Add README
Browse files
README.md
CHANGED
@@ -1,3 +1,125 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-sa-4.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-sa-4.0
|
3 |
+
datasets:
|
4 |
+
- PJMixers-Dev/dolphin-deepseek-1k-think-1k-response-filtered-ShareGPT
|
5 |
+
- Jofthomas/hermes-function-calling-thinking-V1
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
base_model:
|
9 |
+
- microsoft/phi-2
|
10 |
+
pipeline_tag: text-generation
|
11 |
+
---
|
12 |
+
# GGUF Files for Blake-XTM-Arc-3B-V1
|
13 |
+
|
14 |
+
These are the GGUF files for [Flexan/Blake-XTM-Arc-3B-V1](https://huggingface.co/Flexan/Blake-XTM-Arc-3B-V1).
|
15 |
+
|
16 |
+
| GGUF Link | Quantization | Description |
|
17 |
+
| ---- | ----- | ----------- |
|
18 |
+
| [Download](https://huggingface.co/Flexan/Blake-XTM-Arc-3B-V1-GGUF/resolve/main/Blake-XTM-Arc-3B-V1.Q2_K.gguf) | Q2_K | Lowest quality |
|
19 |
+
| [Download](https://huggingface.co/Flexan/Blake-XTM-Arc-3B-V1-GGUF/resolve/main/Blake-XTM-Arc-3B-V1.IQ3_XS.gguf) | IQ3_XS | Integer quant |
|
20 |
+
| [Download](https://huggingface.co/Flexan/Blake-XTM-Arc-3B-V1-GGUF/resolve/main/Blake-XTM-Arc-3B-V1.Q3_K_S.gguf) | Q3_K_S | |
|
21 |
+
| [Download](https://huggingface.co/Flexan/Blake-XTM-Arc-3B-V1-GGUF/resolve/main/Blake-XTM-Arc-3B-V1.IQ3_S.gguf) | IQ3_S | Integer quant, preferable over Q3_K_S |
|
22 |
+
| [Download](https://huggingface.co/Flexan/Blake-XTM-Arc-3B-V1-GGUF/resolve/main/Blake-XTM-Arc-3B-V1.IQ3_M.gguf) | IQ3_M | Integer quant |
|
23 |
+
| [Download](https://huggingface.co/Flexan/Blake-XTM-Arc-3B-V1-GGUF/resolve/main/Blake-XTM-Arc-3B-V1.Q3_K_M.gguf) | Q3_K_M | |
|
24 |
+
| [Download](https://huggingface.co/Flexan/Blake-XTM-Arc-3B-V1-GGUF/resolve/main/Blake-XTM-Arc-3B-V1.Q3_K_L.gguf) | Q3_K_L | |
|
25 |
+
| [Download](https://huggingface.co/Flexan/Blake-XTM-Arc-3B-V1-GGUF/resolve/main/Blake-XTM-Arc-3B-V1.IQ4_XS.gguf) | IQ4_XS | Integer quant |
|
26 |
+
| [Download](https://huggingface.co/Flexan/Blake-XTM-Arc-3B-V1-GGUF/resolve/main/Blake-XTM-Arc-3B-V1.Q4_K_S.gguf) | Q4_K_S | Fast with good performance |
|
27 |
+
| [Download](https://huggingface.co/Flexan/Blake-XTM-Arc-3B-V1-GGUF/resolve/main/Blake-XTM-Arc-3B-V1.Q4_K_M.gguf) | Q4_K_M | **Recommended:** Perfect mix of speed and performance |
|
28 |
+
| [Download](https://huggingface.co/Flexan/Blake-XTM-Arc-3B-V1-GGUF/resolve/main/Blake-XTM-Arc-3B-V1.Q5_K_S.gguf) | Q5_K_S | |
|
29 |
+
| [Download](https://huggingface.co/Flexan/Blake-XTM-Arc-3B-V1-GGUF/resolve/main/Blake-XTM-Arc-3B-V1.Q5_K_M.gguf) | Q5_K_M | |
|
30 |
+
| [Download](https://huggingface.co/Flexan/Blake-XTM-Arc-3B-V1-GGUF/resolve/main/Blake-XTM-Arc-3B-V1.Q6_K.gguf) | Q6_K | Very good quality |
|
31 |
+
| [Download](https://huggingface.co/Flexan/Blake-XTM-Arc-3B-V1-GGUF/resolve/main/Blake-XTM-Arc-3B-V1.Q8_0.gguf) | Q8_0 | Best quality |
|
32 |
+
| [Download](https://huggingface.co/Flexan/Blake-XTM-Arc-3B-V1-GGUF/resolve/main/Blake-XTM-Arc-3B-V1.f16.gguf) | f16 | Full precision, don't bother; use a quant |
|
33 |
+
|
34 |
+
# Model Card for Blake-XTM Arc 3B (V1)
|
35 |
+
|
36 |
+
Blake-XTM Arc 3B (V1) is a 3B large language model used for text generation.
|
37 |
+
It was trained to reason and optionally call provided tools.
|
38 |
+
|
39 |
+
## Model Details
|
40 |
+
|
41 |
+
### Model Description
|
42 |
+
|
43 |
+
Blake-XTM Arc 3B (V1) is a 3B parameter instruct LLM trained to think and optionally call a tool. It only supports using one tool per assistant message (no parallel tool calling).
