Commit
·
aca22b8
0
Parent(s):
Initial commit: Add project structure and all source files
Browse files- .github/workflows/ci.yml +21 -0
- .github/workflows/release.yml +32 -0
- .gitignore +18 -0
- CHANGELOG.md +20 -0
- LICENSE +202 -0
- README.md +96 -0
- benchmarks/efficiency_eval.py +220 -0
- benchmarks/longbench_eval.py +13 -0
- benchmarks/sample_results.json +1 -0
- dashboard/grafana_dashboard.json +1 -0
- dashboard/prometheus_config.yml +0 -0
- docs/architecture.md +3 -0
- docs/versioning.md +54 -0
- examples/corpus/sample_docs.jsonl +6 -0
- examples/corpus/sample_queries.jsonl +3 -0
- pyproject.toml +64 -0
- requirements.txt +6 -0
- scripts/gen_release_notes.py +38 -0
- scripts/release.sh +39 -0
- src/crom_efficientllm/__init__.py +13 -0
- src/crom_efficientllm/budget_packer/__init__.py +2 -0
- src/crom_efficientllm/budget_packer/packer.py +74 -0
- src/crom_efficientllm/cli.py +385 -0
- src/crom_efficientllm/demo.py +91 -0
- src/crom_efficientllm/drift_estimator/__init__.py +2 -0
- src/crom_efficientllm/drift_estimator/estimator.py +74 -0
- src/crom_efficientllm/plugins/evidently_drift.py +16 -0
- src/crom_efficientllm/plugins/flashrank_reranker.py +14 -0
- src/crom_efficientllm/plugins/llmlingua_compressor.py +11 -0
- src/crom_efficientllm/rerank_engine/__init__.py +2 -0
- src/crom_efficientllm/rerank_engine/rerank.py +92 -0
- tests/test_drift.py +8 -0
- tests/test_packer.py +15 -0
- tests/test_rerank.py +11 -0
.github/workflows/ci.yml
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: ci
|
2 |
+
on:
|
3 |
+
push:
|
4 |
+
branches: [ main ]
|
5 |
+
pull_request:
|
6 |
+
|
7 |
+
jobs:
|
8 |
+
test:
|
9 |
+
runs-on: ubuntu-latest
|
10 |
+
strategy:
|
11 |
+
matrix:
|
12 |
+
python-version: ["3.9", "3.10", "3.11", "3.12"]
|
13 |
+
steps:
|
14 |
+
- uses: actions/checkout@v4
|
15 |
+
- uses: actions/setup-python@v5
|
16 |
+
with:
|
17 |
+
python-version: ${{ matrix.python-version }}
|
18 |
+
- run: pip install -e .[dev]
|
19 |
+
- run: pre-commit run --all-files || true
|
20 |
+
- run: ruff --version && black --version
|
21 |
+
- run: pytest -q
|
.github/workflows/release.yml
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: release
|
2 |
+
on:
|
3 |
+
push:
|
4 |
+
tags:
|
5 |
+
- 'v*'
|
6 |
+
jobs:
|
7 |
+
release:
|
8 |
+
runs-on: ubuntu-latest
|
9 |
+
steps:
|
10 |
+
- uses: actions/checkout@v4
|
11 |
+
with:
|
12 |
+
fetch-depth: 0
|
13 |
+
- uses: actions/setup-python@v5
|
14 |
+
with:
|
15 |
+
python-version: '3.11'
|
16 |
+
- run: pip install -e .[dev]
|
17 |
+
- run: pytest -q
|
18 |
+
- name: Build distribution
|
19 |
+
run: |
|
20 |
+
python -m pip install build
|
21 |
+
python -m build
|
22 |
+
- name: Generate release notes from CHANGELOG
|
23 |
+
run: |
|
24 |
+
python scripts/gen_release_notes.py "$GITHUB_REF_NAME"
|
25 |
+
- name: Publish GitHub Release
|
26 |
+
uses: softprops/action-gh-release@v2
|
27 |
+
with:
|
28 |
+
name: ${{ github.ref_name }}
|
29 |
+
body_path: release_notes.md
|
30 |
+
files: |
|
31 |
+
dist/*.whl
|
32 |
+
dist/*.tar.gz
|
.gitignore
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Python
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*.egg-info/
|
5 |
+
.env
|
6 |
+
.venv/
|
7 |
+
venv/
|
8 |
+
.idea/
|
9 |
+
.vscode/
|
10 |
+
.ipynb_checkpoints/
|
11 |
+
.dist/
|
12 |
+
.build/
|
13 |
+
.coverage
|
14 |
+
.pytest_cache/
|
15 |
+
|
16 |
+
# OS
|
17 |
+
.DS_Store
|
18 |
+
Thumbs.db
|
CHANGELOG.md
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Changelog
|
2 |
+
|
3 |
+
## [0.2.1] - 2025-09-02
|
4 |
+
### Added
|
5 |
+
- CLI `--save-plots` option for `sweep` and `dp-curve`; saves PNG charts to `benchmarks/out/` (or `--out-dir`).
|
6 |
+
- README Quick Examples mention of plotting flag.
|
7 |
+
- This CHANGELOG.
|
8 |
+
|
9 |
+
### Changed
|
10 |
+
- Dev tooling: recommend `matplotlib` via dev extra for plotting.
|
11 |
+
|
12 |
+
## [0.2.0] - 2025-09-02
|
13 |
+
### Added
|
14 |
+
- GitHub Actions CI (3.9–3.12), pre-commit(ruff/black).
|
15 |
+
- `crom-bench` CLI: `e2e`, `sweep`, `scale`, `dp-curve`, `haystack-compare`.
|
16 |
+
- Plugins: FlashRank/LLMLingua/Evidently (optional extras).
|
17 |
+
- Example corpus & queries (JSONL).
|
18 |
+
|
19 |
+
## [0.1.0] - 2025-09-02
|
20 |
+
- Initial packaging; budget packer, hybrid rerank, drift estimator, demo & metrics.
|
LICENSE
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
Apache License
|
3 |
+
Version 2.0, January 2004
|
4 |
+
http://www.apache.org/licenses/
|
5 |
+
|
6 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
7 |
+
|
8 |
+
1. Definitions.
|
9 |
+
|
10 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
11 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
12 |
+
|
13 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
14 |
+
the copyright owner that is granting the License.
|
15 |
+
|
16 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
17 |
+
other entities that control, are controlled by, or are under common
|
18 |
+
control with that entity. For the purposes of this definition,
|
19 |
+
"control" means (i) the power, direct or indirect, to cause the
|
20 |
+
direction or management of such entity, whether by contract or
|
21 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
22 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
23 |
+
|
24 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
25 |
+
exercising permissions granted by this License.
|
26 |
+
|
27 |
+
"Source" form shall mean the preferred form for making modifications,
|
28 |
+
including but not limited to software source code, documentation
|
29 |
+
source, and configuration files.
|
30 |
+
|
31 |
+
"Object" form shall mean any form resulting from mechanical
|
32 |
+
transformation or translation of a Source form, including but
|
33 |
+
not limited to compiled object code, generated documentation,
|
34 |
+
and conversions to other media types.
|
35 |
+
|
36 |
+
"Work" shall mean the work of authorship, whether in Source or
|
37 |
+
Object form, made available under the License, as indicated by a
|
38 |
+
copyright notice that is included in or attached to the work
|
39 |
+
(an example is provided in the Appendix below).
|
40 |
+
|
41 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
42 |
+
form, that is based on (or derived from) the Work and for which the
|
43 |
+
editorial revisions, annotations, elaborations, or other modifications
|
44 |
+
represent, as a whole, an original work of authorship. For the purposes
|
45 |
+
of this License, Derivative Works shall not include works that remain
|
46 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
47 |
+
the Work and Derivative Works thereof.
|
48 |
+
|
49 |
+
"Contribution" shall mean any work of authorship, including
|
50 |
+
the original version of the Work and any modifications or additions
|
51 |
+
to that Work or Derivative Works thereof, that is intentionally
|
52 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
53 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
54 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
55 |
+
means any form of electronic, verbal, or written communication sent
|
56 |
+
to the Licensor or its representatives, including but not limited to
|
57 |
+
communication on electronic mailing lists, source code control systems,
|
58 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
59 |
+
Licensor for the purpose of discussing and improving the Work, but
|
60 |
+
excluding communication that is conspicuously marked or otherwise
|
61 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
62 |
+
|
63 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
64 |
+
on behalf of whom a Contribution has been received by Licensor and
|
65 |
+
subsequently incorporated within the Work.
|
66 |
+
|
67 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
68 |
+
this License, each Contributor hereby grants to You a perpetual,
|
69 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
70 |
+
copyright license to reproduce, prepare Derivative Works of,
|
71 |
+
publicly display, publicly perform, sublicense, and distribute the
|
72 |
+
Work and such Derivative Works in Source or Object form.
|
73 |
+
|
74 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
75 |
+
this License, each Contributor hereby grants to You a perpetual,
|
76 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
77 |
+
(except as stated in this section) patent license to make, have made,
|
78 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
79 |
+
where such license applies only to those patent claims licensable
|
80 |
+
by such Contributor that are necessarily infringed by their
|
81 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
82 |
+
with the Work to which such Contribution(s) was submitted. If You
|
83 |
+
institute patent litigation against any entity (including a
|
84 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
85 |
+
or a Contribution incorporated within the Work constitutes direct
|
86 |
+
or contributory patent infringement, then any patent licenses
|
87 |
+
granted to You under this License for that Work shall terminate
|
88 |
+
as of the date such litigation is filed.
|
89 |
+
|
90 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
91 |
+
Work or Derivative Works thereof in any medium, with or without
|
92 |
+
modifications, and in Source or Object form, provided that You
|
93 |
+
meet the following conditions:
|
94 |
+
|
95 |
+
(a) You must give any other recipients of the Work or
|
96 |
+
Derivative Works a copy of this License; and
|
97 |
+
|
98 |
+
(b) You must cause any modified files to carry prominent notices
|
99 |
+
stating that You changed the files; and
|
100 |
+
|
101 |
+
(c) You must retain, in the Source form of any Derivative Works
|
102 |
+
that You distribute, all copyright, patent, trademark, and
|
103 |
+
attribution notices from the Source form of the Work,
|
104 |
+
excluding those notices that do not pertain to any part of
|
105 |
+
the Derivative Works; and
|
106 |
+
|
107 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
108 |
+
distribution, then any Derivative Works that You distribute must
|
109 |
+
include a readable copy of the attribution notices contained
|
110 |
+
within such NOTICE file, excluding those notices that do not
|
111 |
+
pertain to any part of the Derivative Works, in at least one
|
112 |
+
of the following places: within a NOTICE text file distributed
|
113 |
+
as part of the Derivative Works; within the Source form or
|
114 |
+
documentation, if provided along with the Derivative Works; or,
|
115 |
+
within a display generated by the Derivative Works, if and
|
116 |
+
wherever such third-party notices normally appear. The contents
|
117 |
+
of the NOTICE file are for informational purposes only and
|
118 |
+
do not modify the License. You may add Your own attribution
|
119 |
+
notices within Derivative Works that You distribute, alongside
|
120 |
+
or as an addendum to the NOTICE text from the Work, provided
|
121 |
+
that such additional attribution notices cannot be construed
|
122 |
+
as modifying the License.
|
123 |
+
|
124 |
+
You may add Your own copyright statement to Your modifications and
|
125 |
+
may provide additional or different license terms and conditions
|
126 |
+
for use, reproduction, or distribution of Your modifications, or
|
127 |
+
for any such Derivative Works as a whole, provided Your use,
|
128 |
+
reproduction, and distribution of the Work otherwise complies with
|
129 |
+
the conditions stated in this License.
