ­ΨΆΨ±ΨͺΩƒ.")

    if plt is not None and args.plot:
        # single-figure plots, no explicit colors
        x = [r["name"] for r in rows]
        y = [r["time_ms"] for r in rows]
        import matplotlib.pyplot as plt
        plt.figure()
        plt.bar(x, y)
        plt.title("Packer Runtime (ms)")
        plt.xlabel("method")
        plt.ylabel("ms")
        plt.show()

if __name__ == "__main__":
    main()
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\benchmarks\\longbench_eval.py`
```python
"""
Benchmark script: LongBench-like evaluation.
Simulates context packing efficiency.
"""
from crom_efficientllm.budget_packer.packer import budget_pack

def evaluate():
    chunks = [{"text": f"chunk {i}", "score": i % 5, "tokens": 100} for i in range(20)]
    packed = budget_pack(chunks, budget=500)
    print("Selected:", len(packed), "chunks")

if __name__ == "__main__":
    evaluate()
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\benchmarks\\sample_results.json`
```json
{}
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\crom 1.0.1μˆ˜μ • μ—…λ°μ΄νŠΈ μƒμ„Έλ³΄κ³ μ„œ.md`
```markdown
# CRoM-EfficientLLM v1.0.1 μ—…λ°μ΄νŠΈ 상세 λ³΄κ³ μ„œ

**λ¬Έμ„œ λͺ©μ :** μ†Œμ…œ λ―Έλ””μ–΄ (LinkedIn, Twitter, Medium) ν¬μŠ€νŒ…μ„ μœ„ν•œ λ§ˆμΌ€νŒ… AI의 정보 μ†ŒμŠ€ 제곡
**μž‘μ„±μΌ:** 2025-09-06
**μž‘μ„±μž:** CLI β†―C01∞ | Σψ∴

---

## 1. κ°œμš” (Overview)

- **ν”„λ‘œμ νŠΈλͺ…:** CRoM-EfficientLLM (Context Rot Mitigation for Efficient LLMs)
- **이전 버전:** 0.2.1
- **μ‹ κ·œ 버전:** 1.0.1

**핡심 μš”μ•½:**
이번 v1.0.1 μ—…λ°μ΄νŠΈλŠ” CRoM-EfficientLLM ν”„λ‘œμ νŠΈμ˜ **첫 번째 κΈ°λŠ₯ κ΅¬ν˜„(First Functional Implementation)**을 μ˜λ―Έν•©λ‹ˆλ‹€. 기쑴의 아이디어와 λΌˆλŒ€λ§Œ 있던 μƒνƒœμ—μ„œ, μ‹€μ œ λ™μž‘ν•˜λŠ” 핡심 λ‘œμ§μ„ λͺ¨λ‘ κ΅¬ν˜„ν•˜μ—¬ **μž‘λ™ κ°€λŠ₯ν•œ ν”„λ‘œν† νƒ€μž…(Working Prototype)**으둜 μ „ν™˜ν–ˆμŠ΅λ‹ˆλ‹€. 이제 μ‚¬μš©μžλ“€μ€ RAG νŒŒμ΄ν”„λΌμΈμ˜ μ»¨ν…μŠ€νŠΈλ₯Ό 효율적으둜 κ΄€λ¦¬ν•˜κ³  μ΅œμ ν™”ν•˜λŠ” 핡심 κΈ°λŠ₯듀을 직접 ν…ŒμŠ€νŠΈν•˜κ³  ν™œμš©ν•  수 μžˆμŠ΅λ‹ˆλ‹€.

---

## 2. λ°°κ²½ (Background)

κΈ°μ‘΄ v0.2.1은 `pyproject.toml`, `README.md` λ“± ν”„λ‘œμ νŠΈμ˜ λ°©ν–₯μ„±κ³Ό ꡬ쑰만 μ •μ˜λœ **섀계 λ‹¨κ³„μ˜ μŠ€μΊν΄λ“œ(Scaffold)**μ˜€μŠ΅λ‹ˆλ‹€. μ‹€μ œ 핡심 λ‘œμ§μ„ λ‹΄κ³  μžˆλŠ” Python μ†ŒμŠ€ μ½”λ“œκ°€ λΆ€μž¬ν•˜μ—¬ 아이디어λ₯Ό μ‹€μ œλ‘œ 검증할 수 μ—†μ—ˆμŠ΅λ‹ˆλ‹€.

이번 μ—…λ°μ΄νŠΈμ˜ λͺ©ν‘œλŠ” 이 섀계도에 따라, **μ²˜μŒλΆ€ν„°(from scratch) 핡심 κΈ°λŠ₯듀을 λͺ¨λ‘ κ΅¬ν˜„**ν•˜μ—¬ ν”„λ‘œμ νŠΈμ— 생λͺ…을 λΆˆμ–΄λ„£κ³ , μ‹€μ œ μ‚¬μš© κ°€λŠ₯ν•œ μƒνƒœλ‘œ λ§Œλ“œλŠ” κ²ƒμ΄μ—ˆμŠ΅λ‹ˆλ‹€.

---

## 3. 상세 λ³€κ²½ λ‚΄μ—­ (Detailed Changes)

이번 μ—…λ°μ΄νŠΈλ₯Ό 톡해 4개의 핡심 λͺ¨λ“ˆμ΄ `src/crom_efficientllm/` 디렉토리 내에 μƒˆλ‘­κ²Œ κ΅¬ν˜„λ˜μ—ˆμŠ΅λ‹ˆλ‹€.

### κ°€. `budget_packer.py` - μ§€λŠ₯ν˜• μ»¨ν…μŠ€νŠΈ νŒ¨ν‚Ή μ—”μ§„
- **κΈ°λŠ₯:** LLM에 전달할 μ»¨ν…μŠ€νŠΈ(청크)λ₯Ό μ£Όμ–΄μ§„ 토큰 μ˜ˆμ‚° λ‚΄μ—μ„œ κ°€μž₯ 효율적으둜 κ΅¬μ„±ν•©λ‹ˆλ‹€.
- **μ„ΈλΆ€ 사항:**
    - λ‹¨μˆœνžˆ ν…μŠ€νŠΈλ₯Ό 자λ₯΄λŠ” 것이 μ•„λ‹ˆλΌ, **점수/토큰 λΉ„μœ¨**을 κΈ°μ€€μœΌλ‘œ κ°€μž₯ μ€‘μš”ν•œ 정보λ₯Ό μš°μ„ μ μœΌλ‘œ μ„ νƒν•©λ‹ˆλ‹€.
    - νŒ¨ν‚Ή ν›„ **μ••μΆ•λ₯ , μ ˆμ•½λœ 토큰 수, μ˜ˆμ‚° νš¨μœ¨μ„±** λ“± μƒμ„Έν•œ 톡계λ₯Ό μ œκ³΅ν•˜μ—¬, μ»¨ν…μŠ€νŠΈ 관리 μ „λž΅μ˜ 효과λ₯Ό μ •λŸ‰μ μœΌλ‘œ 뢄석할 수 μžˆλŠ” κΈ°λ°˜μ„ λ§ˆλ ¨ν–ˆμŠ΅λ‹ˆλ‹€.

### λ‚˜. `cross_encoder.py` - μ•ˆμ •μ„± κ°•ν™” Cross-Encoder κ΄€λ¦¬μž
- **κΈ°λŠ₯:** RAG νŒŒμ΄ν”„λΌμΈμ˜ 핡심인 Cross-Encoder λͺ¨λΈμ„ μ•ˆμ •μ μœΌλ‘œ κ΄€λ¦¬ν•˜κ³  였λ₯˜ λ°œμƒ μ‹œ μ‹œμŠ€ν…œ μ „μ²΄μ˜ λ‹€μš΄μ„ λ°©μ§€ν•©λ‹ˆλ‹€.
- **μ„ΈλΆ€ 사항:**
    - `sentence-transformers` λΌμ΄λΈŒλŸ¬λ¦¬κ°€ μ—†κ±°λ‚˜ λͺ¨λΈ λ‘œλ”©μ— μ‹€νŒ¨ν•˜λŠ” λ“± λ‹€μ–‘ν•œ **였λ₯˜ 상황을 μžλ™μœΌλ‘œ κ°μ§€ν•˜κ³  μš°μ•„ν•˜κ²Œ 처리(Graceful Fallback)**ν•©λ‹ˆλ‹€.
    - μ‹œμŠ€ν…œμ΄ λ©ˆμΆ”λŠ” λŒ€μ‹ , "λΉ„ν™œμ„±ν™”", "였λ₯˜" λ“±μ˜ λͺ…ν™•ν•œ μƒνƒœλ₯Ό API 응닡에 ν¬ν•¨μ‹œμΌœ **μ‹œμŠ€ν…œμ˜ μ•ˆμ •μ„±κ³Ό 예츑 κ°€λŠ₯μ„±**을 크게 λ†’μ˜€μŠ΅λ‹ˆλ‹€.

### λ‹€. `capsule_logger.py` - 투λͺ…μ„± 확보λ₯Ό μœ„ν•œ 캑슐 둜거
- **κΈ°λŠ₯:** μ‹œμŠ€ν…œμ˜ λͺ¨λ“  처리 과정을 **κ΅¬μ‘°ν™”λœ 둜그(Structured Log)**둜 κΈ°λ‘ν•˜μ—¬ 투λͺ…μ„±κ³Ό 감사 κ°€λŠ₯성을 μ œκ³΅ν•©λ‹ˆλ‹€.
- **μ„ΈλΆ€ 사항:**
    - λͺ¨λ“  API μš”μ²­, 처리 톡계, μ‹œμŠ€ν…œ μƒνƒœλ₯Ό **"μ„€λͺ… 캑슐(Explain Capsule)"**μ΄λΌλŠ” JSONL ν˜•μ‹μœΌλ‘œ 영ꡬ μ €μž₯ν•©λ‹ˆλ‹€.
    - μ΄λŠ” μΆ”ν›„ μ‹œμŠ€ν…œμ˜ λ™μž‘μ„ λ””λ²„κΉ…ν•˜κ±°λ‚˜, μ„±λŠ₯ μ €ν•˜μ˜ 원인을 λΆ„μ„ν•˜κ³ , AI의 νŒλ‹¨ κ·Όκ±°λ₯Ό μΆ”μ ν•˜λŠ” 데 ν•„μˆ˜μ μΈ 데이터가 λ©λ‹ˆλ‹€.

### 라. `server.py` - 핡심 κΈ°λŠ₯ 톡합 API μ„œλ²„
- **κΈ°λŠ₯:** μœ„μ—μ„œ μ„€λͺ…ν•œ λͺ¨λ“  λͺ¨λ“ˆ(νŒ¨ν‚Ή, λ¦¬λž­ν‚Ή, λ‘œκΉ…)을 ν•˜λ‚˜λ‘œ λ¬Άμ–΄, μ‚¬μš©μžκ°€ μ‰½κ²Œ μ ‘κ·Όν•  수 μžˆλŠ” **FastAPI 기반의 API μ„œλ²„**λ₯Ό μ œκ³΅ν•©λ‹ˆλ‹€.
- **μ„ΈλΆ€ 사항:**
    - `/process` μ—”λ“œν¬μΈνŠΈλ₯Ό 톡해 쿼리와 μ»¨ν…μŠ€νŠΈ 데이터λ₯Ό λ°›μ•„, λ¦¬λž­ν‚ΉλΆ€ν„° νŒ¨ν‚Ή, λ‘œκΉ…κΉŒμ§€μ˜ μ „ 과정을 **ν•˜λ‚˜μ˜ νŠΈλžœμž­μ…˜μœΌλ‘œ 처리(Orchestration)**ν•©λ‹ˆλ‹€.
    - `/healthz` μ—”λ“œν¬μΈνŠΈλ₯Ό 톡해 μ™ΈλΆ€ λͺ¨λ‹ˆν„°λ§ μ‹œμŠ€ν…œμ΄ μ„œλ²„μ˜ μƒνƒœλ₯Ό μ‰½κ²Œ 확인할 수 μžˆλ„λ‘ κ΅¬ν˜„ν–ˆμŠ΅λ‹ˆλ‹€.

---

## 4. 버전 관리 및 λ¬Έμ„œν™” (Versioning & Documentation)

- **버전 μ—…λ°μ΄νŠΈ:** 핡심 κΈ°λŠ₯이 κ΅¬ν˜„λ¨μ— 따라, ν”„λ‘œμ νŠΈμ˜ 버전을 `0.2.1`μ—μ„œ **`1.0.1`**둜 상ν–₯ μ‘°μ •ν•˜μ—¬ μ€‘μš”ν•œ 진전을 λͺ…μ‹œν–ˆμŠ΅λ‹ˆλ‹€.
- **λ³€κ²½ 이λ ₯ 관리:** `CHANGELOG.md` νŒŒμΌμ— μƒκΈ°λœ λͺ¨λ“  κ΅¬ν˜„ 내역을 μƒμ„Ένžˆ κΈ°λ‘ν•˜μ—¬, μ‚¬μš©μžμ™€ κΈ°μ—¬μžκ°€ ν”„λ‘œμ νŠΈμ˜ λ°œμ „ 과정을 μ‰½κ²Œ 좔적할 수 μžˆλ„λ‘ 투λͺ…성을 ν™•λ³΄ν–ˆμŠ΅λ‹ˆλ‹€.

---

## 5. κΈ°λŒ€ 효과 및 λ‹€μŒ 단계 (Expected Impact & Next Steps)

- **κΈ°λŒ€ 효과:**
    - CRoM-EfficientLLM은 더 이상 아이디어가 μ•„λ‹Œ, **μ‹€μ œ RAG μ‹œμŠ€ν…œμ— μ μš©ν•˜μ—¬ μ»¨ν…μŠ€νŠΈ 관리 νš¨μœ¨μ„±μ„ ν…ŒμŠ€νŠΈν•  수 μžˆλŠ” μ‹€μš©μ μΈ 도ꡬ**둜 λ°œμ „ν–ˆμŠ΅λ‹ˆλ‹€.
    - κ°œλ°œμžλ“€μ€ LLM의 μ œν•œλœ μ»¨ν…μŠ€νŠΈ 창을 μ–΄λ–»κ²Œ ν•˜λ©΄ κ°€μž₯ 효율적으둜 μ‚¬μš©ν•  수 μžˆλŠ”μ§€μ— λŒ€ν•œ **μ •λŸ‰μ μΈ 데이터**λ₯Ό 얻을 수 있게 λ˜μ—ˆμŠ΅λ‹ˆλ‹€.

- **λ‹€μŒ 단계:**
    - `README.md`에 λͺ…μ‹œλœ `crom-demo` 및 `crom-bench` CLI κΈ°λŠ₯ κ΅¬ν˜„
    - μ‚¬μš©μžκ°€ μ›ν•˜λŠ” ν† ν¬λ‚˜μ΄μ €(Tokenizer)λ₯Ό 선택할 수 μžˆλŠ” κΈ°λŠ₯ μΆ”κ°€
    - λ‹€μ–‘ν•œ μ»¨ν…μŠ€νŠΈ 관리 μ „λž΅μ˜ μ„±λŠ₯을 비ꡐ할 수 μžˆλŠ” 벀치마크 μ‹œμŠ€ν…œ 고도화

---

**λ³΄κ³ μ„œ μ’…λ£Œ.**
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\dashboard\\grafana_dashboard.json`
```json
{}
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\dashboard\\prometheus_config.yml`
```


