Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,106 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-4.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
|
4 |
+
datasets:
|
5 |
+
- matbahasa/TALPCo
|
6 |
+
|
7 |
+
language:
|
8 |
+
- my
|
9 |
+
- en
|
10 |
+
- ja
|
11 |
+
|
12 |
+
base_model:
|
13 |
+
- google/mt5-small
|
14 |
+
|
15 |
+
tags:
|
16 |
+
- translation
|
17 |
+
- seq2seq
|
18 |
+
- fine-tuned
|
19 |
+
- text-to-text
|
20 |
+
|
21 |
+
training_info:
|
22 |
+
optimizer: AdamW
|
23 |
+
epochs: 5
|
24 |
+
batch_size: 4
|
25 |
+
learning_rate: 1e-5
|
26 |
+
max_length: 256
|
27 |
+
---
|
28 |
+
|
29 |
+
#ShweYi-17K-mt5-small
|
30 |
+
|
31 |
+
Fine-tuned [`google/mt5-small`](https://huggingface.co/google/mt5-small) model for multilingual translation between **English**, **Myanmar (Burmese)**, and **Japanese**, using the [TALPCo dataset](https://github.com/matbahasa/TALPCo) (CC BY 4.0).
|
32 |
+
|
33 |
+
##Training Info
|
34 |
+
|
35 |
+
- Optimizer: AdamW
|
36 |
+
- Epochs: 5
|
37 |
+
- Batch Size: 4
|
38 |
+
- Learning Rate: 1e-5
|
39 |
+
- Max Length: 256
|
40 |
+
|
41 |
+
##How to Use
|
42 |
+
|
43 |
+
```python
|
44 |
+
from transformers import AutoTokenizer, MT5ForConditionalGeneration
|
45 |
+
import torch
|
46 |
+
|
47 |
+
MAX_LENGTH = 256
|
48 |
+
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained("flexavior/ShweYi-17K-mt5-small", legacy=True)
|
50 |
+
model = MT5ForConditionalGeneration.from_pretrained("flexavior/ShweYi-17K-mt5-small")
|
51 |
+
|
52 |
+
if torch.cuda.is_available():
|
53 |
+
model = model.to("cuda")
|
54 |
+
|
55 |
+
print("Multilingual MT5 Translator is ready!")
|
56 |
+
print("Format: translate myn to jpn: အခု ဘယ်အချိန် ရှိပြီလဲ.")
|
57 |
+
print("Type 'exit' to quit.\n")
|
58 |
+
|
59 |
+
while True:
|
60 |
+
user_input = input(">>> ")
|
61 |
+
if user_input.strip().lower() == "exit":
|
62 |
+
break
|
63 |
+
|
64 |
+
input_ids = tokenizer(
|
65 |
+
user_input,
|
66 |
+
return_tensors="pt",
|
67 |
+
max_length=MAX_LENGTH,
|
68 |
+
padding="max_length",
|
69 |
+
truncation=True
|
70 |
+
).input_ids
|
71 |
+
|
72 |
+
if torch.cuda.is_available():
|
73 |
+
input_ids = input_ids.to("cuda")
|
74 |
+
|
75 |
+
with torch.no_grad():
|
76 |
+
output_ids = model.generate(
|
77 |
+
input_ids=input_ids,
|
78 |
+
max_length=MAX_LENGTH,
|
79 |
+
num_beams=4,
|
80 |
+
early_stopping=True
|
81 |
+
)
|
82 |
+
|
83 |
+
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
84 |
+
print(f" Translation: {output_text}\n")
|
85 |
+
|
86 |
+
#Citations
|
87 |
+
If you use ShweYi-17K-mt5-small in your research, cite:
|
88 |
+
|
89 |
+
@misc{flexavior2025shweyi17kmultilingual,
|
90 |
+
author = {Flexavior},
|
91 |
+
title = {Flexavior: shweyi-17k-multilingual-en-my-ja},
|
92 |
+
year = {2025},
|
93 |
+
url = {https://huggingface.co/flexavior/ShweYi-17K-mt5-small},
|
94 |
+
note = {Fine-tuned mT5 for English, Myanmar, and Japanese translation. Dataset: TALPCO.}
|
95 |
+
}
|
96 |
+
|
97 |
+
And the dataset source:
|
98 |
+
|
99 |
+
@article{published_papers/22434604,
|
100 |
+
title = {TUFS Asian Language Parallel Corpus (TALPCo)},
|
101 |
+
author = {Hiroki Nomoto and Kenji Okano and David Moeljadi and Hideo Sawada},
|
102 |
+
journal = {言語処理学会 第24回年次大会 発表論文集},
|
103 |
+
pages = {436--439},
|
104 |
+
year = {2018}
|
105 |
+
}
|
106 |
+
|