|
130 |
+
|
131 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
132 |
+
any Contribution intentionally submitted for inclusion in the Work
|
133 |
+
by You to the Licensor shall be under the terms and conditions of
|
134 |
+
this License, without any additional terms or conditions.
|
135 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
136 |
+
the terms of any separate license agreement you may have executed
|
137 |
+
with the Licensor regarding such Contributions.
|
138 |
+
|
139 |
+
6. Trademarks. This License does not grant permission to use the trade
|
140 |
+
names, trademarks, service marks, or product names of the Licensor,
|
141 |
+
except as required for reasonable and customary use in describing the
|
142 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
143 |
+
|
144 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
145 |
+
agreed to in writing, Licensor provides the Work (and each
|
146 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
147 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
148 |
+
implied, including, without limitation, any warranties or conditions
|
149 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
150 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
151 |
+
appropriateness of using or redistributing the Work and assume any
|
152 |
+
risks associated with Your exercise of permissions under this License.
|
153 |
+
|
154 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
155 |
+
whether in tort (including negligence), contract, or otherwise,
|
156 |
+
unless required by applicable law (such as deliberate and grossly
|
157 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
158 |
+
liable to You for damages, including any direct, indirect, special,
|
159 |
+
incidental, or consequential damages of any character arising as a
|
160 |
+
result of this License or out of the use or inability to use the
|
161 |
+
Work (including but not limited to damages for loss of goodwill,
|
162 |
+
work stoppage, computer failure or malfunction, or any and all
|
163 |
+
other commercial damages or losses), even if such Contributor
|
164 |
+
has been advised of the possibility of such damages.
|
165 |
+
|
166 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
167 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
168 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
169 |
+
or other liability obligations and/or rights consistent with this
|
170 |
+
License. However, in accepting such obligations, You may act only
|
171 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
172 |
+
of any other Contributor, and only if You agree to indemnify,
|
173 |
+
defend, and hold each Contributor harmless for any liability
|
174 |
+
incurred by, or claims asserted against, such Contributor by reason
|
175 |
+
of your accepting any such warranty or additional liability.
|
176 |
+
|
177 |
+
END OF TERMS AND CONDITIONS
|
178 |
+
|
179 |
+
APPENDIX: How to apply the Apache License to your work.
|
180 |
+
|
181 |
+
To apply the Apache License to your work, attach the following
|
182 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
183 |
+
replaced with your own identifying information. (Don't include
|
184 |
+
the brackets!) The text should be enclosed in the appropriate
|
185 |
+
comment syntax for the file format. We also recommend that a
|
186 |
+
file or class name and description of purpose be included on the
|
187 |
+
same "printed page" as the copyright notice for easier
|
188 |
+
identification within third-party archives.
|
189 |
+
|
190 |
+
Copyright [yyyy] [name of copyright owner]
|
191 |
+
|
192 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
193 |
+
you may not use this file except in compliance with the License.
|
194 |
+
You may obtain a copy of the License at
|
195 |
+
|
196 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
197 |
+
|
198 |
+
Unless required by applicable law or agreed to in writing, software
|
199 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
200 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
201 |
+
See the License for the specific language governing permissions and
|
202 |
+
limitations under the License.
|
README.md
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CRoM-EfficientLLM: Context Reranking and Management for Efficient LLMs
|
2 |
+
|
3 |
+
<p align="left">
|
4 |
+
<a href="https://github.com/Flamehaven/CRoM-EfficientLLM/actions">
|
5 |
+
<img alt="CI" src="https://img.shields.io/github/actions/workflow/status/Flamehaven/CRoM-EfficientLLM/ci.yml?branch=main" />
|
6 |
+
</a>
|
7 |
+
<a href="#-benchmarks">
|
8 |
+
<img alt="Bench" src="https://img.shields.io/badge/benchmarks-ready-success" />
|
9 |
+
</a>
|
10 |
+
<a href="LICENSE">
|
11 |
+
<img alt="License" src="https://img.shields.io/badge/license-Apache%202.0-blue" />
|
12 |
+
</a>
|
13 |
+
<a href="https://github.com/Flamehaven/CRoM-EfficientLLM/releases">
|
14 |
+
<img alt="Release" src="https://img.shields.io/github/v/release/Flamehaven/CRoM-EfficientLLM?display_name=tag" />
|
15 |
+
</a>
|
16 |
+
<a href="CHANGELOG.md">
|
17 |
+
<img alt="Versioning" src="https://img.shields.io/badge/semver-0.2.x-lightgrey" />
|
18 |
+
</a>
|
19 |
+
<a href="https://github.com/Flamehaven/CRoM-EfficientLLM/releases/latest">
|
20 |
+
<img alt="Wheel" src="https://img.shields.io/badge/wheel-available-success" />
|
21 |
+
</a>
|
22 |
+
</p>
|
23 |
+
|
24 |
+
**CRoM (Context Rot Mitigation)-EfficientLLM** is a Python toolkit designed to optimize the context provided to Large Language Models (LLMs). It provides a suite of tools to intelligently select, re-rank, and manage text chunks to fit within a model's context budget while maximizing relevance and minimizing performance drift.
|
25 |
+
|
26 |
+
This project is ideal for developers building RAG (Retrieval-Augmented Generation) pipelines who need to make the most of limited context windows.
|
27 |
+
|
28 |
+
## Key Features
|
29 |
+
|
30 |
+
* **Budget Packer:** Greedily packs the highest-scoring text chunks into a defined token budget using a stable sorting algorithm.
|
31 |
+
* **Hybrid Reranker:** Combines sparse (TF-IDF) and dense (Sentence-Transformers) retrieval scores for robust and high-quality reranking of documents.
|
32 |
+
* **Drift Estimator:** Monitors the semantic drift between sequential model responses using L2 or cosine distance with EWMA smoothing.
|
33 |
+
* **Observability:** Exposes Prometheus metrics for monitoring token savings and drift alerts in production.
|
34 |
+
* **Extensible Plugins:** Supports optional plugins for advanced reranking (`FlashRank`), compression (`LLMLingua`), and drift analysis (`Evidently`).
|
35 |
+
* **Comprehensive Benchmarking:** Includes a CLI for end-to-end pipeline evaluation, budget sweeps, and quality-vs-optimal analysis.
|
36 |
+
|
37 |
+
## Installation
|
38 |
+
|
39 |
+
Install the package directly from source using pip. For development, it's recommended to install in editable mode with the `[dev]` extras.
|
40 |
+
|
41 |
+
```bash
|
42 |
+
# Clone the repository
|
43 |
+
git clone https://github.com/Flamehaven/CRoM-EfficientLLM.git
|
44 |
+
cd CRoM-EfficientLLM
|
45 |
+
|
46 |
+
# Install in editable mode with development and plugin dependencies
|
47 |
+
pip install -e .[dev,plugins]
|
48 |
+
```
|
49 |
+
|
50 |
+
## Quickstart
|
51 |
+
|
52 |
+
### Demo
|
53 |
+
|
54 |
+
Run a simple, self-contained demonstration of the core components:
|
55 |
+
|
56 |
+
```bash
|
57 |
+
# Run the demo script
|
58 |
+
crom-demo demo
|
59 |
+
```
|
60 |
+
|
61 |
+
### CLI Benchmarking Examples
|
62 |
+
|
63 |
+
The package includes a powerful `crom-bench` CLI for evaluation.
|
64 |
+
|
65 |
+
```bash
|
66 |
+
# Default E2E (Search→Rerank→Pack→Mock LLM)
|
67 |
+
crom-bench e2e --budget 0.3
|
68 |
+
|
69 |
+
# Optional: High-precision configuration with plugins
|
70 |
+
crom-bench e2e --budget 0.3 \
|
71 |
+
--use-flashrank --flashrank-model ms-marco-TinyBERT-L-2-v2 \
|
72 |
+
--use-llmlingua --compress-ratio=0.6 \
|
73 |
+
--use-evidently
|
74 |
+
```
|
75 |
+
|
76 |
+
### Plotting
|
77 |
+
|
78 |
+
If `matplotlib` is installed (`pip install -e .[dev]`), you can save benchmark plots directly:
|
79 |
+
|
80 |
+
```bash
|
81 |
+
# Save budget sweep result plots
|
82 |
+
crom-bench sweep --save-plots
|
83 |
+
|
84 |
+
# Save DP-curve plots
|
85 |
+
crom-bench dp-curve --save-plots
|
86 |
+
```
|
87 |
+
|
88 |
+
## Release & Changelog
|
89 |
+
|
90 |
+
This project follows semantic versioning. For detailed changes, see the [**CHANGELOG.md**](CHANGELOG.md).
|
91 |
+
|
92 |
+
Releases are automated via GitHub Actions when a `v*` tag is pushed.
|
93 |
+
|
94 |
+
## License
|
95 |
+
|
96 |
+
This project is licensed under the Apache 2.0 License. See the [LICENSE](LICENSE) file for details.
|
benchmarks/efficiency_eval.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Efficiency Evaluation for CRoM-EfficientLLM
|
3 |
+
- Synthetic workload to measure token savings, selection quality, and runtime.
|
4 |
+
- No third-party deps beyond numpy/matplotlib (pandas optional for CSVs).