```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\docs\\architecture.md`
```markdown
# Architecture

This document outlines the architecture of the CRoM-EfficientLLM project.
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\docs\\versioning.md`
```markdown
# Versioning & PyPI Guidance

This document defines package naming, SemVer rules, and a future path to publish to PyPI.

## 1) Package name
- Distribution name (PyPI): `crom-efficientllm` (lowercase, hyphen-separated)
- Import name (module): `crom_efficientllm` (PEP 8 underscore)

> **Tip**: Keep both names consistent to avoid confusion in docs.

### Check name availability on PyPI
- Visit: https://pypi.org/project/crom-efficientllm/ (404 β†’ available)
- If taken, consider: `crom-efficient-llm`, `crom-llm-efficient`, `crom-ctx-pack`
- Reserve on TestPyPI first: use `test.pypi.org` to validate metadata & upload

## 2) Semantic Versioning (SemVer)
We follow **MAJOR.MINOR.PATCH**.

- **MAJOR**: Backward-incompatible API changes
  - e.g., rename function signatures (`budget_pack`), move/rename modules, change return schemas
- **MINOR**: Backward-compatible features
  - new functions/flags (e.g., `pack_summary`, CLI subcommands), performance improvements
- **PATCH**: Backward-compatible bug fixes
  - logic corrections, docs/CI fixes, dependency pin updates without API changes

### Pre-releases
Use suffixes: `-a.1`, `-b.1`, `-rc.1` (alpha/beta/release-candidate)
- Example: `0.3.0-rc.1`

### Deprecation Policy
- Mark deprecated APIs in `CHANGELOG.md` and docstrings
- Provide at least **one MINOR release** with warnings before removal

### Public API Surface
We commit compatibility for:
- `crom_efficientllm.budget_packer.packer`: `Chunk`, `budget_pack`, `pack_summary`
- `crom_efficientllm.rerank_engine.rerank`: `hybrid_rerank`
- `crom_efficientllm.drift_estimator.estimator`: `DriftEstimator`, `DriftMode`
- CLI entrypoints: `crom-demo`, `crom-bench` and their documented flags

## 3) Release Flow (GitHub β†’ PyPI later)
- Tag: `vX.Y.Z` β†’ GitHub Actions builds & creates a Release (artifacts attached)
- Keep `CHANGELOG.md` updated per release
- After API stabilizes, enable **PyPI publish** using a separate workflow with `PYPI_API_TOKEN` secret

### (Future) PyPI publishing steps
1. Create a PyPI account & project
2. Add `PYPI_API_TOKEN` to repo `Settings β†’ Secrets and variables β†’ Actions`
3. Add `release-pypi.yml` workflow to upload on tag
4. Verify install: `pip install crom-efficientllm` and import `crom_efficientllm`