|
44 |
+
The model was LoRA fine-tuned with [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) as base model.
|
45 |
+
|
46 |
+
### Chat Format
|
47 |
+
|
48 |
+
Blake-XTM Arc 3B (V1) uses the ChatML format, e.g.:
|
49 |
+
```text
|
50 |
+
<|im_start|>system
|
51 |
+
System message<|im_end|>
|
52 |
+
<|im_start|>user
|
53 |
+
User prompt<|im_end|>
|
54 |
+
<|im_start|>assistant
|
55 |
+
Assistant response<|im_end|>
|
56 |
+
```
|
57 |
+
|
58 |
+
### Model Usage
|
59 |
+
|
60 |
+
The assistant response can have the following three formats (the contents are examples and were not generated from the model):
|
61 |
+
1. Only response:
|
62 |
+
```text
|
63 |
+
<|im_start|>assistant
|
64 |
+
Hello! How may I assist you today?<|im_end|>
|
65 |
+
```
|
66 |
+
2. Thought process and response:
|
67 |
+
```text
|
68 |
+
<|im_start|>assistant
|
69 |
+
<|think_start|>The user has greeted me with a simple message. I should think about how to respond to them.
|
70 |
+
|
71 |
+
Since the user sent a simple greeting, I should reply with a greeting that matches their energy.
|
72 |
+
|
73 |
+
Alright, I can reply with a message like 'Hello! How can I help you?'<|think_end|>
|
74 |
+
|
75 |
+
Hello! How may I assist you today?<|im_end|>
|
76 |
+
```
|
77 |
+
3. Thought process and tool call:
|
78 |
+
```text
|
79 |
+
<|im_start|>assistant
|
80 |
+
<|think_start|>The user has asked me to find all restaurants near Paris. Hmm... let me think this through thoroughly.
|
81 |
+
|
82 |
+
I can see that I have a tool available called 'find_restaurants', which I might be able to use for this purpose.
|
83 |
+
|
84 |
+
Alright, I think I should use the `find_restaurants` tool to find the restaurants near Paris. For the `city` parameter, I'll use 'Paris', and for the `country` parameter, I'll fill in `France`.
|
85 |
+
|
86 |
+
Okay, I can go ahead and make the tool call now.<|think_end|>
|
87 |
+
|
88 |
+
<|tool_start|>{'name': 'find_restaurants', 'arguments': {'city': 'Paris', 'country': 'France'}}<|tool_end|><|im_end|>
|
89 |
+
```
|
90 |
+
|
91 |
+
We recommend using the following system prompts for your situation:
|
92 |
+
- Only thought process:
|
93 |
+
```text
|
94 |
+
You are an advanced reasoning model.
|
95 |
+
|
96 |
+
You think between <|think_start|>...<|think_end|> tags. You must think if the user's request involves math or logical thinking/reasoning.
|
97 |
+
```
|
98 |
+
- Thought process and tool calling:
|
99 |
+
```text
|
100 |
+
You are an advanced reasoning model with tool-calling capabilities.
|
101 |
+
|
102 |
+
You think between <|think_start|>...<|think_end|> tags. You must think if the user's request involves math, logical thinking/reasoning, or when you want to consider using a tool.
|
103 |
+
|
104 |
+
# Tools
|
105 |
+
You have access to the following tools:
|
106 |
+
[{'type': 'function', 'function': {'name': 'convert_currency', 'description': 'Convert currency from one type to another', 'parameters': {'type': 'object', 'properties': {'amount': {'type': 'number', 'description': 'The amount to be converted'}, 'from_currency': {'type': 'string', 'description': 'The currency to convert from'}, 'to_currency': {'type': 'string', 'description': 'The currency to convert to'}}, 'required': ['amount', 'from_currency', 'to_currency']}}}, {'type': 'function', 'function': {'name': 'get_random_joke', 'description': 'Get a random joke', 'parameters': {'type': 'object', 'properties': {}, 'required': []}}}] <\/tools>Use the following pydantic model json schema for each tool call you will make: {'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']}
|
107 |
+
|
108 |
+
To call a tool, write a JSON object with the name and arguments inside <|tool_start|>...<|tool_end|>.
|
109 |
+
```
|
110 |
+
|
111 |
+
For responding with a tool response, you can send a message as the `tool` user:
|
112 |
+
```
|
113 |
+
<|im_start|>assistant
|
114 |
+
<|think_start|>The user has asked me to find all restaurants near Paris. Hmm... let me think this through thoroughly.
|
115 |
+
|
116 |
+
I can see that I have a tool available called 'find_restaurants', which I might be able to use for this purpose.
|
117 |
+
|
118 |
+
Alright, I think I should use the `find_restaurants` tool to find the restaurants near Paris. For the `city` parameter, I'll use 'Paris', and for the `country` parameter, I'll fill in `France`.
|
119 |
+
|
120 |
+
Okay, I can go ahead and make the tool call now.<|think_end|>
|
121 |
+
|
122 |
+
<|tool_start|>{'name': 'find_restaurants', 'arguments': {'city': 'Paris', 'country': 'France'}}<|tool_end|><|im_end|>
|
123 |
+
<|im_start|>tool
|
124 |
+
{'restaurants': [{'name': 'A Restaurant Name', 'rating': 4.5}]}<|im_end|>
|
125 |
+
```
|