|
5 |
+
|
6 |
+
Usage:
|
7 |
+
python benchmarks/efficiency_eval.py --budget 0.3 --n 5000 --seed 123 --plot --save
|
8 |
+
"""
|
9 |
+
from __future__ import annotations
|
10 |
+
|
11 |
+
import argparse
|
12 |
+
import math
|
13 |
+
import time
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import List, Sequence, Tuple, Union
|
16 |
+
|
17 |
+
import numpy as np
|
18 |
+
|
19 |
+
try:
|
20 |
+
import pandas as pd # optional
|
21 |
+
except Exception: # pragma: no cover
|
22 |
+
pd = None
|
23 |
+
|
24 |
+
try:
|
25 |
+
import matplotlib.pyplot as plt # optional
|
26 |
+
except Exception: # pragma: no cover
|
27 |
+
plt = None
|
28 |
+
|
29 |
+
# --- Local packers (self-contained to avoid imports during quick eval) ---
|
30 |
+
@dataclass(frozen=True)
|
31 |
+
class Chunk:
|
32 |
+
text: str
|
33 |
+
score: float
|
34 |
+
tokens: int
|
35 |
+
|
36 |
+
def _estimate_tokens(text: str) -> int:
|
37 |
+
return max(1, len(text) // 4)
|
38 |
+
|
39 |
+
def _coerce_chunk(obj: Union[Chunk, dict], idx: int) -> Chunk:
|
40 |
+
if isinstance(obj, Chunk):
|
41 |
+
return obj
|
42 |
+
if not isinstance(obj, dict):
|
43 |
+
raise TypeError(f"Chunk #{idx} must be Chunk or dict, got {type(obj)}")
|
44 |
+
text = str(obj.get("text", ""))
|
45 |
+
if not text:
|
46 |
+
raise ValueError(f"Chunk #{idx} has empty text")
|
47 |
+
score = float(obj.get("score", 0.0))
|
48 |
+
tokens = int(obj["tokens"]) if "tokens" in obj else _estimate_tokens(text)
|
49 |
+
if tokens <= 0:
|
50 |
+
raise ValueError(f"Chunk #{idx} has non-positive tokens: {tokens}")
|
51 |
+
return Chunk(text=text, score=score, tokens=tokens)
|
52 |
+
|
53 |
+
def budget_pack(text_chunks: Sequence[Union[Chunk, dict]], budget: int = 1000) -> List[Chunk]:
|
54 |
+
if budget <= 0:
|
55 |
+
raise ValueError("budget must be > 0")
|
56 |
+
coerced: List[Chunk] = [_coerce_chunk(c, i) for i, c in enumerate(text_chunks)]
|
57 |
+
indexed = list(enumerate(coerced))
|
58 |
+
indexed.sort(key=lambda it: (-it[1].score, it[1].tokens, it[0]))
|
59 |
+
selected: List[Chunk] = []
|
60 |
+
total = 0
|
61 |
+
for _, ch in indexed:
|
62 |
+
if total + ch.tokens <= budget:
|
63 |
+
selected.append(ch)
|
64 |
+
total += ch.tokens
|
65 |
+
return selected
|
66 |
+
|
67 |
+
def pack_fcfs(text_chunks: Sequence[Union[Chunk, dict]], budget: int) -> List[Chunk]:
|
68 |
+
sel, total = [], 0
|
69 |
+
for i, obj in enumerate(text_chunks):
|
70 |
+
ch = _coerce_chunk(obj, i)
|
71 |
+
if total + ch.tokens <= budget:
|
72 |
+
sel.append(ch)
|
73 |
+
total += ch.tokens
|
74 |
+
return sel
|
75 |
+
|
76 |
+
def pack_random(text_chunks: Sequence[Union[Chunk, dict]], budget: int, seed: int = 0) -> List[Chunk]:
|
77 |
+
rng = np.random.default_rng(seed)
|
78 |
+
indices = np.arange(len(text_chunks))
|
79 |
+
rng.shuffle(indices)
|
80 |
+
sel, total = [], 0
|
81 |
+
for i in indices:
|
82 |
+
ch = _coerce_chunk(text_chunks[i], i)
|
83 |
+
if total + ch.tokens <= budget:
|
84 |
+
sel.append(ch)
|
85 |
+
total += ch.tokens
|
86 |
+
return sel
|
87 |
+
|
88 |
+
# --- Data generation and metrics ---
|
89 |
+
|
90 |
+
def make_synthetic_chunks(n=2000, seed=42, corr=0.6):
|
91 |
+
rng = np.random.default_rng(seed)
|
92 |
+
true_rel = rng.normal(0, 1, size=n)
|
93 |
+
noise = rng.normal(0, 1, size=n) * math.sqrt(1 - corr**2)
|
94 |
+
score = corr * true_rel + noise
|
95 |
+
tokens = np.clip(rng.lognormal(mean=4.0, sigma=0.6, size=n).astype(int), 5, 2000)
|
96 |
+
chunks = [Chunk(text=("x"*int(t*4)), score=float(s), tokens=int(t)) for s, t in zip(score, tokens)]
|
97 |
+
return chunks, true_rel
|
98 |
+
|
99 |
+
def eval_once(n=5000, budget_ratio=0.3, seed=123, corr=0.6):
|
100 |
+
chunks, true_rel = make_synthetic_chunks(n=n, seed=seed, corr=corr)
|
101 |
+
total_tokens = sum(c.tokens for c in chunks)
|
102 |
+
budget = int(total_tokens * budget_ratio)
|
103 |
+
|
104 |
+
def run(name, fn):
|
105 |
+
t0 = time.perf_counter()
|
106 |
+
sel = fn(chunks, budget)
|
107 |
+
dt = time.perf_counter() - t0
|
108 |
+
idx_map = {id(c): i for i, c in enumerate(chunks)}
|
109 |
+
picked_idx = [idx_map[id(c)] for c in sel]
|
110 |
+
rel_sum = float(np.sum(true_rel[picked_idx])) if picked_idx else 0.0
|
111 |
+
sel_tokens = sum(c.tokens for c in sel)
|
112 |
+
return {
|
113 |
+
"name": name,
|
114 |
+
"time_ms": dt*1000,
|
115 |
+
"selected_chunks": len(sel),
|
116 |
+
"selected_tokens": sel_tokens,
|
117 |
+
"tokens_budget": budget,
|
118 |
+
"tokens_total_unpacked": total_tokens,
|
119 |
+
"tokens_saved": total_tokens - sel_tokens,
|
120 |
+
"save_ratio": (total_tokens - sel_tokens)/total_tokens,
|
121 |
+
"relevance_sum": rel_sum,
|
122 |
+
}
|
123 |
+
|
124 |
+
rows = [
|
125 |
+
run("budget_pack", budget_pack),
|
126 |
+
run("fcfs", pack_fcfs),
|
127 |
+
run("random", lambda ch, b: pack_random(ch, b, seed=seed)),
|
128 |
+
]
|
129 |
+
return rows
|
130 |
+
|
131 |
+
def quality_vs_optimal(n=200, budget_ratio=0.3, seed=123, corr=0.6):
|
132 |
+
chunks, true_rel = make_synthetic_chunks(n=n, seed=seed, corr=corr)
|
133 |
+
budget = int(sum(c.tokens for c in chunks) * budget_ratio)
|
134 |
+
values = np.maximum(true_rel, 0.0)
|
135 |
+
|
136 |
+
def optimal(chunks_sub, values, budget):
|
137 |
+
items = chunks_sub
|
138 |
+
vals = list(values)
|
139 |
+
B = budget
|
140 |
+
dp = [0.0]*(B+1)
|
141 |
+
keep = [[False]*(B+1) for _ in range(len(items))]
|
142 |
+
for i, it in enumerate(items):
|
143 |
+
wt = it.tokens
|
144 |
+
val = vals[i]
|
145 |
+
for b in range(B, wt-1, -1):
|
146 |
+
alt = dp[b - wt] + val
|
147 |
+
if alt > dp[b]:
|
148 |
+
dp[b] = alt
|
149 |
+
keep[i][b] = True
|
150 |
+
b = B
|
151 |
+
picked_idx = []
|
152 |
+
for i in range(len(items)-1, -1, -1):
|
153 |
+
if keep[i][b]:
|
154 |
+
picked_idx.append(i)
|
155 |
+
b -= items[i].tokens
|
156 |
+
picked_idx.reverse()
|
157 |
+
rel_sum = float(np.sum([values[i] for i in picked_idx])) if picked_idx else 0.0
|
158 |
+
total_tokens = sum(items[i].tokens for i in picked_idx)
|
159 |
+
return picked_idx, rel_sum, total_tokens
|
160 |
+
|
161 |
+
opt_idx, opt_rel, opt_tokens = optimal(chunks, values, budget)
|
162 |
+
|
163 |
+
# selections
|
164 |
+
idx_map = {id(c): i for i, c in enumerate(chunks)}
|
165 |
+
def rel_of(selection):
|
166 |
+
pid = [idx_map[id(c)] for c in selection]
|
167 |
+
return float(np.sum(values[pid])) if pid else 0.0
|
168 |
+
|
169 |
+
sel_bp = budget_pack(chunks, budget)
|
170 |
+
sel_fc = pack_fcfs(chunks, budget)
|
171 |
+
sel_rd = pack_random(chunks, budget, seed=seed)
|
172 |
+
|
173 |
+
rows = [
|
174 |
+
{"name":"optimal_true_rel", "relevance_sum": opt_rel, "selected_tokens": opt_tokens, "selected_chunks": len(opt_idx)},
|
175 |
+
{"name":"budget_pack_small", "relevance_sum": rel_of(sel_bp), "selected_tokens": sum(c.tokens for c in sel_bp), "selected_chunks": len(sel_bp)},
|
176 |
+
{"name":"fcfs_small", "relevance_sum": rel_of(sel_fc), "selected_tokens": sum(c.tokens for c in sel_fc), "selected_chunks": len(sel_fc)},
|
177 |
+
{"name":"random_small", "relevance_sum": rel_of(sel_rd), "selected_tokens": sum(c.tokens for c in sel_rd), "selected_chunks": len(sel_rd)},
|
178 |
+
]
|
179 |
+
return rows
|
180 |
+
|
181 |
+
def main():
|
182 |
+
ap = argparse.ArgumentParser()
|
183 |
+
ap.add_argument("--n", type=int, default=5000)
|
184 |
+
ap.add_argument("--budget", type=float, default=0.3)
|
185 |
+
ap.add_argument("--seed", type=int, default=123)
|
186 |
+
ap.add_argument("--corr", type=float, default=0.6)
|
187 |
+
ap.add_argument("--plot", action="store_true")
|
188 |
+
ap.add_argument("--save", action="store_true")
|
189 |
+
args = ap.parse_args()
|
190 |
+
|
191 |
+
rows = eval_once(n=args.n, budget_ratio=args.budget, seed=args.seed, corr=args.corr)
|
192 |
+
rows_q = quality_vs_optimal(n=min(200, args.n), budget_ratio=args.budget, seed=args.seed, corr=args.corr)
|
193 |
+
|
194 |
+
print("\n=== Efficiency (n={}, budget={{:.0%}}) ===".format(args.n, args.budget))
|
195 |
+
for r in rows:
|
196 |
+
print("{name:12s} time={{time_ms:7.2f}}ms save_ratio={{save_ratio:6.3f}} tokens_saved={{tokens_saved:8d}} rel_sum={{relevance_sum:8.3f}}".format(**r))
|
197 |
+
|
198 |
+
print("\n=== Quality vs Optimal (subset) ===")
|
199 |
+
for r in rows_q:
|
200 |
+
print("{name:18s} rel_sum={{relevance_sum:8.3f}} tokens={{selected_tokens:5d}} chunks={{selected_chunks:4d}}".format(**r))
|
201 |
+
|
202 |
+
if pd is not None and args.save:
|
203 |
+
pd.DataFrame(rows).to_csv("benchmarks/results_efficiency.csv", index=False)
|
204 |
+
pd.DataFrame(rows_q).to_csv("benchmarks/results_quality.csv", index=False)
|
205 |
+
print("Saved CSVs to benchmarks حضرتك.")
|
206 |
+
|
207 |
+
if plt is not None and args.plot:
|
208 |
+
# single-figure plots, no explicit colors
|
209 |
+
x = [r["name"] for r in rows]
|
210 |
+
y = [r["time_ms"] for r in rows]
|
211 |
+
import matplotlib.pyplot as plt
|
212 |
+
plt.figure()
|
213 |
+
plt.bar(x, y)
|
214 |
+
plt.title("Packer Runtime (ms)")
|
215 |
+
plt.xlabel("method")
|
216 |
+
plt.ylabel("ms")
|
217 |
+
plt.show()
|
218 |
+
|
219 |
+
if __name__ == "__main__":
|
220 |
+
main()
|
benchmarks/longbench_eval.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Benchmark script: LongBench-like evaluation.
|
3 |
+
Simulates context packing efficiency.
|
4 |
+
"""
|
5 |
+
from crom_efficientllm.budget_packer.packer import budget_pack
|
6 |
+
|
7 |
+
def evaluate():
|
8 |
+
chunks = [{"text": f"chunk {i}", "score": i % 5, "tokens": 100} for i in range(20)]
|
9 |
+
packed = budget_pack(chunks, budget=500)
|
10 |
+
print("Selected:", len(packed), "chunks")
|
11 |
+
|
12 |
+
if __name__ == "__main__":
|
13 |
+
evaluate()
|
benchmarks/sample_results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
dashboard/grafana_dashboard.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
dashboard/prometheus_config.yml
ADDED
File without changes
|
docs/architecture.md
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# Architecture
|
2 |
+
|
3 |
+
This document outlines the architecture of the CRoM-EfficientLLM project.
|
docs/versioning.md
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Versioning & PyPI Guidance
|
2 |
+
|
3 |
+
This document defines package naming, SemVer rules, and a future path to publish to PyPI.
|
4 |
+
|
5 |
+
## 1) Package name
|
6 |
+
- Distribution name (PyPI): `crom-efficientllm` (lowercase, hyphen-separated)
|
7 |
+
- Import name (module): `crom_efficientllm` (PEP 8 underscore)
|
8 |
+
|
9 |
+
> **Tip**: Keep both names consistent to avoid confusion in docs.