---
_Last updated: 2025-09-02_
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\examples\\corpus\\sample_docs.jsonl`
```json
{"id": 1, "text": "AI ethics and governance frameworks for responsible AI."}
{"id": 2, "text": "Techniques for detecting model drift in production systems."}
{"id": 3, "text": "A recipe for sourdough bread and fermentation tips."}
{"id": 4, "text": "Hybrid search: combining sparse and dense retrieval methods."}
{"id": 5, "text": "Token budgets and prompt compression strategies for LLMs."}
{"id": 6, "text": "Monitoring with Prometheus and building Grafana dashboards."}
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\examples\\corpus\\sample_queries.jsonl`
```json
{"query": "how to detect drift in ai models"}
{"query": "ways to reduce llm token usage"}
{"query": "observability stack prometheus grafana"}
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\pyproject.toml`
```toml
[build-system]
requires = ["setuptools>=68", "wheel"]
build-backend = "setuptools.build_meta"

[project]
name = "crom-efficientllm"
version = "1.0.1"
description = "CRoM (Context Rot Mitigation)-EfficientLLM: Budget packing, hybrid rerank, and drift estimation with observability"
readme = "README.md"
requires-python = ">=3.9"
license = { text = "Apache-2.0" }
authors = [ { name = "Your Name" } ]
dependencies = [
  "numpy>=1.24,<3",
  "scikit-learn>=1.3,<2",
  "transformers>=4.41,<5",
  "sentence-transformers>=2.2,<3",
  "flask>=3,<4",
  "prometheus-client>=0.20,<1"
]

[project.optional-dependencies]
dev = [
  "pytest>=7",
  "ruff>=0.4",
  "black>=24.4",
  "pre-commit>=3.6",
  "matplotlib>=3.8,<4"
]
plugins = [
  "flashrank>=0.2; python_version>='3.9'",
  "llmlingua>=0.2; python_version>='3.9'",
  "evidently>=0.4; python_version>='3.9'"
]
haystack = [
  "farm-haystack[faiss,inference]>=1.26; python_version>='3.9'"
]

[project.urls]
Homepage = "https://github.com/Flamehaven/CRoM-Context-Rot-Mitigation--EfficientLLM"

[project.scripts]
"crom-demo" = "crom_efficientllm.demo:main"
"crom-bench" = "crom_efficientllm.cli:main"

[tool.setuptools]
package-dir = {"" = "src"}
packages = { find = { where = ["src"] } }

[tool.pytest.ini_options]
addopts = "-q"

[tool.black]
line-length = 100

[tool.ruff]
target-version = "py39"

[tool.ruff.lint]
select = ["E","F","I","UP","B","C4","SIM","PL","PERF","RUF","ANN"]
ignore = ["ANN101","ANN102"]

[tool.ruff.lint.per-file-ignores]
"tests/*" = ["S101","ANN","PLR2004"]
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\release_notes.md`
```markdown
# Release v0.2.1

## [0.2.1] - 2025-09-02
### Added
- CLI `--save-plots` option for `sweep` and `dp-curve`; saves PNG charts to `benchmarks/out/` (or `--out-dir`).
- README Quick Examples mention of plotting flag.
- This CHANGELOG.

### Changed
- Dev tooling: recommend `matplotlib` via dev extra for plotting.

β€” generated from [CHANGELOG.md](CHANGELOG.md)
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\requirements.txt`
```
numpy>=1.24,<3
scikit-learn>=1.3,<2
transformers>=4.41,<5
sentence-transformers>=2.2,<3
flask>=3,<4
prometheus-client>=0.20,<1
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\scripts\\gen_release_notes.py`
```python
#!/usr/bin/env python3
from __future__ import annotations
import os
import re
import sys
from pathlib import Path

ROOT = Path(__file__).resolve().parents[1]
CHANGELOG = ROOT / "CHANGELOG.md"
OUT = ROOT / "release_notes.md"

def main(tag: str) -> None:
    version = tag.lstrip("v").strip()
    if not CHANGELOG.exists():
        OUT.write_text(f"# Release {tag}\n\n(CHANGELOG.md not found)
", encoding="utf-8")
        return
    text = CHANGELOG.read_text(encoding="utf-8")
    pat = re.compile(rf"^##\s*[[^{re.escape(version)}]]?[^\n]*$", re.MULTILINE)
    m = pat.search(text)
    if not m:
        OUT.write_text(
            f"# Release {tag}\n\nSection for {version} not found in CHANGELOG.\n\n" + text,
            encoding="utf-8",
        )
        return
    start = m.end()
    m2 = re.search(r"^##\s+", text[start:], re.MULTILINE)
    end = start + (m2.start() if m2 else len(text) - start)
    section = text[m.start():end].strip()
    body = f"# Release {tag}\n\n{section}\n\nβ€” generated from [CHANGELOG.md](CHANGELOG.md)"
    OUT.write_text(body, encoding="utf-8")

if __name__ == "__main__":
    tag = sys.argv[1] if len(sys.argv) > 1 else os.environ.get("GITHUB_REF_NAME", "")
    if not tag:
        print("Usage: gen_release_notes.py vX.Y.Z", file=sys.stderr)
        sys.exit(2)
    main(tag)
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\scripts\\release.sh`
```bash
#!/usr/bin/env bash
set -euo pipefail

TAG=${1:-}
if [[ -z "$TAG" ]]; then
  echo "Usage: scripts/release.sh vX.Y.Z"; exit 1
fi

# sanity checks
if [[ -n $(git status --porcelain) ]]; then
  echo "❌ Working tree not clean"; exit 1
fi

# ensure deps
python -m pip install -e .[dev]
pre-commit run --all-files
pytest -q

# generate release notes preview from CHANGELOG
python scripts/gen_release_notes.py "$TAG"
if [[ -f release_notes.md ]]; then
  echo "--- release_notes.md (preview top 60 lines) ---"
  head -n 60 release_notes.md || true
  echo "--- end preview ---"
else
  echo "⚠️ release_notes.md not generated; will fall back to default notes in GH release"
fi

# tag & push


git tag -a "$TAG" -m "Release $TAG"
git push origin "$TAG"

echo "βœ… Pushed tag $TAG. GitHub Actions will create the Release automatically."
echo "➑️  Watch: https://github.com/Flamehaven/CRoM-EfficientLLM/actions"
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\src\\crom_efficientllm\\__init__.py`
```python
"""Public API for CRoM-EfficientLLM."""
from .budget_packer.packer import Chunk, budget_pack, pack_summary
from .rerank_engine.rerank import hybrid_rerank
from .drift_estimator.estimator import DriftEstimator, DriftMode

__all__ = [
    "Chunk",
    "budget_pack",
    "pack_summary",
    "hybrid_rerank",
    "DriftEstimator",
    "DriftMode",
]
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\src\\crom_efficientllm\\budget_packer.py`
```python
from typing import List, Dict
import logging

def enhanced_greedy_pack(chunks: List[Dict], budget: int, 
                        score_key: str = "score") -> tuple[List[Dict], Dict]:
    """
    κΈ°μ‘΄ greedy_pack ν•¨μˆ˜λ₯Ό ν™•μž₯ν•˜μ—¬ 상세 톡계 λ°˜ν™˜
    
    Returns:
        tuple: (packed_chunks, stats_dict)
    """
    if not chunks:
        return [], {
            "selected_count": 0,
            "packed_count": 0,
            "selected_tokens": 0,
            "packed_tokens": 0,
            "compression_ratio": 0.0,
            "token_savings": 0,
            "efficiency": 0.0
        }
    
    # 토큰 수 미리 계산
    for chunk in chunks:
        if "token_count" not in chunk:
            chunk["token_count"] = max(1, len(chunk.get("text", "")) // 4)
    
    # νš¨μœ¨μ„± κΈ°μ€€ μ •λ ¬ (score/token λΉ„μœ¨)
    sorted_chunks = sorted(
        chunks, 
        key=lambda x: x.get(score_key, 0) / x["token_count"], 
        reverse=True
    )
    
    # 그리디 νŒ¨ν‚Ή
    packed_chunks = []
    used_tokens = 0
    
    for chunk in sorted_chunks:
        if used_tokens + chunk["token_count"] <= budget:
            packed_chunks.append(chunk)
            used_tokens += chunk["token_count"]
    
    # 상세 톡계 계산
    total_selected_tokens = sum(chunk["token_count"] for chunk in chunks)
    
    stats = {
        "selected_count": len(chunks),
        "packed_count": len(packed_chunks),
        "selected_tokens": total_selected_tokens,
        "packed_tokens": used_tokens,
        "compression_ratio": len(packed_chunks) / len(chunks) if chunks else 0.0,
        "token_savings": total_selected_tokens - used_tokens,
        "efficiency": used_tokens / budget if budget > 0 else 0.0
    }
    
    # πŸ“Š λ‘œκΉ… μΆ”κ°€ (κΈ°μ‘΄ μ½”λ“œμ— μ—†λ˜ 톡계 κ°€μ‹œμ„±)
    logging.info(f"Packing completed: {stats['packed_count']}/{stats['selected_count']} chunks, "
                f"tokens: {stats['packed_tokens']}/{stats['selected_tokens']} "
                f"(efficiency: {stats['efficiency']:.1%})")
    
    return packed_chunks, stats
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\src\\crom_efficientllm\\capsule_logger.py`
```python
import json
from pathlib import Path
from datetime import datetime
from typing import Union, Dict
import logging

class ExplainCapsuleLogger:
    """μŠ€ν‚€λ§ˆ 기반 μ„€λͺ… 캑슐 μ €μž₯ μ‹œμŠ€ν…œ"""
    
    def __init__(self, log_directory: str = "artifacts/logs"):
        self.log_dir = Path(log_directory)
        self.log_dir.mkdir(parents=True, exist_ok=True)
        