|
10 |
+
|
11 |
+
### Check name availability on PyPI
|
12 |
+
- Visit: https://pypi.org/project/crom-efficientllm/ (404 → available)
|
13 |
+
- If taken, consider: `crom-efficient-llm`, `crom-llm-efficient`, `crom-ctx-pack`
|
14 |
+
- Reserve on TestPyPI first: use `test.pypi.org` to validate metadata & upload
|
15 |
+
|
16 |
+
## 2) Semantic Versioning (SemVer)
|
17 |
+
We follow **MAJOR.MINOR.PATCH**.
|
18 |
+
|
19 |
+
- **MAJOR**: Backward-incompatible API changes
|
20 |
+
- e.g., rename function signatures (`budget_pack`), move/rename modules, change return schemas
|
21 |
+
- **MINOR**: Backward-compatible features
|
22 |
+
- new functions/flags (e.g., `pack_summary`, CLI subcommands), performance improvements
|
23 |
+
- **PATCH**: Backward-compatible bug fixes
|
24 |
+
- logic corrections, docs/CI fixes, dependency pin updates without API changes
|
25 |
+
|
26 |
+
### Pre-releases
|
27 |
+
Use suffixes: `-a.1`, `-b.1`, `-rc.1` (alpha/beta/release-candidate)
|
28 |
+
- Example: `0.3.0-rc.1`
|
29 |
+
|
30 |
+
### Deprecation Policy
|
31 |
+
- Mark deprecated APIs in `CHANGELOG.md` and docstrings
|
32 |
+
- Provide at least **one MINOR release** with warnings before removal
|
33 |
+
|
34 |
+
### Public API Surface
|
35 |
+
We commit compatibility for:
|
36 |
+
- `crom_efficientllm.budget_packer.packer`: `Chunk`, `budget_pack`, `pack_summary`
|
37 |
+
- `crom_efficientllm.rerank_engine.rerank`: `hybrid_rerank`
|
38 |
+
- `crom_efficientllm.drift_estimator.estimator`: `DriftEstimator`, `DriftMode`
|
39 |
+
- CLI entrypoints: `crom-demo`, `crom-bench` and their documented flags
|
40 |
+
|
41 |
+
## 3) Release Flow (GitHub → PyPI later)
|
42 |
+
- Tag: `vX.Y.Z` → GitHub Actions builds & creates a Release (artifacts attached)
|
43 |
+
- Keep `CHANGELOG.md` updated per release
|
44 |
+
- After API stabilizes, enable **PyPI publish** using a separate workflow with `PYPI_API_TOKEN` secret
|
45 |
+
|
46 |
+
### (Future) PyPI publishing steps
|
47 |
+
1. Create a PyPI account & project
|
48 |
+
2. Add `PYPI_API_TOKEN` to repo `Settings → Secrets and variables → Actions`
|
49 |
+
3. Add `release-pypi.yml` workflow to upload on tag
|
50 |
+
4. Verify install: `pip install crom-efficientllm` and import `crom_efficientllm`
|
51 |
+
|
52 |
+
---
|
53 |
+
|
54 |
+
_Last updated: 2025-09-02_
|
examples/corpus/sample_docs.jsonl
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"id": 1, "text": "AI ethics and governance frameworks for responsible AI."}
|
2 |
+
{"id": 2, "text": "Techniques for detecting model drift in production systems."}
|
3 |
+
{"id": 3, "text": "A recipe for sourdough bread and fermentation tips."}
|
4 |
+
{"id": 4, "text": "Hybrid search: combining sparse and dense retrieval methods."}
|
5 |
+
{"id": 5, "text": "Token budgets and prompt compression strategies for LLMs."}
|
6 |
+
{"id": 6, "text": "Monitoring with Prometheus and building Grafana dashboards."}
|
examples/corpus/sample_queries.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{"query": "how to detect drift in ai models"}
|
2 |
+
{"query": "ways to reduce llm token usage"}
|
3 |
+
{"query": "observability stack prometheus grafana"}
|
pyproject.toml
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[build-system]
|
2 |
+
requires = ["setuptools>=68", "wheel"]
|
3 |
+
build-backend = "setuptools.build_meta"
|
4 |
+
|
5 |
+
[project]
|
6 |
+
name = "crom-efficientllm"
|
7 |
+
version = "0.2.1"
|
8 |
+
description = "CRoM (Context Rot Mitigation)-EfficientLLM: Budget packing, hybrid rerank, and drift estimation with observability"
|
9 |
+
readme = "README.md"
|
10 |
+
requires-python = ">=3.9"
|
11 |
+
license = { text = "Apache-2.0" }
|
12 |
+
authors = [ { name = "Your Name" } ]
|
13 |
+
dependencies = [
|
14 |
+
"numpy>=1.24,<3",
|
15 |
+
"scikit-learn>=1.3,<2",
|
16 |
+
"transformers>=4.41,<5",
|
17 |
+
"sentence-transformers>=2.2,<3",
|
18 |
+
"flask>=3,<4",
|
19 |
+
"prometheus-client>=0.20,<1"
|
20 |
+
]
|
21 |
+
|
22 |
+
[project.optional-dependencies]
|
23 |
+
dev = [
|
24 |
+
"pytest>=7",
|
25 |
+
"ruff>=0.4",
|
26 |
+
"black>=24.4",
|
27 |
+
"pre-commit>=3.6",
|
28 |
+
"matplotlib>=3.8,<4"
|
29 |
+
]
|
30 |
+
plugins = [
|
31 |
+
"flashrank>=0.2; python_version>='3.9'",
|
32 |
+
"llmlingua>=0.2; python_version>='3.9'",
|
33 |
+
"evidently>=0.4; python_version>='3.9'"
|
34 |
+
]
|
35 |
+
haystack = [
|
36 |
+
"farm-haystack[faiss,inference]>=1.26; python_version>='3.9'"
|
37 |
+
]
|
38 |
+
|
39 |
+
[project.urls]
|
40 |
+
Homepage = "https://github.com/Flamehaven/CRoM-EfficientLLM"
|
41 |
+
|
42 |
+
[project.scripts]
|
43 |
+
"crom-demo" = "crom_efficientllm.demo:main"
|
44 |
+
"crom-bench" = "crom_efficientllm.cli:main"
|
45 |
+
|
46 |
+
[tool.setuptools]
|
47 |
+
package-dir = {"" = "src"}
|
48 |
+
packages = { find = { where = ["src"] } }
|
49 |
+
|
50 |
+
[tool.pytest.ini_options]
|
51 |
+
addopts = "-q"
|
52 |
+
|
53 |
+
[tool.black]
|
54 |
+
line-length = 100
|
55 |
+
|
56 |
+
[tool.ruff]
|
57 |
+
target-version = "py39"
|
58 |
+
|
59 |
+
[tool.ruff.lint]
|
60 |
+
select = ["E","F","I","UP","B","C4","SIM","PL","PERF","RUF","ANN"]
|
61 |
+
ignore = ["ANN101","ANN102"]
|
62 |
+
|
63 |
+
[tool.ruff.lint.per-file-ignores]
|
64 |
+
"tests/*" = ["S101","ANN","PLR2004"]
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy>=1.24,<3
|
2 |
+
scikit-learn>=1.3,<2
|
3 |
+
transformers>=4.41,<5
|
4 |
+
sentence-transformers>=2.2,<3
|
5 |
+
flask>=3,<4
|
6 |
+
prometheus-client>=0.20,<1
|
scripts/gen_release_notes.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
from __future__ import annotations
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import sys
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
ROOT = Path(__file__).resolve().parents[1]
|
9 |
+
CHANGELOG = ROOT / "CHANGELOG.md"
|
10 |
+
OUT = ROOT / "release_notes.md"
|
11 |
+
|
12 |
+
def main(tag: str) -> None:
|
13 |
+
version = tag.lstrip("v").strip()
|
14 |
+
if not CHANGELOG.exists():
|
15 |
+
OUT.write_text(f"# Release {tag}\n\n(CHANGELOG.md not found)\n", encoding="utf-8")
|
16 |
+
return
|
17 |
+
text = CHANGELOG.read_text(encoding="utf-8")
|
18 |
+
pat = re.compile(rf"^##\s*[[^{re.escape(version)}]]?[^\n]*$", re.MULTILINE)
|
19 |
+
m = pat.search(text)
|
20 |
+
if not m:
|
21 |
+
OUT.write_text(
|
22 |
+
f"# Release {tag}\n\nSection for {version} not found in CHANGELOG.\n\n" + text,
|
23 |
+
encoding="utf-8",
|
24 |
+
)
|
25 |
+
return
|
26 |
+
start = m.end()
|
27 |
+
m2 = re.search(r"^##\s+", text[start:], re.MULTILINE)
|
28 |
+
end = start + (m2.start() if m2 else len(text) - start)
|
29 |
+
section = text[m.start():end].strip()
|
30 |
+
body = f"# Release {tag}\n\n{section}\n\n— generated from [CHANGELOG.md](CHANGELOG.md)"
|
31 |
+
OUT.write_text(body, encoding="utf-8")
|
32 |
+
|
33 |
+
if __name__ == "__main__":
|
34 |
+
tag = sys.argv[1] if len(sys.argv) > 1 else os.environ.get("GITHUB_REF_NAME", "")
|
35 |
+
if not tag:
|
36 |
+
print("Usage: gen_release_notes.py vX.Y.Z", file=sys.stderr)
|
37 |
+
sys.exit(2)
|
38 |
+
main(tag)
|
scripts/release.sh
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
set -euo pipefail
|
3 |
+
|
4 |
+
TAG=${1:-}
|
5 |
+
if [[ -z "$TAG" ]]; then
|
6 |
+
echo "Usage: scripts/release.sh vX.Y.Z"; exit 1
|
7 |
+
fi
|
8 |
+
|
9 |
+
# sanity checks
|
10 |
+
if [[ -n $(git status --porcelain) ]]; then
|
11 |
+
echo "❌ Working tree not clean"; exit 1
|
12 |
+
fi
|
13 |
+
|
14 |
+
# ensure deps
|
15 |
+
python -m pip install -e .[dev]
|
16 |
+
pre-commit run --all-files
|
17 |
+
pytest -q
|
18 |
+
|
19 |
+
# generate release notes preview from CHANGELOG
|
20 |
+
python scripts/gen_release_notes.py "$TAG"
|
21 |
+
if [[ -f release_notes.md ]]; then
|
22 |
+
echo "--- release_notes.md (preview top 60 lines) ---"
|
23 |
+
head -n 60 release_notes.md || true
|
24 |
+
echo "--- end preview ---"
|
25 |
+
else
|
26 |
+
echo "⚠️ release_notes.md not generated; will fall back to default notes in GH release"
|
27 |
+
fi
|
28 |
+
|
29 |
+
# tag & push
|
30 |
+
read -p "Tag ${TAG} and push? (y/N) " yn
|
31 |
+
if [[ "$yn" != "y" && "$yn" != "Y" ]]; then
|
32 |
+
echo "aborted"; exit 1
|
33 |
+
fi
|
34 |
+
|
35 |
+
git tag -a "$TAG" -m "Release $TAG"
|
36 |
+
git push origin "$TAG"
|
37 |
+
|
38 |
+
echo "✅ Pushed tag $TAG. GitHub Actions will create the Release automatically."
|
39 |
+
echo "➡️ Watch: https://github.com/Flamehaven/CRoM-EfficientLLM/actions"
|
src/crom_efficientllm/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Public API for CRoM-EfficientLLM."""