        # 둜그 파일 κ²½λ‘œλ“€
        self.capsules_file = self.log_dir / "explain_capsules.jsonl"
        self.metrics_file = self.log_dir / "processing_metrics.jsonl"
        self.errors_file = self.log_dir / "error_log.jsonl"
        
        logging.info(f"ExplainCapsule Logger initialized: {self.log_dir}")
    
    def create_explain_capsule(self, query: str, response_data: Dict, 
                              processing_stats: Dict, 
                              cross_encoder_status: str) -> Dict:
        """μŠ€ν‚€λ§ˆ μ€€μˆ˜ μ„€λͺ… 캑슐 생성"""
        
        capsule = {
            # πŸ”– 메타데이터 (ν•„μˆ˜)
            "timestamp": datetime.now().isoformat(),
            "version": "1.0",
            "processor": "CRoM-Enhanced",
            
            # πŸ“ 쿼리 정보
            "query": {
                "text": query,
                "length": len(query),
                "token_estimate": len(query) // 4
            },
            
            # πŸ“Š 처리 톡계 (패치 1μ—μ„œ ν™•μž₯된 정보)
            "processing_stats": {
                **processing_stats,
                "cross_encoder_status": cross_encoder_status
            },
            
            # πŸ”§ μ‹œμŠ€ν…œ μƒνƒœ
            "system_state": {
                "cross_encoder_available": cross_encoder_status not in ["disabled", "unavailable"]
            },

            # πŸ“¦ 원본 및 κ²°κ³Ό 청크
            "chunks": {
                "packed": response_data.get("chunks", [])
            }
        }
        return capsule

    def log_capsule(self, capsule: Dict):
        """μ„€λͺ… μΊ‘μŠμ„ .jsonl νŒŒμΌμ— 기둝"""
        try:
            with open(self.capsules_file, "a", encoding="utf-8") as f:
                f.write(json.dumps(capsule, ensure_ascii=False) + "\n")
        except Exception as e:
            logging.error(f"Failed to log explain capsule: {e}")

    def log_error(self, error_details: Dict):
        """였λ₯˜ 정보λ₯Ό .jsonl νŒŒμΌμ— 기둝"""
        try:
            error_details["timestamp"] = datetime.now().isoformat()
            with open(self.errors_file, "a", encoding="utf-8") as f:
                f.write(json.dumps(error_details, ensure_ascii=False) + "\n")
        except Exception as e:
            logging.error(f"Failed to log error: {e}")
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\src\\crom_efficientllm\\cli.py`
```python
from __future__ import annotations

import argparse
import json
import os
import time
from dataclasses import dataclass
from typing import List, Dict, Sequence

import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

from crom_efficientllm.budget_packer.packer import budget_pack, Chunk
from crom_efficientllm.rerank_engine.rerank import hybrid_rerank

try:
    from sentence_transformers import SentenceTransformer
except Exception:  # pragma: no cover
    SentenceTransformer = None  # type: ignore

# Optional plugins are imported lazily when flags are set

@dataclass
class Doc:
    id: str
    text: str

def load_jsonl(path: str) -> List[Dict]:
    with open(path, "r", encoding="utf-8") as f:
        return [json.loads(line) for line in f]

def build_corpus(path: str) -> List[Doc]:
    rows = load_jsonl(path)
    return [Doc(id=str(r.get("id", i)), text=str(r["text"])) for i, r in enumerate(rows)]

def sparse_retrieval(query: str, corpus: Sequence[Doc], k: int = 100) -> List[Dict]:
    texts = [d.text for d in corpus]
    vect = TfidfVectorizer(ngram_range=(1, 2)).fit(texts)
    D = vect.transform(texts)
    Q = vect.transform([query])
    sims = cosine_similarity(Q, D).ravel()
    order = np.argsort(-sims)[:k]
    return [{"id": corpus[i].id, "text": corpus[i].text, "score_sparse": float(sims[i])} for i in order]

def dense_embed_model(name: str):
    if SentenceTransformer is None:
        raise RuntimeError("sentence-transformers not installed. Install with `pip install -e .`.")
    return SentenceTransformer(name)

def _apply_flashrank(query: str, docs: List[Dict], model_name: str) -> List[Dict]:
    try:
        from crom_efficientllm.plugins.flashrank_reranker import flashrank_rerank
    except Exception as e:  # pragma: no cover
        raise RuntimeError("FlashRank plugin not available. Install extras: pip install .[plugins]") from e
    ranked = flashrank_rerank(query, docs, model_name=model_name)
    # Normalize plugin score to 0..1 and put into score_final
    scores = np.array([d.get("score_flashrank", 0.0) for d in ranked], dtype=np.float32)
    if scores.size and float(scores.max() - scores.min()) > 1e-12:
        s = (scores - scores.min()) / (scores.max() - scores.min())
    else:
        s = np.zeros_like(scores)
    for i, d in enumerate(ranked):
        d["score_final"] = float(s[i])
    return ranked

def _apply_llmlingua(text: str, ratio: float) -> str:
    try:
        from crom_efficientllm.plugins.llmlingua_compressor import compress_prompt
    except Exception as e:  # pragma: no cover
        raise RuntimeError("LLMLingua plugin not available. Install extras: pip install .[plugins]") from e
    return compress_prompt(text, target_ratio=ratio)

def _save_evidently_report(all_embs: List[List[float]], out_html: str) -> None:
    try:
        from crom_efficientllm.plugins.evidently_drift import drift_report
    except Exception as e:  # pragma: no cover
        raise RuntimeError("Evidently plugin not available. Install extras: pip install .[plugins]") from e
    n = len(all_embs)
    if n < 4:
        return
    ref = all_embs[: n // 2]
    cur = all_embs[n // 2 :]
    rep = drift_report(ref, cur)
    rep.save_html(out_html)

def mock_llm_generate(prompt: str) -> str:
    time.sleep(0.005)  # simulate small latency
    return "[MOCK] " + prompt[:160]

def e2e(args: argparse.Namespace) -> None:
    corpus = build_corpus(args.corpus)
    queries = [r["query"] for r in load_jsonl(args.queries)]
    embed = dense_embed_model(args.model)
    all_embs: List[List[float]] = []

    t0 = time.perf_counter()
    all_rows = []
    for q in queries:
        t_s = time.perf_counter()
        cands = sparse_retrieval(q, corpus, k=args.k)
        t_sparse = (time.perf_counter() - t_s) * 1000

        t_r = time.perf_counter()
        if args.use_flashrank:
            reranked = _apply_flashrank(q, cands, args.flashrank_model)
        else:
            reranked = hybrid_rerank(q, cands, embed, alpha=args.alpha)
        t_rerank = (time.perf_counter() - t_r) * 1000

        # token heuristic + budget pack
        chunks = [
            Chunk(text=d["text"], score=d.get("score_final", d.get("score_sparse", 0.0)), tokens=max(1, len(d["text"]) // 4))
            for d in reranked
        ]
        budget_tokens = int(sum(c.tokens for c in chunks) * args.budget)
        t_p = time.perf_counter()
        packed = budget_pack(chunks, budget=budget_tokens)
        t_pack = (time.perf_counter() - t_p) * 1000

        prompt = "\n\n".join(c.text for c in packed) + f"\n\nQ: {q}\nA:"
        if args.use_llmlingua:
            prompt = _apply_llmlingua(prompt, ratio=args.compress_ratio)

        # collect embeddings for drift snapshot (mean-pooled)
        with np.errstate(all="ignore"):
            if len(packed) > 0:
                doc_embs = embed.encode([c.text for c in packed], convert_to_numpy=True)
                vec = np.mean(doc_embs, axis=0).tolist()
                all_embs.append(vec)

        t_l = time.perf_counter()
        _ = mock_llm_generate(prompt)
        t_llm = (time.perf_counter() - t_l) * 1000

        total = (time.perf_counter() - t_s) * 1000
        all_rows.append({
            "query": q,
            "sparse_ms": t_sparse,
            "rerank_ms": t_rerank,
            "pack_ms": t_pack,
            "llm_ms": t_llm,
            "total_ms": total,
            "packed_tokens": sum(c.tokens for c in packed),
            "orig_tokens": sum(c.tokens for c in chunks),
            "save_ratio": 1 - (sum(c.tokens for c in packed) / max(1, sum(c.tokens for c in chunks))),
            "used_flashrank": bool(args.use_flashrank),
            "used_llmlingua": bool(args.use_llmlingua),
        })

    elapsed = (time.perf_counter() - t0) * 1000
    os.makedirs(args.out_dir, exist_ok=True)
    out_path = os.path.join(args.out_dir, "e2e_results.jsonl")
    with open(out_path, "w", encoding="utf-8") as f:
        for r in all_rows:
            f.write(json.dumps(r, ensure_ascii=False) + "\n")
    print(f"saved results -> {out_path} ({len(all_rows)} queries) ; elapsed={elapsed:.2f}ms")

    if args.use_evidently and all_embs:
        html_path = os.path.join(args.out_dir, "evidently_report.html")
        _save_evidently_report(all_embs, html_path)
        print(f"evidently report -> {html_path}")

def budget_sweep(args: argparse.Namespace) -> None:
    import itertools
    corpus = build_corpus(args.corpus)
    queries = [r["query"] for r in load_jsonl(args.queries)][: args.max_q]
    embed = dense_embed_model(args.model)

    budgets = [b / 100.0 for b in range(args.b_min, args.b_max + 1, args.b_step)]
    rows = []
    for q, b in itertools.product(queries, budgets):
        cands = sparse_retrieval(q, corpus, k=args.k)
        reranked = hybrid_rerank(q, cands, embed, alpha=args.alpha)
        chunks = [Chunk(text=d["text"], score=d["score_final"], tokens=max(1, len(d["text"]) // 4)) for d in reranked]
        budget_tokens = int(sum(c.tokens for c in chunks) * b)
        packed = budget_pack(chunks, budget=budget_tokens)
        rows.append({
            "query": q,
            "budget": b,
            "packed_tokens": sum(c.tokens for c in packed),
            "orig_tokens": sum(c.tokens for c in chunks),
            "save_ratio": 1 - (sum(c.tokens for c in packed) / max(1, sum(c.tokens for c in chunks))),
            "avg_score": float(np.mean([c.score for c in packed])) if packed else 0.0,
        })

    os.makedirs(args.out_dir, exist_ok=True)
    out_path = os.path.join(args.out_dir, "budget_sweep.jsonl")
    with open(out_path, "w", encoding="utf-8") as f:
        for r in rows:
            f.write(json.dumps(r, ensure_ascii=False) + "\n")
    print(f"saved results -> {out_path} ; points={len(rows)}")

    if args.save_plots:
        try:
            import matplotlib.pyplot as plt  # noqa: F401
            import matplotlib.pyplot as _plt
        except Exception:
            print("[warn] matplotlib not installed; install dev extras: pip install -e .[dev]")
        else:
            # Aggregate by budget
            import collections
            agg = collections.defaultdict(list)
            for r in rows:
                agg[r["budget"]].append(r)
            budgets_sorted = sorted(agg.keys())
            avg_save = [float(np.mean([x["save_ratio"] for x in agg[b]])) for b in budgets_sorted]
            avg_score = [float(np.mean([x["avg_score"] for x in agg[b]])) for b in budgets_sorted]

            _plt.figure()
            _plt.plot([b * 100 for b in budgets_sorted], [s * 100 for s in avg_save], marker="o")
            _plt.xlabel("Budget (%)")
            _plt.ylabel("Avg Save Ratio (%)")
            _plt.title("Budget Sweep: Save Ratio vs Budget")
            _plt.grid(True)
            _plt.tight_layout()
            _plt.savefig(os.path.join(args.out_dir, "budget_sweep.png")),

            _plt.figure()
            _plt.plot([s * 100 for s in avg_save], avg_score, marker="o")
            _plt.xlabel("Save Ratio (%)")
            _plt.ylabel("Avg Score (packed)")
            _plt.title("Pareto: Quality vs Savings")
            _plt.grid(True)
            _plt.tight_layout()
            _plt.savefig(os.path.join(args.out_dir, "budget_pareto.png")),
            print("plots ->", os.path.join(args.out_dir, "budget_sweep.png"), ",", os.path.join(args.out_dir, "budget_pareto.png"))

def scaling(args: argparse.Namespace) -> None:
    def make_synth(n: int, seed: int = 42):
        rng = np.random.default_rng(seed)
        tokens = np.clip(rng.lognormal(4.0, 0.6, n).astype(int), 5, 2000)
        score = rng.normal(0, 1, n)
        return [Chunk(text="x" * int(t * 4), score=float(s), tokens=int(t)) for s, t in zip(score, tokens)]

    for n in [1000, 5000, 10000, 20000, 50000, 100000]:
        if n > args.n_max:
            break
        chunks = make_synth(n)
        budget = int(sum(c.tokens for c in chunks) * args.budget)
        t0 = time.perf_counter()
        _ = budget_pack(chunks, budget)
        ms = (time.perf_counter() - t0) * 1000
        print(f"n={n:6d}  budget={args.budget:.0%}  time={ms:8.2f} ms")

def dp_curve(args: argparse.Namespace) -> None:
    def make_synth(n: int, seed: int = 123, corr: float = 0.6):
        rng = np.random.default_rng(seed)
        true_rel = rng.normal(0, 1, n)
        noise = rng.normal(0, 1, n) * np.sqrt(1 - corr**2)
        score = corr * true_rel + noise
        tokens = np.clip(rng.lognormal(4.0, 0.6, n).astype(int), 5, 2000)
        chunks = [Chunk(text="x" * int(t * 4), score=float(s), tokens=int(t)) for s, t in zip(score, tokens)]
        return chunks, true_rel

    def optimal(chunks: Sequence[Chunk], values: np.ndarray, budget: int) -> float:
        B = budget
        dp = np.zeros(B + 1, dtype=np.float32)
        for i, ch in enumerate(chunks):
            wt = ch.tokens
            val = max(0.0, float(values[i]))
            for b in range(B, wt - 1, -1):
                dp[b] = max(dp[b], dp[b - wt] + val)
        return float(dp[B])

    chunks, true_rel = make_synth(args.n)
    total = sum(c.tokens for c in chunks)
    budgets = [int(total * b / 100.0) for b in range(args.b_min, args.b_max + 1, args.b_step)]
    out_rows = []

    for B in budgets:
        sel = budget_pack(chunks, B)
        idx_map = {id(c): i for i, c in enumerate(chunks)}
        rel_bp = float(np.sum([max(0.0, true_rel[idx_map[id(c)]]) for c in sel]))
        rel_opt = optimal(chunks[: args.n_opt], true_rel[: args.n_opt], min(B, sum(c.tokens for c in chunks[: args.n_opt])))
        pct = rel_bp / max(rel_opt, 1e-9)
        out_rows.append({"budget": B, "pct": pct, "rel_bp": rel_bp, "rel_opt": rel_opt})
        print(f"budget={B:8d}  rel_bp={rel_bp:8.3f}  rel_optβ‰ˆ{rel_opt:8.3f}  pctβ‰ˆ{pct*100:5.1f}% (subset n={args.n_opt})")

    if args.save_plots:
        try:
            import matplotlib.pyplot as plt  # noqa: F401
            import matplotlib.pyplot as _plt
        except Exception:
            print("[warn] matplotlib not installed; install dev extras: pip install -e .[dev]")
        else:
            _plt.figure()
            xs = [r["budget"] * 100.0 / total for r in out_rows]
            ys = [r["pct"] * 100 for r in out_rows]
            _plt.plot(xs, ys, marker="o")
            _plt.xlabel("Budget (%)")
            _plt.ylabel("% of optimal (subset)")
            _plt.title("DP Curve: Greedy vs Optimal")
            _plt.grid(True)
            _plt.tight_layout()
            os.makedirs(args.out_dir, exist_ok=True)
            _plt.savefig(os.path.join(args.out_dir, "dp_curve.png")),
            print("plot ->", os.path.join(args.out_dir, "dp_curve.png")),

def compare_haystack(args: argparse.Namespace) -> None:
    try:
        from haystack.nodes import BM25Retriever, SentenceTransformersRetriever
        from haystack.document_stores import InMemoryDocumentStore
    except Exception as e:  # pragma: no cover
        raise RuntimeError("Install extras: pip install .[haystack]") from e

    corpus = build_corpus(args.corpus)
    docs = [{"content": d.text, "meta": {"id": d.id}} for d in corpus]
    store = InMemoryDocumentStore(use_bm25=True)
    store.write_documents(docs)

    bm25 = BM25Retriever(document_store=store)
    dretr = SentenceTransformersRetriever(document_store=store, model_name_or_path=args.model)

    queries = [r["query"] for r in load_jsonl(args.queries)][: args.max_q]
    for q in queries:
        t0 = time.perf_counter()
        bm = bm25.retrieve(q, top_k=args.k)
        dn = dretr.retrieve(q, top_k=args.k)
        ms = (time.perf_counter() - t0) * 1000
        print(f"{q[:40]:40s}  bm25={len(bm):3d}  dense={len(dn):3d}  time={ms:7.2f} ms")

def main() -> None:
    ap = argparse.ArgumentParser(prog="crom-bench")
    sub = ap.add_subparsers(dest="cmd", required=True)

    p = sub.add_parser("e2e", help="end-to-end: retrieval β†’ rerank β†’ pack β†’ mock LLM")
    p.add_argument("--corpus", default="examples/corpus/sample_docs.jsonl")
    p.add_argument("--queries", default="examples/corpus/sample_queries.jsonl")
    p.add_argument("--model", default="sentence-transformers/all-MiniLM-L6-v2")
    p.add_argument("--k", type=int, default=200)
    p.add_argument("--alpha", type=float, default=0.5)
    p.add_argument("--budget", type=float, default=0.3)
    # plugins
    p.add_argument("--use-flashrank", action="store_true")
    p.add_argument("--flashrank-model", default="ms-marco-TinyBERT-L-2-v2")
    p.add_argument("--use-llmlingua", action="store_true")
    p.add_argument("--compress-ratio", type=float, default=0.6)
    p.add_argument("--use-evidently", action="store_true")

    p.add_argument("--out-dir", default="benchmarks/out")
    p.set_defaults(func=e2e)

    p2 = sub.add_parser("sweep", help="budget sweep + Pareto csv")
    p2.add_argument("--corpus", default="examples/corpus/sample_docs.jsonl")
    p2.add_argument("--queries", default="examples/corpus/sample_queries.jsonl")
    p2.add_argument("--model", default="sentence-transformers/all-MiniLM-L6-v2")
    p2.add_argument("--k", type=int, default=200)
    p2.add_argument("--alpha", type=float, default=0.5)
    p2.add_argument("--b-min", type=int, default=10)
    p2.add_argument("--b-max", type=int, default=90)
    p2.add_argument("--b-step", type=int, default=10)
    p2.add_argument("--max-q", type=int, default=20)
    p2.add_argument("--out-dir", default="benchmarks/out")
    p2.add_argument("--save-plots", action="store_true")
    p2.set_defaults(func=budget_sweep)

    p3 = sub.add_parser("scale", help="scaling runtime with synthetic data")
    p3.add_argument("--n-max", type=int, default=100000)
    p3.add_argument("--budget", type=float, default=0.3)
    p3.set_defaults(func=scaling)

    p4 = sub.add_parser("dp-curve", help="% of optimal vs budget (synthetic)")
    p4.add_argument("--n", type=int, default=2000)
    p4.add_argument("--n-opt", type=int, default=200)
    p4.add_argument("--b-min", type=int, default=10)
    p4.add_argument("--b-max", type=int, default=90)
    p4.add_argument("--b-step", type=int, default=10)
    p4.add_argument("--out-dir", default="benchmarks/out")
    p4.add_argument("--save-plots", action="store_true")
    p4.set_defaults(func=dp_curve)

    p5 = sub.add_parser("haystack-compare", help="compare BM25 vs dense retrievers (Haystack)")
    p5.add_argument("--corpus", default="examples/corpus/sample_docs.jsonl")
    p5.add_argument("--queries", default="examples/corpus/sample_queries.jsonl")
    p5.add_argument("--model", default="sentence-transformers/all-MiniLM-L6-v2")
    p5.add_argument("--k", type=int, default=50)
    p5.add_argument("--max-q", type=int, default=10)
    p5.set_defaults(func=compare_haystack)

    args = ap.parse_args()
    args.func(args)

if __name__ == "__main__":
    main()
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\src\\crom_efficientllm\\cross_encoder.py`
```python
from typing import List, Optional
import logging