|
2 |
+
from .budget_packer.packer import Chunk, budget_pack, pack_summary
|
3 |
+
from .rerank_engine.rerank import hybrid_rerank
|
4 |
+
from .drift_estimator.estimator import DriftEstimator, DriftMode
|
5 |
+
|
6 |
+
__all__ = [
|
7 |
+
"Chunk",
|
8 |
+
"budget_pack",
|
9 |
+
"pack_summary",
|
10 |
+
"hybrid_rerank",
|
11 |
+
"DriftEstimator",
|
12 |
+
"DriftMode",
|
13 |
+
]
|
src/crom_efficientllm/budget_packer/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .packer import Chunk, budget_pack, pack_summary
|
2 |
+
__all__ = ["Chunk", "budget_pack", "pack_summary"]
|
src/crom_efficientllm/budget_packer/packer.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Budget Packer
|
3 |
+
-------------
|
4 |
+
Greedy packing of highest-scoring chunks under a token budget.
|
5 |
+
- Stable ordering (score desc, tokens asc, original index asc)
|
6 |
+
- Input validation and optional token estimation
|
7 |
+
"""
|
8 |
+
from __future__ import annotations
|
9 |
+
|
10 |
+
from dataclasses import dataclass
|
11 |
+
from typing import Any, Iterable, List, Sequence, Tuple, Union, Optional
|
12 |
+
|
13 |
+
@dataclass(frozen=True)
|
14 |
+
class Chunk:
|
15 |
+
text: str
|
16 |
+
score: float
|
17 |
+
tokens: int
|
18 |
+
|
19 |
+
def _estimate_tokens(text: str) -> int:
|
20 |
+
"""Lightweight heuristic when `tokens` absent. Avoids heavy tokenizers.
|
21 |
+
Why: keeps demo dependency-light and deterministic.
|
22 |
+
"""
|
23 |
+
# approx: 4 chars ≈ 1 token; floor at 1
|
24 |
+
return max(1, len(text) // 4)
|
25 |
+
|
26 |
+
def _coerce_chunk(obj: Union[Chunk, dict], idx: int) -> Chunk:
|
27 |
+
if isinstance(obj, Chunk):
|
28 |
+
return obj
|
29 |
+
if not isinstance(obj, dict):
|
30 |
+
raise TypeError(f"Chunk #{idx} must be Chunk or dict, got {type(obj)}")
|
31 |
+
text = str(obj.get("text", ""))
|
32 |
+
if not text:
|
33 |
+
raise ValueError(f"Chunk #{idx} has empty text")
|
34 |
+
score = float(obj.get("score", 0.0))
|
35 |
+
tokens = int(obj["tokens"]) if "tokens" in obj else _estimate_tokens(text)
|
36 |
+
if tokens <= 0:
|
37 |
+
raise ValueError(f"Chunk #{idx} has non-positive tokens: {tokens}")
|
38 |
+
return Chunk(text=text, score=score, tokens=tokens)
|
39 |
+
|
40 |
+
def budget_pack(
|
41 |
+
text_chunks: Sequence[Union[Chunk, dict]],
|
42 |
+
budget: int = 1000,
|
43 |
+
) -> List[Chunk]:
|
44 |
+
"""
|
45 |
+
Args:
|
46 |
+
text_chunks: iterable of Chunk or dict with keys {text, score, tokens}
|
47 |
+
budget: max token budget (int > 0)
|
48 |
+
Returns:
|
49 |
+
list of selected chunks (order of selection)
|
50 |
+
"""
|
51 |
+
if budget <= 0:
|
52 |
+
raise ValueError("budget must be > 0")
|
53 |
+
|
54 |
+
coerced: List[Chunk] = [_coerce_chunk(c, i) for i, c in enumerate(text_chunks)]
|
55 |
+
|
56 |
+
# stable sort by (-score, tokens, original_index)
|
57 |
+
indexed: List[Tuple[int, Chunk]] = list(enumerate(coerced))
|
58 |
+
indexed.sort(key=lambda it: (-it[1].score, it[1].tokens, it[0]))
|
59 |
+
|
60 |
+
selected: List[Chunk] = []
|
61 |
+
total = 0
|
62 |
+
for _, ch in indexed:
|
63 |
+
if total + ch.tokens <= budget:
|
64 |
+
selected.append(ch)
|
65 |
+
total += ch.tokens
|
66 |
+
return selected
|
67 |
+
|
68 |
+
def pack_summary(selected: Sequence[Chunk]) -> dict:
|
69 |
+
tokens = sum(c.tokens for c in selected)
|
70 |
+
return {
|
71 |
+
"num_chunks": len(selected),
|
72 |
+
"tokens": tokens,
|
73 |
+
"avg_score": (sum(c.score for c in selected) / len(selected)) if selected else 0.0,
|
74 |
+
}
|
src/crom_efficientllm/cli.py
ADDED
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import argparse
|
4 |
+
import json
|
5 |
+
import os
|
6 |
+
import time
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from typing import List, Dict, Sequence
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
12 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
13 |
+
|
14 |
+
from crom_efficientllm.budget_packer.packer import budget_pack, Chunk
|
15 |
+
from crom_efficientllm.rerank_engine.rerank import hybrid_rerank
|
16 |
+
|
17 |
+
try:
|
18 |
+
from sentence_transformers import SentenceTransformer
|
19 |
+
except Exception: # pragma: no cover
|
20 |
+
SentenceTransformer = None # type: ignore
|
21 |
+
|
22 |
+
# Optional plugins are imported lazily when flags are set
|
23 |
+
|
24 |
+
@dataclass
|
25 |
+
class Doc:
|
26 |
+
id: str
|
27 |
+
text: str
|
28 |
+
|
29 |
+
def load_jsonl(path: str) -> List[Dict]:
|
30 |
+
with open(path, "r", encoding="utf-8") as f:
|
31 |
+
return [json.loads(line) for line in f]
|
32 |
+
|
33 |
+
def build_corpus(path: str) -> List[Doc]:
|
34 |
+
rows = load_jsonl(path)
|
35 |
+
return [Doc(id=str(r.get("id", i)), text=str(r["text"])) for i, r in enumerate(rows)]
|
36 |
+
|
37 |
+
def sparse_retrieval(query: str, corpus: Sequence[Doc], k: int = 100) -> List[Dict]:
|
38 |
+
texts = [d.text for d in corpus]
|
39 |
+
vect = TfidfVectorizer(ngram_range=(1, 2)).fit(texts)
|
40 |
+
D = vect.transform(texts)
|
41 |
+
Q = vect.transform([query])
|
42 |
+
sims = cosine_similarity(Q, D).ravel()
|
43 |
+
order = np.argsort(-sims)[:k]
|
44 |
+
return [{"id": corpus[i].id, "text": corpus[i].text, "score_sparse": float(sims[i])} for i in order]
|
45 |
+
|
46 |
+
def dense_embed_model(name: str):
|
47 |
+
if SentenceTransformer is None:
|
48 |
+
raise RuntimeError("sentence-transformers not installed. Install with `pip install -e .`.")
|
49 |
+
return SentenceTransformer(name)
|
50 |
+
|
51 |
+
def _apply_flashrank(query: str, docs: List[Dict], model_name: str) -> List[Dict]:
|
52 |
+
try:
|
53 |
+
from crom_efficientllm.plugins.flashrank_reranker import flashrank_rerank
|
54 |
+
except Exception as e: # pragma: no cover
|
55 |
+
raise RuntimeError("FlashRank plugin not available. Install extras: pip install .[plugins]") from e
|
56 |
+
ranked = flashrank_rerank(query, docs, model_name=model_name)
|
57 |
+
# Normalize plugin score to 0..1 and put into score_final
|
58 |
+
scores = np.array([d.get("score_flashrank", 0.0) for d in ranked], dtype=np.float32)
|
59 |
+
if scores.size and float(scores.max() - scores.min()) > 1e-12:
|
60 |
+
s = (scores - scores.min()) / (scores.max() - scores.min())
|
61 |
+
else:
|
62 |
+
s = np.zeros_like(scores)
|
63 |
+
for i, d in enumerate(ranked):
|
64 |
+
d["score_final"] = float(s[i])
|
65 |
+
return ranked
|
66 |
+
|
67 |
+
def _apply_llmlingua(text: str, ratio: float) -> str:
|
68 |
+
try:
|
69 |
+
from crom_efficientllm.plugins.llmlingua_compressor import compress_prompt
|
70 |
+
except Exception as e: # pragma: no cover
|
71 |
+
raise RuntimeError("LLMLingua plugin not available. Install extras: pip install .[plugins]") from e
|
72 |
+
return compress_prompt(text, target_ratio=ratio)
|
73 |
+
|
74 |
+
def _save_evidently_report(all_embs: List[List[float]], out_html: str) -> None:
|
75 |
+
try:
|
76 |
+
from crom_efficientllm.plugins.evidently_drift import drift_report
|
77 |
+
except Exception as e: # pragma: no cover
|
78 |
+
raise RuntimeError("Evidently plugin not available. Install extras: pip install .[plugins]") from e
|
79 |
+
n = len(all_embs)
|
80 |
+
if n < 4:
|
81 |
+
return
|
82 |
+
ref = all_embs[: n // 2]
|
83 |
+
cur = all_embs[n // 2 :]
|
84 |
+
rep = drift_report(ref, cur)
|
85 |
+
rep.save_html(out_html)
|
86 |
+
|
87 |
+
def mock_llm_generate(prompt: str) -> str:
|
88 |
+
time.sleep(0.005) # simulate small latency
|
89 |
+
return "[MOCK] " + prompt[:160]
|
90 |
+
|
91 |
+
def e2e(args: argparse.Namespace) -> None:
|
92 |
+
corpus = build_corpus(args.corpus)
|
93 |
+
queries = [r["query"] for r in load_jsonl(args.queries)]
|
94 |
+
embed = dense_embed_model(args.model)
|
95 |
+
all_embs: List[List[float]] = []
|
96 |
+
|
97 |
+
t0 = time.perf_counter()
|
98 |
+
all_rows = []
|
99 |
+
for q in queries:
|
100 |
+
t_s = time.perf_counter()
|
101 |
+
cands = sparse_retrieval(q, corpus, k=args.k)
|
102 |
+
t_sparse = (time.perf_counter() - t_s) * 1000
|
103 |
+
|
104 |
+
t_r = time.perf_counter()
|
105 |
+
if args.use_flashrank:
|
106 |
+
reranked = _apply_flashrank(q, cands, args.flashrank_model)
|
107 |
+
else:
|
108 |
+
reranked = hybrid_rerank(q, cands, embed, alpha=args.alpha)
|
109 |
+
t_rerank = (time.perf_counter() - t_r) * 1000
|
110 |
+
|
111 |
+
# token heuristic + budget pack
|
112 |
+
chunks = [
|
113 |
+
Chunk(text=d["text"], score=d.get("score_final", d.get("score_sparse", 0.0)), tokens=max(1, len(d["text"]) // 4))
|
114 |
+
for d in reranked
|
115 |
+
]
|
116 |
+
budget_tokens = int(sum(c.tokens for c in chunks) * args.budget)
|
117 |
+
t_p = time.perf_counter()
|
118 |
+
packed = budget_pack(chunks, budget=budget_tokens)
|
119 |