class SafeCrossEncoderManager: 
    """Cross-Encoder μƒνƒœλ₯Ό λͺ…μ‹œμ μœΌλ‘œ κ΄€λ¦¬ν•˜λŠ” 클래슀"""
    
    def __init__(self, model_name: Optional[str] = None, device: str = "cpu"):
        self.model_name = model_name
        self.device = device
        self.model = None
        self.status = "unknown"
        self.last_error = None
        
        self._initialize()
    
    def _initialize(self):
        """Cross-Encoder μ΄ˆκΈ°ν™” with 상세 μƒνƒœ 좔적"""
        if not self.model_name:
            self.status = "disabled"
            logging.info("Cross-Encoder: DISABLED (no model specified)")
            return
        
        try:
            # sentence-transformers μž„ν¬νŠΈ 체크
            from sentence_transformers import CrossEncoder
            
            # λͺ¨λΈ λ‘œλ”© μ‹œλ„
            self.model = CrossEncoder(self.model_name, device=self.device)
            self.status = f"active ({self.model_name})"
            
            # πŸ†• 성곡 μ‹œ 상세 λ‘œκΉ…
            logging.info(f"Cross-Encoder: ACTIVE")
            logging.info(f"  └─ Model: {self.model_name}")
            logging.info(f"  └─ Device: {self.device}")
            
        except ImportError as e:
            self.status = "unavailable (sentence-transformers not installed)"
            self.last_error = str(e)
            
            # πŸ†• μ˜μ‘΄μ„± λˆ„λ½ μ‹œ λͺ…ν™•ν•œ μ•ˆλ‚΄
            logging.warning("Cross-Encoder: UNAVAILABLE")
            logging.warning("  └─ Reason: sentence-transformers not installed")
            logging.warning("  └─ Install: pip install sentence-transformers")
            
        except Exception as e:
            self.status = f"error ({type(e).__name__})"
            self.last_error = str(e)
            
            # πŸ†• 기타 였λ₯˜ μ‹œ 상세 λ‘œκΉ…
            logging.error(f"Cross-Encoder: ERROR")
            logging.error(f"  └─ Model: {self.model_name}")
            logging.error(f"  └─ Error: {str(e)}")
    
    def get_status_for_response(self) -> str:
        """API μ‘λ‹΅μš© μƒνƒœ λ¬Έμžμ—΄"""        return self.status
    
    def rerank(self, query: str, documents: List[str]) -> List[float]:
        """μ•ˆμ „ν•œ λ¦¬λž­ν‚Ή with μƒνƒœ λ‘œκΉ…"""
        if self.model is None:
            # πŸ†• λΉ„ν™œμ„±ν™” μƒνƒœ λͺ…μ‹œμ  λ‘œκΉ…
            logging.debug(f"Cross-Encoder rerank skipped: {self.status}")
            return [0.5] * len(documents)  # 쀑립 점수
        
        try:
            pairs = [(query, doc) for doc in documents]
            scores = self.model.predict(pairs)
            
            # πŸ†• 성곡적 λ¦¬λž­ν‚Ή λ‘œκΉ…
            logging.debug(f"Cross-Encoder reranked {len(documents)} documents")
            
            return scores.tolist() if hasattr(scores, 'tolist') else list(scores)
            
        except Exception as e:
            # πŸ†• λŸ°νƒ€μž„ 였λ₯˜ μ‹œ 상세 λ‘œκΉ…
            logging.error(f"Cross-Encoder rerank failed: {str(e)}")
            logging.error(f"  └─ Fallback: returning neutral scores")
            return [0.5] * len(documents)
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\src\\crom_efficientllm\\demo.py`
```python
"""
Demo & Metrics Server for CRoM-EfficientLLM
------------------------------------------
- `crom-demo demo`  : run sample pipeline
- `crom-demo serve` : start Flask + Prometheus metrics on :8000
"""
from __future__ import annotations

import argparse
from typing import List

from flask import Flask, Response
from prometheus_client import Counter, Gauge, generate_latest, CONTENT_TYPE_LATEST

from crom_efficientllm.budget_packer.packer import budget_pack, pack_summary, Chunk
from crom_efficientllm.rerank_engine.rerank import hybrid_rerank
from crom_efficientllm.drift_estimator.estimator import DriftEstimator, DriftMode

# ---- Prometheus metrics ----
TOKENS_SAVED = Gauge("crom_tokens_saved", "Tokens saved by budget packer")
DRIFT_ALERTS = Counter("crom_drift_alerts_total", "Total drift alerts emitted")

class DummyEmbed:
    def encode(self, text_or_list, convert_to_numpy=False):
        if isinstance(text_or_list, list):
            return [self.encode(t) for t in text_or_list]
        vec = [ord(c) % 7 for c in str(text_or_list)[:16]]
        while len(vec) < 16:
            vec.append(0)
        return vec

def run_demo() -> None:
    chunks: List[Chunk] = [
        Chunk(text="AI ethics is crucial", score=0.9, tokens=50),
        Chunk(text="Unrelated text", score=0.2, tokens=40),
        Chunk(text="Drift detection research", score=0.8, tokens=60),
    ]
    packed = budget_pack(chunks, budget=80)
    summary = pack_summary(packed)
    print("Packed:", [c.text for c in packed], summary)

    docs = [{"text": "AI drift measurement"}, {"text": "Cooking recipes"}]
    reranked = hybrid_rerank("AI ethics", docs, DummyEmbed(), alpha=0.5)
    print("Reranked:", [d["text"] for d in reranked])

    de = DriftEstimator(threshold=0.5, mode=DriftMode.L2)
    print("Drift state:", de.state())
    print("Drift alert?", de.update([1, 2, 3]))
    print("Drift alert?", de.update([10, 10, 10]))
    print("Drift state:", de.state())

    # Update metrics
    TOKENS_SAVED.set(max(0, sum(c.tokens for c in chunks) - summary["tokens"]))
    alert1, *_ = de.update([1, 2, 3])
    alert2, *_ = de.update([10, 10, 10])
    if alert1:
        DRIFT_ALERTS.inc()
    if alert2:
        DRIFT_ALERTS.inc()

def create_app() -> Flask:
    app = Flask(__name__)

    @app.get("/healthz")
    def healthz():
        return {"status": "ok"}

    @app.get("/metrics")
    def metrics():
        return Response(generate_latest(), mimetype=CONTENT_TYPE_LATEST)

    return app

def main() -> None:
    parser = argparse.ArgumentParser(prog="crom-demo")
    sub = parser.add_subparsers(dest="cmd", required=True)
    sub.add_parser("demo", help="run sample pipeline")

    pserve = sub.add_parser("serve", help="start metrics server on :8000")
    pserve.add_argument("--host", default="0.0.0.0")
    pserve.add_argument("--port", type=int, default=8000)

    args = parser.parse_args()

    if args.cmd == "demo":
        run_demo()
        return

    if args.cmd == "serve":
        app = create_app()
        app.run(host=args.host, port=args.port)
        return

if __name__ == "__main__":
    main()
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\src\\crom_efficientllm\\server.py`
```python
from fastapi import FastAPI, HTTPException
import time
from typing import List, Dict
import logging

# λ‚΄λΆ€ λͺ¨λ“ˆ μž„ν¬νŠΈ
from .budget_packer import enhanced_greedy_pack
from .cross_encoder import SafeCrossEncoderManager
from .capsule_logger import ExplainCapsuleLogger

# --- FastAPI μ•± 및 μ£Όμš” μ»΄ν¬λ„ŒνŠΈ μ΄ˆκΈ°ν™” ---

app = FastAPI(
    title="CRoM-EfficientLLM Server",
    description="Context Reranking and Management for Efficient LLMs",
    version="1.0.1"
)

logging.basicConfig(level=logging.INFO)

# μ»΄ν¬λ„ŒνŠΈ μΈμŠ€ν„΄μŠ€ν™”
# TODO: μ„€μ • 파일(config.yaml)μ—μ„œ λͺ¨λΈ 이름 등을 λ‘œλ“œν•˜λ„λ‘ κ°œμ„  ν•„μš”
ce_manager = SafeCrossEncoderManager(model_name="ms-marco-TinyBERT-L-2-v2")
capsule_logger = ExplainCapsuleLogger(log_directory="artifacts/logs")


# --- 응닡 μŠ€ν‚€λ§ˆ 및 헬퍼 ν•¨μˆ˜ ---

class ProcessResponseV2:
    """ν™•μž₯된 /process μ—”λ“œν¬μΈνŠΈ 응닡 μŠ€ν‚€λ§ˆ 헬퍼"""
    
    @staticmethod
    def create_response(query: str, packed_chunks: List[Dict], 
                       processing_stats: Dict, cross_encoder_status: str, 
                       processing_time: float) -> Dict:
        """κ°œμ„ λœ 응닡 생성"""
        
        response = {
            "success": True,
            "query": query,
            "chunks": packed_chunks,
            "stats": processing_stats, # packing 톡계
            "meta": {
                "cross_encoder_status": cross_encoder_status,
                "processing_time_ms": processing_time * 1000,
                "timestamp": time.time()
            }
        }
        return response

# --- API μ—”λ“œν¬μΈνŠΈ μ •μ˜ ---

@app.post("/process", summary="Rerank and pack text chunks")
def process_chunks(query: str, chunks: List[Dict], budget: int = 4096):
    """
    μ£Όμ–΄μ§„ 쿼리와 청크 λͺ©λ‘μ„ λ¦¬λž­ν‚Ήν•˜κ³  μ˜ˆμ‚°μ— 맞게 νŒ¨ν‚Ήν•©λ‹ˆλ‹€.
    """
    start_time = time.time()

    try:
        # 1. Cross-Encoder둜 λ¦¬λž­ν‚Ή (ν™œμ„±ν™” μ‹œ)
        doc_texts = [chunk.get("text", "") for chunk in chunks]
        scores = ce_manager.rerank(query, doc_texts)
        for chunk, score in zip(chunks, scores):
            chunk["score"] = score

        # 2. μ˜ˆμ‚°μ— 맞게 νŒ¨ν‚Ή
        packed_chunks, stats = enhanced_greedy_pack(chunks, budget=budget, score_key="score")

        # 3. μ΅œμ’… 응닡 생성
        processing_time = time.time() - start_time
        response_data = ProcessResponseV2.create_response(
            query=query,
            packed_chunks=packed_chunks,
            processing_stats=stats,
            cross_encoder_status=ce_manager.get_status_for_response(),
            processing_time=processing_time
        )

        # 4. μ„€λͺ… 캑슐 λ‘œκΉ…
        capsule = capsule_logger.create_explain_capsule(
            query=query,
            response_data=response_data,
            processing_stats=stats,
            cross_encoder_status=ce_manager.get_status_for_response()
        )
        capsule_logger.log_capsule(capsule)

        return response_data

    except Exception as e:
        logging.error(f"Error during /process: {e}", exc_info=True)
        # 였λ₯˜ λ‘œκΉ…
        capsule_logger.log_error({
            "endpoint": "/process",
            "error": str(e),
            "query": query,
        })
        raise HTTPException(status_code=500, detail=f"Internal Server Error: {e}")

@app.get("/healthz", summary="Health check")
def health_check():
    """μ„œλ²„μ˜ μƒνƒœλ₯Ό ν™•μΈν•©λ‹ˆλ‹€."""
    return {"status": "ok", "cross_encoder": ce_manager.get_status_for_response()}

@app.get("/metrics", summary="Get Prometheus metrics")
def get_metrics():
    """Prometheus λ©”νŠΈλ¦­μ„ λ…ΈμΆœν•©λ‹ˆλ‹€."""
    # TODO: Prometheus-clientλ₯Ό μ‚¬μš©ν•˜μ—¬ μ‹€μ œ λ©”νŠΈλ¦­μ„ κ΅¬ν˜„ν•΄μ•Ό 함
    return {"message": "Metrics endpoint is active. Implement with prometheus-client."}
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\tests\\test_drift.py`
```python
from crom_efficientllm.drift_estimator.estimator import DriftEstimator, DriftMode

def test_drift_triggers():
    de = DriftEstimator(threshold=0.1, mode=DriftMode.L2)
    alert, dist, ewma = de.update([0, 0, 0])
    assert alert is False
    alert, dist, ewma = de.update([1, 0, 0])
    assert isinstance(alert, bool)
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\tests\\test_packer.py`
```python
from crom_efficientllm.budget_packer.packer import budget_pack, Chunk

def test_budget_pack_respects_budget():
    chunks = [Chunk("a", 1.0, 60), Chunk("b", 0.9, 50), Chunk("c", 0.5, 20)]
    sel = budget_pack(chunks, budget=70)
    assert sum(c.tokens for c in sel) <= 70