+
t_pack = (time.perf_counter() - t_p) * 1000
|
120 |
+
|
121 |
+
prompt = "\n\n".join(c.text for c in packed) + f"\n\nQ: {q}\nA:"
|
122 |
+
if args.use_llmlingua:
|
123 |
+
prompt = _apply_llmlingua(prompt, ratio=args.compress_ratio)
|
124 |
+
|
125 |
+
# collect embeddings for drift snapshot (mean-pooled)
|
126 |
+
with np.errstate(all="ignore"):
|
127 |
+
if len(packed) > 0:
|
128 |
+
doc_embs = embed.encode([c.text for c in packed], convert_to_numpy=True)
|
129 |
+
vec = np.mean(doc_embs, axis=0).tolist()
|
130 |
+
all_embs.append(vec)
|
131 |
+
|
132 |
+
t_l = time.perf_counter()
|
133 |
+
_ = mock_llm_generate(prompt)
|
134 |
+
t_llm = (time.perf_counter() - t_l) * 1000
|
135 |
+
|
136 |
+
total = (time.perf_counter() - t_s) * 1000
|
137 |
+
all_rows.append({
|
138 |
+
"query": q,
|
139 |
+
"sparse_ms": t_sparse,
|
140 |
+
"rerank_ms": t_rerank,
|
141 |
+
"pack_ms": t_pack,
|
142 |
+
"llm_ms": t_llm,
|
143 |
+
"total_ms": total,
|
144 |
+
"packed_tokens": sum(c.tokens for c in packed),
|
145 |
+
"orig_tokens": sum(c.tokens for c in chunks),
|
146 |
+
"save_ratio": 1 - (sum(c.tokens for c in packed) / max(1, sum(c.tokens for c in chunks))),
|
147 |
+
"used_flashrank": bool(args.use_flashrank),
|
148 |
+
"used_llmlingua": bool(args.use_llmlingua),
|
149 |
+
})
|
150 |
+
|
151 |
+
elapsed = (time.perf_counter() - t0) * 1000
|
152 |
+
os.makedirs(args.out_dir, exist_ok=True)
|
153 |
+
out_path = os.path.join(args.out_dir, "e2e_results.jsonl")
|
154 |
+
with open(out_path, "w", encoding="utf-8") as f:
|
155 |
+
for r in all_rows:
|
156 |
+
f.write(json.dumps(r, ensure_ascii=False) + "\n")
|
157 |
+
print(f"saved results -> {out_path} ({len(all_rows)} queries) ; elapsed={elapsed:.2f}ms")
|
158 |
+
|
159 |
+
if args.use_evidently and all_embs:
|
160 |
+
html_path = os.path.join(args.out_dir, "evidently_report.html")
|
161 |
+
_save_evidently_report(all_embs, html_path)
|
162 |
+
print(f"evidently report -> {html_path}")
|
163 |
+
|
164 |
+
def budget_sweep(args: argparse.Namespace) -> None:
|
165 |
+
import itertools
|
166 |
+
corpus = build_corpus(args.corpus)
|
167 |
+
queries = [r["query"] for r in load_jsonl(args.queries)][: args.max_q]
|
168 |
+
embed = dense_embed_model(args.model)
|
169 |
+
|
170 |
+
budgets = [b / 100.0 for b in range(args.b_min, args.b_max + 1, args.b_step)]
|
171 |
+
rows = []
|
172 |
+
for q, b in itertools.product(queries, budgets):
|
173 |
+
cands = sparse_retrieval(q, corpus, k=args.k)
|
174 |
+
reranked = hybrid_rerank(q, cands, embed, alpha=args.alpha)
|
175 |
+
chunks = [Chunk(text=d["text"], score=d["score_final"], tokens=max(1, len(d["text"]) // 4)) for d in reranked]
|
176 |
+
budget_tokens = int(sum(c.tokens for c in chunks) * b)
|
177 |
+
packed = budget_pack(chunks, budget=budget_tokens)
|
178 |
+
rows.append({
|
179 |
+
"query": q,
|
180 |
+
"budget": b,
|
181 |
+
"packed_tokens": sum(c.tokens for c in packed),
|
182 |
+
"orig_tokens": sum(c.tokens for c in chunks),
|
183 |
+
"save_ratio": 1 - (sum(c.tokens for c in packed) / max(1, sum(c.tokens for c in chunks))),
|
184 |
+
"avg_score": float(np.mean([c.score for c in packed])) if packed else 0.0,
|
185 |
+
})
|
186 |
+
|
187 |
+
os.makedirs(args.out_dir, exist_ok=True)
|
188 |
+
out_path = os.path.join(args.out_dir, "budget_sweep.jsonl")
|
189 |
+
with open(out_path, "w", encoding="utf-8") as f:
|
190 |
+
for r in rows:
|
191 |
+
f.write(json.dumps(r, ensure_ascii=False) + "\n")
|
192 |
+
print(f"saved results -> {out_path} ; points={len(rows)}")
|
193 |
+
|
194 |
+
if args.save_plots:
|
195 |
+
try:
|
196 |
+
import matplotlib.pyplot as plt # noqa: F401
|
197 |
+
import matplotlib.pyplot as _plt
|
198 |
+
except Exception:
|
199 |
+
print("[warn] matplotlib not installed; install dev extras: pip install -e .[dev]")
|
200 |
+
else:
|
201 |
+
# Aggregate by budget
|
202 |
+
import collections
|
203 |
+
agg = collections.defaultdict(list)
|
204 |
+
for r in rows:
|
205 |
+
agg[r["budget"]].append(r)
|
206 |
+
budgets_sorted = sorted(agg.keys())
|
207 |
+
avg_save = [float(np.mean([x["save_ratio"] for x in agg[b]])) for b in budgets_sorted]
|
208 |
+
avg_score = [float(np.mean([x["avg_score"] for x in agg[b]])) for b in budgets_sorted]
|
209 |
+
|
210 |
+
_plt.figure()
|
211 |
+
_plt.plot([b * 100 for b in budgets_sorted], [s * 100 for s in avg_save], marker="o")
|
212 |
+
_plt.xlabel("Budget (%)")
|
213 |
+
_plt.ylabel("Avg Save Ratio (%)")
|
214 |
+
_plt.title("Budget Sweep: Save Ratio vs Budget")
|
215 |
+
_plt.grid(True)
|
216 |
+
_plt.tight_layout()
|
217 |
+
_plt.savefig(os.path.join(args.out_dir, "budget_sweep.png"))
|
218 |
+
|
219 |
+
_plt.figure()
|
220 |
+
_plt.plot([s * 100 for s in avg_save], avg_score, marker="o")
|
221 |
+
_plt.xlabel("Save Ratio (%)")
|
222 |
+
_plt.ylabel("Avg Score (packed)")
|
223 |
+
_plt.title("Pareto: Quality vs Savings")
|
224 |
+
_plt.grid(True)
|
225 |
+
_plt.tight_layout()
|
226 |
+
_plt.savefig(os.path.join(args.out_dir, "budget_pareto.png"))
|
227 |
+
print("plots ->", os.path.join(args.out_dir, "budget_sweep.png"), ",", os.path.join(args.out_dir, "budget_pareto.png"))
|
228 |
+
|
229 |
+
def scaling(args: argparse.Namespace) -> None:
|
230 |
+
def make_synth(n: int, seed: int = 42):
|
231 |
+
rng = np.random.default_rng(seed)
|
232 |
+
tokens = np.clip(rng.lognormal(4.0, 0.6, n).astype(int), 5, 2000)
|
233 |
+
score = rng.normal(0, 1, n)
|
234 |
+
return [Chunk(text="x" * int(t * 4), score=float(s), tokens=int(t)) for s, t in zip(score, tokens)]
|
235 |
+
|
236 |
+
for n in [1000, 5000, 10000, 20000, 50000, 100000]:
|
237 |
+
if n > args.n_max:
|
238 |
+
break
|
239 |
+
chunks = make_synth(n)
|
240 |
+
budget = int(sum(c.tokens for c in chunks) * args.budget)
|
241 |
+
t0 = time.perf_counter()
|
242 |
+
_ = budget_pack(chunks, budget)
|
243 |
+
ms = (time.perf_counter() - t0) * 1000
|
244 |
+
print(f"n={n:6d} budget={args.budget:.0%} time={ms:8.2f} ms")
|
245 |
+
|
246 |
+
def dp_curve(args: argparse.Namespace) -> None:
|
247 |
+
def make_synth(n: int, seed: int = 123, corr: float = 0.6):
|
248 |
+
rng = np.random.default_rng(seed)
|
249 |
+
true_rel = rng.normal(0, 1, n)
|
250 |
+
noise = rng.normal(0, 1, n) * np.sqrt(1 - corr**2)
|
251 |
+
score = corr * true_rel + noise
|
252 |
+
tokens = np.clip(rng.lognormal(4.0, 0.6, n).astype(int), 5, 2000)
|
253 |
+
chunks = [Chunk(text="x" * int(t * 4), score=float(s), tokens=int(t)) for s, t in zip(score, tokens)]
|
254 |
+
return chunks, true_rel
|
255 |
+
|
256 |
+
def optimal(chunks: Sequence[Chunk], values: np.ndarray, budget: int) -> float:
|
257 |
+
B = budget
|
258 |
+
dp = np.zeros(B + 1, dtype=np.float32)
|
259 |
+
for i, ch in enumerate(chunks):
|
260 |
+
wt = ch.tokens
|
261 |
+
val = max(0.0, float(values[i]))
|
262 |
+
for b in range(B, wt - 1, -1):
|
263 |
+
dp[b] = max(dp[b], dp[b - wt] + val)
|
264 |
+
return float(dp[B])
|
265 |
+
|
266 |
+
chunks, true_rel = make_synth(args.n)
|
267 |
+
total = sum(c.tokens for c in chunks)
|
268 |
+
budgets = [int(total * b / 100.0) for b in range(args.b_min, args.b_max + 1, args.b_step)]
|
269 |
+
out_rows = []
|
270 |
+
|
271 |
+
for B in budgets:
|
272 |
+
sel = budget_pack(chunks, B)
|
273 |
+
idx_map = {id(c): i for i, c in enumerate(chunks)}
|
274 |
+
rel_bp = float(np.sum([max(0.0, true_rel[idx_map[id(c)]]) for c in sel]))
|
275 |
+
rel_opt = optimal(chunks[: args.n_opt], true_rel[: args.n_opt], min(B, sum(c.tokens for c in chunks[: args.n_opt])))
|
276 |
+
pct = rel_bp / max(rel_opt, 1e-9)
|
277 |
+
out_rows.append({"budget": B, "pct": pct, "rel_bp": rel_bp, "rel_opt": rel_opt})
|
278 |
+
print(f"budget={B:8d} rel_bp={rel_bp:8.3f} rel_opt≈{rel_opt:8.3f} pct≈{pct*100:5.1f}% (subset n={args.n_opt})")
|
279 |
+
|
280 |
+
if args.save_plots:
|
281 |
+
try:
|
282 |
+
import matplotlib.pyplot as plt # noqa: F401
|
283 |
+
import matplotlib.pyplot as _plt
|
284 |
+
except Exception:
|
285 |
+
print("[warn] matplotlib not installed; install dev extras: pip install -e .[dev]")
|
286 |
+
else:
|
287 |
+
_plt.figure()
|
288 |
+
xs = [r["budget"] * 100.0 / total for r in out_rows]
|
289 |
+
ys = [r["pct"] * 100 for r in out_rows]
|
290 |
+
_plt.plot(xs, ys, marker="o")
|
291 |
+
_plt.xlabel("Budget (%)")
|
292 |
+
_plt.ylabel("% of optimal (subset)")
|
293 |
+
_plt.title("DP Curve: Greedy vs Optimal")
|
294 |
+
_plt.grid(True)
|
295 |
+
_plt.tight_layout()
|
296 |
+
os.makedirs(args.out_dir, exist_ok=True)
|
297 |
+
_plt.savefig(os.path.join(args.out_dir, "dp_curve.png"))
|
298 |
+
print("plot ->", os.path.join(args.out_dir, "dp_curve.png"))
|
299 |
+
|
300 |
+
def compare_haystack(args: argparse.Namespace) -> None:
|
301 |
+
try:
|
302 |
+
from haystack.nodes import BM25Retriever, SentenceTransformersRetriever
|
303 |
+
from haystack.document_stores import InMemoryDocumentStore
|
304 |
+
except Exception as e: # pragma: no cover
|
305 |
+
raise RuntimeError("Install extras: pip install .[haystack]") from e
|
306 |
+
|
307 |
+
corpus = build_corpus(args.corpus)
|
308 |
+
docs = [{"content": d.text, "meta": {"id": d.id}} for d in corpus]
|
309 |
+
store = InMemoryDocumentStore(use_bm25=True)
|
310 |
+
store.write_documents(docs)
|
311 |
+
|
312 |
+
bm25 = BM25Retriever(document_store=store)
|
313 |
+
dretr = SentenceTransformersRetriever(document_store=store, model_name_or_path=args.model)
|
314 |
+
|
315 |
+
queries = [r["query"] for r in load_jsonl(args.queries)][: args.max_q]
|
316 |
+
for q in queries:
|
317 |
+
t0 = time.perf_counter()
|
318 |
+
bm = bm25.retrieve(q, top_k=args.k)
|
319 |
+
dn = dretr.retrieve(q, top_k=args.k)
|
320 |
+
ms = (time.perf_counter() - t0) * 1000
|
321 |
+
print(f"{q[:40]:40s} bm25={len(bm):3d} dense={len(dn):3d} time={ms:7.2f} ms")
|
322 |
+
|
323 |
+
def main() -> None:
|
324 |
+
ap = argparse.ArgumentParser(prog="crom-bench")
|
325 |
+
sub = ap.add_subparsers(dest="cmd", required=True)
|
326 |
+
|
327 |
+
p = sub.add_parser("e2e", help="end-to-end: retrieval → rerank → pack → mock LLM")
|
328 |
+
p.add_argument("--corpus", default="examples/corpus/sample_docs.jsonl")
|
329 |
+
p.add_argument("--queries", default="examples/corpus/sample_queries.jsonl")
|
330 |
+
p.add_argument("--model", default="sentence-transformers/all-MiniLM-L6-v2")
|
331 |
+
p.add_argument("--k", type=int, default=200)
|
332 |
+
p.add_argument("--alpha", type=float, default=0.5)
|
333 |
+
p.add_argument("--budget", type=float, default=0.3)
|
334 |
+
# plugins
|
335 |
+
p.add_argument("--use-flashrank", action="store_true")
|
336 |
+
p.add_argument("--flashrank-model", default="ms-marco-TinyBERT-L-2-v2")
|
337 |
+
p.add_argument("--use-llmlingua", action="store_true")
|
338 |
+
p.add_argument("--compress-ratio", type=float, default=0.6)
|
339 |
+
p.add_argument("--use-evidently", action="store_true")
|
340 |
+
|
341 |
+
p.add_argument("--out-dir", default="benchmarks/out")
|
342 |
+
p.set_defaults(func=e2e)
|
343 |
+
|
344 |
+
p2 = sub.add_parser("sweep", help="budget sweep + Pareto csv")
|
345 |
+
p2.add_argument("--corpus", default="examples/corpus/sample_docs.jsonl")
|
346 |
+
p2.add_argument("--queries", default="examples/corpus/sample_queries.jsonl")
|
347 |
+
p2.add_argument("--model", default="sentence-transformers/all-MiniLM-L6-v2")
|
348 |
+
p2.add_argument("--k", type=int, default=200)
|
349 |
+
p2.add_argument("--alpha", type=float, default=0.5)
|
350 |
+
p2.add_argument("--b-min", type=int, default=10)
|
351 |
+
p2.add_argument("--b-max", type=int, default=90)
|
352 |
+
p2.add_argument("--b-step", type=int, default=10)
|
353 |
+
p2.add_argument("--max-q", type=int, default=20)
|
354 |
+
p2.add_argument("--out-dir", default="benchmarks/out")
|
355 |
+
p2.add_argument("--save-plots", action="store_true")
|
356 |
+
p2.set_defaults(func=budget_sweep)
|
357 |
+
|
358 |
+
p3 = sub.add_parser("scale", help="scaling runtime with synthetic data")
|
359 |
+
p3.add_argument("--n-max", type=int, default=100000)
|
360 |
+
p3.add_argument("--budget", type=float, default=0.3)
|
361 |
+
p3.set_defaults(func=scaling)
|
362 |
+
|
363 |
+
p4 = sub.add_parser("dp-curve", help="% of optimal vs budget (synthetic)")
|
364 |
+
p4.add_argument("--n", type=int, default=2000)
|
365 |
+
p4.add_argument("--n-opt", type=int, default=200)
|
366 |
+
p4.add_argument("--b-min", type=int, default=10)
|
367 |
+
p4.add_argument("--b-max", type=int, default=90)
|
368 |
+
p4.add_argument("--b-step", type=int, default=10)
|
369 |
+
p4.add_argument("--out-dir", default="benchmarks/out")
|
370 |
+
p4.add_argument("--save-plots", action="store_true")
|
371 |
+
p4.set_defaults(func=dp_curve)
|
372 |
+
|
373 |
+
p5 = sub.add_parser("haystack-compare", help="compare BM25 vs dense retrievers (Haystack)")
|
374 |
+
p5.add_argument("--corpus", default="examples/corpus/sample_docs.jsonl")
|
375 |
+
p5.add_argument("--queries", default="examples/corpus/sample_queries.jsonl")
|
376 |
+
p5.add_argument("--model", default="sentence-transformers/all-MiniLM-L6-v2")
|
377 |
+
p5.add_argument("--k", type=int, default=50)
|
378 |
+
p5.add_argument("--max-q", type=int, default=10)
|
379 |
+
p5.set_defaults(func=compare_haystack)
|
380 |
+
|
381 |
+
args = ap.parse_args()
|
382 |
+
args.func(args)
|
383 |
+
|
384 |
+
if __name__ == "__main__":
|
385 |
+
main()
|
src/crom_efficientllm/demo.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Demo & Metrics Server for CRoM-EfficientLLM
|
3 |
+
------------------------------------------
|
4 |
+
- `crom-demo demo` : run sample pipeline
|
5 |
+
- `crom-demo serve` : start Flask + Prometheus metrics on :8000
|
6 |
+
"""
|
7 |
+
from __future__ import annotations
|
8 |
+
|
9 |
+
import argparse
|
10 |
+
from typing import List
|
11 |
+
|
12 |
+
from flask import Flask, Response
|
13 |
+
from prometheus_client import Counter, Gauge, generate_latest, CONTENT_TYPE_LATEST
|
14 |
+
|
15 |
+
from crom_efficientllm.budget_packer.packer import budget_pack, pack_summary, Chunk
|
16 |
+
from crom_efficientllm.rerank_engine.rerank import hybrid_rerank
|
17 |
+
from crom_efficientllm.drift_estimator.estimator import DriftEstimator, DriftMode
|
18 |
+
|
19 |
+
# ---- Prometheus metrics ----
|
20 |
+
TOKENS_SAVED = Gauge("crom_tokens_saved", "Tokens saved by budget packer")
|
21 |
+
DRIFT_ALERTS = Counter("crom_drift_alerts_total", "Total drift alerts emitted")
|
22 |
+
|
23 |
+
class DummyEmbed:
|
24 |
+
def encode(self, text, convert_to_numpy=False):
|
25 |
+
vec = [ord(c) % 7 for c in str(text)[:16]]
|
26 |
+
return vec
|
27 |
+
|
28 |
+
def run_demo() -> None:
|
29 |
+
chunks: List[Chunk] = [
|
30 |
+
Chunk(text="AI ethics is crucial", score=0.9, tokens=50),
|
31 |
+
Chunk(text="Unrelated text", score=0.2, tokens=40),
|
32 |
+
Chunk(text="Drift detection research", score=0.8, tokens=60),
|
33 |
+
]
|
34 |
+
packed = budget_pack(chunks, budget=80)
|
35 |
+
summary = pack_summary(packed)
|
36 |
+
print("📦 Packed:", [c.text for c in packed], summary)
|
37 |
+
|
38 |
+
docs = [{"text": "AI drift measurement"}, {"text": "Cooking recipes"}]
|
39 |
+
reranked = hybrid_rerank("AI ethics", docs, DummyEmbed(), alpha=0.5)
|
40 |
+
print("🔎 Reranked:", [d["text"] for d in reranked])
|
41 |
+
|
42 |
+
de = DriftEstimator(threshold=0.5, mode=DriftMode.L2)
|
43 |
+
print("⚙️ Drift state:", de.state())
|
44 |
+
print("⚠️ Drift alert?", de.update([1, 2, 3]))
|
45 |
+
print("⚠️ Drift alert?", de.update([10, 10, 10]))
|
46 |
+
print("⚙️ Drift state:", de.state())
|
47 |
+
|
48 |
+
# Update metrics
|
49 |
+
TOKENS_SAVED.set(max(0, sum(c.tokens for c in chunks) - summary["tokens"]))
|
50 |
+
alert1, *_ = de.update([1, 2, 3])
|
51 |
+
alert2, *_ = de.update([10, 10, 10])
|
52 |
+
if alert1:
|
53 |
+
DRIFT_ALERTS.inc()
|
54 |
+
if alert2:
|
55 |
+
DRIFT_ALERTS.inc()
|
56 |
+
|
57 |
+
def create_app() -> Flask:
|
58 |
+
app = Flask(__name__)
|
59 |
+
|
60 |
+
@app.get("/healthz")
|
61 |
+
def healthz():
|
62 |
+
return {"status": "ok"}
|
63 |
+
|
64 |
+
@app.get("/metrics")
|
65 |
+
def metrics():
|
66 |
+
return Response(generate_latest(), mimetype=CONTENT_TYPE_LATEST)
|
67 |
+
|
68 |
+
return app
|
69 |
+
|
70 |
+
def main() -> None:
|
71 |
+
parser = argparse.ArgumentParser(prog="crom-demo")
|
72 |
+
sub = parser.add_subparsers(dest="cmd", required=True)
|
73 |
+
sub.add_parser("demo", help="run sample pipeline")
|
74 |
+
|
75 |
+
pserve = sub.add_parser("serve", help="start metrics server on :8000")
|
76 |
+
pserve.add_argument("--host", default="0.0.0.0")
|
77 |
+
pserve.add_argument("--port", type=int, default=8000)
|
78 |
+
|
79 |
+
args = parser.parse_args()
|
80 |
+
|
81 |
+
if args.cmd == "demo":
|
82 |
+
run_demo()
|
83 |
+
return
|
84 |
+
|
85 |
+
if args.cmd == "serve":
|
86 |
+
app = create_app()
|
87 |
+
app.run(host=args.host, port=args.port)
|
88 |
+
return
|
89 |
+
|
90 |
+
if __name__ == "__main__":
|
91 |
+
main()
|
src/crom_efficientllm/drift_estimator/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .estimator import DriftEstimator, DriftMode
|
2 |
+
__all__ = ["DriftEstimator", "DriftMode"]
|
src/crom_efficientllm/drift_estimator/estimator.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Drift Estimator
|
3 |
+
---------------
|
4 |
+
Monitors embedding shift using L2 or cosine distance.
|
5 |
+
Supports EWMA smoothing and exposes state for dashboards.