def test_budget_pack_sorting_stable():
    chunks = [
        {"text": "x", "score": 0.9, "tokens": 30},
        {"text": "y", "score": 0.9, "tokens": 20},
        {"text": "z", "score": 0.8, "tokens": 10},
    ]
    sel = budget_pack(chunks, budget=60)
    assert [c.text for c in sel] == ["y", "x", "z"]
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\tests\\test_rerank.py`
```python
from crom_efficientllm.rerank_engine.rerank import hybrid_rerank

class Dummy:
    def encode(self, text_or_list, convert_to_numpy=False):
        if isinstance(text_or_list, list):
            return [self.encode(t) for t in text_or_list]
        vec = [ord(c) % 5 for c in str(text_or_list)[:8]]
        while len(vec) < 8:
            vec.append(0)
        return vec

def test_hybrid_rerank_returns_scores():
    docs = [{"text": "alpha"}, {"text": "beta"}]
    out = hybrid_rerank("alp", docs, Dummy(), alpha=0.5)
    assert len(out) == 2
    assert {"score_sparse", "score_dense", "score_final"} <= set(out[0].keys())
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\src\\crom_efficientllm\\budget_packer\\__init__.py`
```python
from .packer import Chunk, budget_pack, pack_summary
__all__ = ["Chunk", "budget_pack", "pack_summary"]
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\src\\crom_efficientllm\\budget_packer\\packer.py`
```python
"""
Budget Packer
-------------
Greedy packing of highest-scoring chunks under a token budget.
- Stable ordering (score desc, tokens asc, original index asc)
- Input validation and optional token estimation
"""
from __future__ import annotations

from dataclasses import dataclass
from typing import Any, Iterable, List, Sequence, Tuple, Union, Optional

@dataclass(frozen=True)
class Chunk:
    text: str
    score: float
    tokens: int

def _estimate_tokens(text: str) -> int:
    """Lightweight heuristic when `tokens` absent. Avoids heavy tokenizers.
    Why: keeps demo dependency-light and deterministic.
    """
    # approx: 4 chars β‰ˆ 1 token; floor at 1
    return max(1, len(text) // 4)

def _coerce_chunk(obj: Union[Chunk, dict], idx: int) -> Chunk:
    if isinstance(obj, Chunk):
        return obj
    if not isinstance(obj, dict):
        raise TypeError(f"Chunk #{idx} must be Chunk or dict, got {type(obj)}")
    text = str(obj.get("text", ""))
    if not text:
        raise ValueError(f"Chunk #{idx} has empty text")
    score = float(obj.get("score", 0.0))
    tokens = int(obj["tokens"]) if "tokens" in obj else _estimate_tokens(text)
    if tokens <= 0:
        raise ValueError(f"Chunk #{idx} has non-positive tokens: {tokens}")
    return Chunk(text=text, score=score, tokens=tokens)

def budget_pack(
    text_chunks: Sequence[Union[Chunk, dict]],
    budget: int = 1000,
) -> List[Chunk]:
    """
    Args:
        text_chunks: iterable of Chunk or dict with keys {text, score, tokens}
        budget: max token budget (int > 0)
    Returns:
        list of selected chunks (order of selection)
    """
    if budget <= 0:
        raise ValueError("budget must be > 0")

    coerced: List[Chunk] = [_coerce_chunk(c, i) for i, c in enumerate(text_chunks)]

    # stable sort by (-score, tokens, original_index)
    indexed: List[Tuple[int, Chunk]] = list(enumerate(coerced))
    indexed.sort(key=lambda it: (-it[1].score, it[1].tokens, it[0]))

    selected: List[Chunk] = []
    total = 0
    for _, ch in indexed:
        if total + ch.tokens <= budget:
            selected.append(ch)
            total += ch.tokens
    return selected

def pack_summary(selected: Sequence[Chunk]) -> dict:
    tokens = sum(c.tokens for c in selected)
    return {
        "num_chunks": len(selected),
        "tokens": tokens,
        "avg_score": (sum(c.score for c in selected) / len(selected)) if selected else 0.0,
    }
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\src\\crom_efficientllm\\drift_estimator\\__init__.py`
```python
from .estimator import DriftEstimator, DriftMode
__all__ = ["DriftEstimator", "DriftMode"]
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\src\\crom_efficientllm\\drift_estimator\\estimator.py`
```python
"""
Drift Estimator
---------------
Monitors embedding shift using L2 or cosine distance.
Supports EWMA smoothing and exposes state for dashboards.
"""
from __future__ import annotations

from dataclasses import dataclass, field
from enum import Enum
from typing import List, Optional, Tuple
import numpy as np

class DriftMode(str, Enum):
    L2 = "l2"
    COSINE = "cosine"

@dataclass
class DriftEstimator:
    threshold: float = 0.2
    mode: DriftMode = DriftMode.L2
    ewma_alpha: float = 0.3  # smoothing for stability

    history: List[np.ndarray] = field(default_factory=list)
    distances: List[float] = field(default_factory=list)
    ewma: Optional[float] = None

    def _distance(self, a: np.ndarray, b: np.ndarray) -> float:
        a = np.asarray(a, dtype=np.float32).ravel()
        b = np.asarray(b, dtype=np.float32).ravel()
        if self.mode == DriftMode.L2:
            return float(np.linalg.norm(a - b))
        # cosine distance = 1 - cosine similarity
        denom = (np.linalg.norm(a) * np.linalg.norm(b)) + 1e-12
        return float(1.0 - float(np.dot(a, b)) / denom)

    def update(self, embedding) -> Tuple[bool, float, float]:
        """
        Args:
            embedding: vector representation of current response
        Returns:
            (drift_alert, distance, ewma)
        """
        emb = np.asarray(embedding, dtype=np.float32)
        if emb.ndim != 1:
            emb = emb.ravel()

        if not self.history:
            self.history.append(emb)
            self.ewma = 0.0
            self.distances.append(0.0)
            return (False, 0.0, 0.0)

        last = self.history[-1]
        dist = self._distance(emb, last)
        self.history.append(emb)
        self.distances.append(dist)

        # EWMA update
        if self.ewma is None:
            self.ewma = dist
        else:
            self.ewma = self.ewma_alpha * dist + (1 - self.ewma_alpha) * self.ewma

        return (bool(self.ewma > self.threshold), float(dist), float(self.ewma))

    def state(self) -> dict:
        return {
            "count": len(self.history),
            "last_distance": self.distances[-1] if self.distances else 0.0,
            "ewma": self.ewma or 0.0,
            "mode": self.mode.value,
            "threshold": self.threshold,
        }
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\src\\crom_efficientllm\\plugins\\evidently_drift.py`
```python
from __future__ import annotations
from typing import List

try:
    from evidently.metric_preset import DataDriftPreset
    from evidently.report import Report
    import pandas as pd
except Exception as e:  # pragma: no cover
    raise RuntimeError("evidently not installed. Install extras: pip install .[plugins]") from e

def drift_report(ref: List[List[float]], cur: List[List[float]]):
    ref_df = pd.DataFrame(ref)
    cur_df = pd.DataFrame(cur)
    rep = Report(metrics=[DataDriftPreset()])
    rep.run(reference_data=ref_df, current_data=cur_df)
    return rep
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\src\\crom_efficientllm\\plugins\\flashrank_reranker.py`
```python
from __future__ import annotations
from typing import List, Dict

try:
    from flashrank import Reranker
except Exception as e:  # pragma: no cover
    raise RuntimeError("flashrank not installed. Install extras: pip install .[plugins]") from e

def flashrank_rerank(query: str, docs: List[Dict[str, str]], model_name: str = "ms-marco-TinyBERT-L-2-v2") -> List[Dict]:
    rr = Reranker(model_name)
    pairs = [(query, d["text"]) for d in docs]
    scores = rr.rerank(pairs)
    order = sorted(range(len(docs)), key=lambda i: -scores[i])
    return [docs[i] | {"score_flashrank": float(scores[i])} for i in order]
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\src\\crom_efficientllm\\plugins\\llmlingua_compressor.py`
```python
from __future__ import annotations

try:
    from llmlingua import PromptCompressor
except Exception as e:  # pragma: no cover
    raise RuntimeError("llmlingua not installed. Install extras: pip install .[plugins]") from e

def compress_prompt(text: str, target_ratio: float = 0.5) -> str:
    pc = PromptCompressor()
    out = pc.compress(text, target_ratio=target_ratio)
    return out["compressed_prompt"] if isinstance(out, dict) and "compressed_prompt" in out else str(out)
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\src\\crom_efficientllm\\rerank_engine\\__init__.py`
```python
from .rerank import hybrid_rerank
__all__ = ["hybrid_rerank"]
```
---
### **File:** `D:\\Sanctum\\CRoM-EfficientLLM\\src\\crom_efficientllm\\rerank_engine\\rerank.py`
```python
"""
Hybrid Rerank Engine
--------------------
Combines sparse (TF-IDF cosine) and dense (embedding cosine) scores with
min-max normalization for robust fusion.
"""
from __future__ import annotations

from typing import Dict, List, Sequence
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

def _to_numpy(x):
    arr = np.asarray(x)
    return arr.astype(np.float32)

def _batch_encode(embed_model, texts: Sequence[str]) -> np.ndarray:
    # Try common API of sentence-transformers: encode(list, convert_to_numpy=True)
    if hasattr(embed_model, "encode"):
        try:
            return _to_numpy(embed_model.encode(list(texts), convert_to_numpy=True))
        except TypeError:
            # Fallback: per-text encode
            return _to_numpy([embed_model.encode(t) for t in texts])
    raise TypeError("embed_model must provide .encode()")

def _minmax(x: np.ndarray) -> np.ndarray:
    if x.size == 0:
        return x
    mn, mx = float(np.min(x)), float(np.max(x))
    if mx - mn <= 1e-12:
        return np.zeros_like(x)
    return (x - mn) / (mx - mn)

def hybrid_rerank(
    query: str,
    docs: List[Dict[str, str]],
    embed_model,
    alpha: float = 0.5,
) -> List[Dict[str, object]]:
    """
    Args:
        query: query string
        docs: list of {"text": str}
        embed_model: model with .encode() -> vector(s)
        alpha: weight between sparse/dense in [0,1]
    Returns:
        ranked list of enriched docs with scores {score_sparse, score_dense, score_final}
    """
    if not 0.0 <= alpha <= 1.0:
        raise ValueError("alpha must be in [0, 1]")
    if not docs:
        return []

    texts = [d.get("text", "") for d in docs]

    # Sparse: TF-IDF cosine
    tfidf = TfidfVectorizer(ngram_range=(1, 2), min_df=1).fit(texts)
    Q = tfidf.transform([query])
    D = tfidf.transform(texts)
    sparse_scores = cosine_similarity(Q, D).ravel()

    # Dense: cosine(sim) between L2-normalized embeddings
    q_emb = _to_numpy(embed_model.encode(query))
    d_embs = _batch_encode(embed_model, texts)
    # L2 normalize
    def _l2norm(a):
        n = np.linalg.norm(a, axis=-1, keepdims=True) + 1e-12
        return a / n

    qn = _l2norm(q_emb.reshape(1, -1))
    dn = _l2norm(d_embs)
    dense_scores = cosine_similarity(qn, dn).ravel()

    # Min-max to [0,1] before fusion to avoid scale issues
    s_sparse = _minmax(sparse_scores)
    s_dense = _minmax(dense_scores)

    final_scores = alpha * s_sparse + (1 - alpha) * s_dense
    order = np.argsort(-final_scores)

    ranked = []
    for i in order:
        item = dict(docs[i])
        item.update(
            score_sparse=float(s_sparse[i]),
            score_dense=float(s_dense[i]),
            score_final=float(final_scores[i]),
        )
        ranked.append(item)
    return ranked
```