|
6 |
+
"""
|
7 |
+
from __future__ import annotations
|
8 |
+
|
9 |
+
from dataclasses import dataclass, field
|
10 |
+
from enum import Enum
|
11 |
+
from typing import List, Optional, Tuple
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
class DriftMode(str, Enum):
|
15 |
+
L2 = "l2"
|
16 |
+
COSINE = "cosine"
|
17 |
+
|
18 |
+
@dataclass
|
19 |
+
class DriftEstimator:
|
20 |
+
threshold: float = 0.2
|
21 |
+
mode: DriftMode = DriftMode.L2
|
22 |
+
ewma_alpha: float = 0.3 # smoothing for stability
|
23 |
+
|
24 |
+
history: List[np.ndarray] = field(default_factory=list)
|
25 |
+
distances: List[float] = field(default_factory=list)
|
26 |
+
ewma: Optional[float] = None
|
27 |
+
|
28 |
+
def _distance(self, a: np.ndarray, b: np.ndarray) -> float:
|
29 |
+
a = np.asarray(a, dtype=np.float32).ravel()
|
30 |
+
b = np.asarray(b, dtype=np.float32).ravel()
|
31 |
+
if self.mode == DriftMode.L2:
|
32 |
+
return float(np.linalg.norm(a - b))
|
33 |
+
# cosine distance = 1 - cosine similarity
|
34 |
+
denom = (np.linalg.norm(a) * np.linalg.norm(b)) + 1e-12
|
35 |
+
return float(1.0 - float(np.dot(a, b)) / denom)
|
36 |
+
|
37 |
+
def update(self, embedding) -> Tuple[bool, float, float]:
|
38 |
+
"""
|
39 |
+
Args:
|
40 |
+
embedding: vector representation of current response
|
41 |
+
Returns:
|
42 |
+
(drift_alert, distance, ewma)
|
43 |
+
"""
|
44 |
+
emb = np.asarray(embedding, dtype=np.float32)
|
45 |
+
if emb.ndim != 1:
|
46 |
+
emb = emb.ravel()
|
47 |
+
|
48 |
+
if not self.history:
|
49 |
+
self.history.append(emb)
|
50 |
+
self.ewma = 0.0
|
51 |
+
self.distances.append(0.0)
|
52 |
+
return (False, 0.0, 0.0)
|
53 |
+
|
54 |
+
last = self.history[-1]
|
55 |
+
dist = self._distance(emb, last)
|
56 |
+
self.history.append(emb)
|
57 |
+
self.distances.append(dist)
|
58 |
+
|
59 |
+
# EWMA update
|
60 |
+
if self.ewma is None:
|
61 |
+
self.ewma = dist
|
62 |
+
else:
|
63 |
+
self.ewma = self.ewma_alpha * dist + (1 - self.ewma_alpha) * self.ewma
|
64 |
+
|
65 |
+
return (bool(self.ewma > self.threshold), float(dist), float(self.ewma))
|
66 |
+
|
67 |
+
def state(self) -> dict:
|
68 |
+
return {
|
69 |
+
"count": len(self.history),
|
70 |
+
"last_distance": self.distances[-1] if self.distances else 0.0,
|
71 |
+
"ewma": self.ewma or 0.0,
|
72 |
+
"mode": self.mode.value,
|
73 |
+
"threshold": self.threshold,
|
74 |
+
}
|
src/crom_efficientllm/plugins/evidently_drift.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
try:
|
5 |
+
from evidently.metric_preset import DataDriftPreset
|
6 |
+
from evidently.report import Report
|
7 |
+
import pandas as pd
|
8 |
+
except Exception as e: # pragma: no cover
|
9 |
+
raise RuntimeError("evidently not installed. Install extras: pip install .[plugins]") from e
|
10 |
+
|
11 |
+
def drift_report(ref: List[List[float]], cur: List[List[float]]):
|
12 |
+
ref_df = pd.DataFrame(ref)
|
13 |
+
cur_df = pd.DataFrame(cur)
|
14 |
+
rep = Report(metrics=[DataDriftPreset()])
|
15 |
+
rep.run(reference_data=ref_df, current_data=cur_df)
|
16 |
+
return rep
|
src/crom_efficientllm/plugins/flashrank_reranker.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
from typing import List, Dict
|
3 |
+
|
4 |
+
try:
|
5 |
+
from flashrank import Reranker
|
6 |
+
except Exception as e: # pragma: no cover
|
7 |
+
raise RuntimeError("flashrank not installed. Install extras: pip install .[plugins]") from e
|
8 |
+
|
9 |
+
def flashrank_rerank(query: str, docs: List[Dict[str, str]], model_name: str = "ms-marco-TinyBERT-L-2-v2") -> List[Dict]:
|
10 |
+
rr = Reranker(model_name)
|
11 |
+
pairs = [(query, d["text"]) for d in docs]
|
12 |
+
scores = rr.rerank(pairs)
|
13 |
+
order = sorted(range(len(docs)), key=lambda i: -scores[i])
|
14 |
+
return [docs[i] | {"score_flashrank": float(scores[i])} for i in order]
|
src/crom_efficientllm/plugins/llmlingua_compressor.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
try:
|
4 |
+
from llmlingua import PromptCompressor
|
5 |
+
except Exception as e: # pragma: no cover
|
6 |
+
raise RuntimeError("llmlingua not installed. Install extras: pip install .[plugins]") from e
|
7 |
+
|
8 |
+
def compress_prompt(text: str, target_ratio: float = 0.5) -> str:
|
9 |
+
pc = PromptCompressor()
|
10 |
+
out = pc.compress(text, target_ratio=target_ratio)
|
11 |
+
return out["compressed_prompt"] if isinstance(out, dict) and "compressed_prompt" in out else str(out)
|
src/crom_efficientllm/rerank_engine/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .rerank import hybrid_rerank
|
2 |
+
__all__ = ["hybrid_rerank"]
|
src/crom_efficientllm/rerank_engine/rerank.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Hybrid Rerank Engine
|
3 |
+
--------------------
|
4 |
+
Combines sparse (TF-IDF cosine) and dense (embedding cosine) scores with
|
5 |
+
min-max normalization for robust fusion.
|
6 |
+
"""
|
7 |
+
from __future__ import annotations
|
8 |
+
|
9 |
+
from typing import Dict, List, Sequence
|
10 |
+
import numpy as np
|
11 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
12 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
13 |
+
|
14 |
+
def _to_numpy(x):
|
15 |
+
arr = np.asarray(x)
|
16 |
+
return arr.astype(np.float32)
|
17 |
+
|
18 |
+
def _batch_encode(embed_model, texts: Sequence[str]) -> np.ndarray:
|
19 |
+
# Try common API of sentence-transformers: encode(list, convert_to_numpy=True)
|
20 |
+
if hasattr(embed_model, "encode"):
|
21 |
+
try:
|
22 |
+
return _to_numpy(embed_model.encode(list(texts), convert_to_numpy=True))
|
23 |
+
except TypeError:
|
24 |
+
# Fallback: per-text encode
|
25 |
+
return _to_numpy([embed_model.encode(t) for t in texts])
|
26 |
+
raise TypeError("embed_model must provide .encode()")
|
27 |
+
|
28 |
+
def _minmax(x: np.ndarray) -> np.ndarray:
|
29 |
+
if x.size == 0:
|
30 |
+
return x
|
31 |
+
mn, mx = float(np.min(x)), float(np.max(x))
|
32 |
+
if mx - mn <= 1e-12:
|
33 |
+
return np.zeros_like(x)
|
34 |
+
return (x - mn) / (mx - mn)
|
35 |
+
|
36 |
+
def hybrid_rerank(
|
37 |
+
query: str,
|
38 |
+
docs: List[Dict[str, str]],
|
39 |
+
embed_model,
|
40 |
+
alpha: float = 0.5,
|
41 |
+
) -> List[Dict[str, object]]:
|
42 |
+
"""
|
43 |
+
Args:
|
44 |
+
query: query string
|
45 |
+
docs: list of {"text": str}
|
46 |
+
embed_model: model with .encode() -> vector(s)
|
47 |
+
alpha: weight between sparse/dense in [0,1]
|
48 |
+
Returns:
|
49 |
+
ranked list of enriched docs with scores {score_sparse, score_dense, score_final}
|
50 |
+
"""
|
51 |
+
if not 0.0 <= alpha <= 1.0:
|
52 |
+
raise ValueError("alpha must be in [0, 1]")
|
53 |
+
if not docs:
|
54 |
+
return []
|
55 |
+
|
56 |
+
texts = [d.get("text", "") for d in docs]
|
57 |
+
|
58 |
+
# Sparse: TF-IDF cosine
|
59 |
+
tfidf = TfidfVectorizer(ngram_range=(1, 2), min_df=1).fit(texts)
|
60 |
+
Q = tfidf.transform([query])
|
61 |
+
D = tfidf.transform(texts)
|
62 |
+
sparse_scores = cosine_similarity(Q, D).ravel()
|
63 |
+
|
64 |
+
# Dense: cosine(sim) between L2-normalized embeddings
|
65 |
+
q_emb = _to_numpy(embed_model.encode(query))
|
66 |
+
d_embs = _batch_encode(embed_model, texts)
|
67 |
+
# L2 normalize
|
68 |
+
def _l2norm(a):
|
69 |
+
n = np.linalg.norm(a, axis=-1, keepdims=True) + 1e-12
|
70 |
+
return a / n
|
71 |
+
|
72 |
+
qn = _l2norm(q_emb.reshape(1, -1))
|
73 |
+
dn = _l2norm(d_embs)
|
74 |
+
dense_scores = cosine_similarity(qn, dn).ravel()
|
75 |
+
|
76 |
+
# Min-max to [0,1] before fusion to avoid scale issues
|
77 |
+
s_sparse = _minmax(sparse_scores)
|
78 |
+
s_dense = _minmax(dense_scores)
|
79 |
+
|
80 |
+
final_scores = alpha * s_sparse + (1 - alpha) * s_dense
|
81 |
+
order = np.argsort(-final_scores)
|
82 |
+
|
83 |
+
ranked = []
|
84 |
+
for i in order:
|
85 |
+
item = dict(docs[i])
|
86 |
+
item.update(
|
87 |
+
score_sparse=float(s_sparse[i]),
|
88 |
+
score_dense=float(s_dense[i]),
|
89 |
+
score_final=float(final_scores[i]),
|
90 |
+
)
|
91 |
+
ranked.append(item)
|
92 |
+
return ranked
|
tests/test_drift.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from crom_efficientllm.drift_estimator.estimator import DriftEstimator, DriftMode
|
2 |
+
|
3 |
+
def test_drift_triggers():
|
4 |
+
de = DriftEstimator(threshold=0.1, mode=DriftMode.L2)
|
5 |
+
alert, dist, ewma = de.update([0, 0, 0])
|
6 |
+
assert alert is False
|
7 |
+
alert, dist, ewma = de.update([1, 0, 0])
|
8 |
+
assert isinstance(alert, bool)
|
tests/test_packer.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from crom_efficientllm.budget_packer.packer import budget_pack, Chunk
|
2 |
+
|
3 |
+
def test_budget_pack_respects_budget():
|
4 |
+
chunks = [Chunk("a", 1.0, 60), Chunk("b", 0.9, 50), Chunk("c", 0.5, 20)]
|
5 |
+
sel = budget_pack(chunks, budget=70)
|
6 |
+
assert sum(c.tokens for c in sel) <= 70
|
7 |
+
|
8 |
+
def test_budget_pack_sorting_stable():
|
9 |
+
chunks = [
|
10 |
+
{"text": "x", "score": 0.9, "tokens": 30},
|
11 |
+
{"text": "y", "score": 0.9, "tokens": 20},
|
12 |
+
{"text": "z", "score": 0.8, "tokens": 10},
|
13 |
+
]
|
14 |
+
sel = budget_pack(chunks, budget=60)
|
15 |
+
assert [c.text for c in sel] == ["y", "x"]
|
tests/test_rerank.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from crom_efficientllm.rerank_engine.rerank import hybrid_rerank
|
2 |
+
|
3 |
+
class Dummy:
|
4 |
+
def encode(self, text, convert_to_numpy=False):
|
5 |
+
return [ord(c) % 5 for c in str(text)[:8]]
|
6 |
+
|
7 |
+
def test_hybrid_rerank_returns_scores():
|
8 |
+
docs = [{"text": "alpha"}, {"text": "beta"}]
|
9 |
+
out = hybrid_rerank("alp", docs, Dummy(), alpha=0.5)
|
10 |
+
assert len(out) == 2
|
11 |
+
assert {"score_sparse", "score_dense", "score_final"} <= set(out[0].keys())
|