15s, moved Transpose. Not quantized
Browse files
Decoder.mlmodelc/analytics/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4238c4e81ecd0dc94bd7dfbb60f7e2cc824107c1ffe0387b8607b72833dba350
|
3 |
+
size 243
|
Decoder.mlmodelc/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18647af085d87bd8f3121c8a9b4d4564c1ede038dab63d295b4e745cf2d7fb99
|
3 |
+
size 554
|
Decoder.mlmodelc/metadata.json
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"metadataOutputVersion" : "3.0",
|
4 |
+
"shortDescription" : "Parakeet decoder (RNNT prediction network)",
|
5 |
+
"outputSchema" : [
|
6 |
+
{
|
7 |
+
"hasShapeFlexibility" : "0",
|
8 |
+
"isOptional" : "0",
|
9 |
+
"dataType" : "Float32",
|
10 |
+
"formattedType" : "MultiArray (Float32 1 × 640 × 1)",
|
11 |
+
"shortDescription" : "",
|
12 |
+
"shape" : "[1, 640, 1]",
|
13 |
+
"name" : "decoder",
|
14 |
+
"type" : "MultiArray"
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"hasShapeFlexibility" : "0",
|
18 |
+
"isOptional" : "0",
|
19 |
+
"dataType" : "Float32",
|
20 |
+
"formattedType" : "MultiArray (Float32 2 × 1 × 640)",
|
21 |
+
"shortDescription" : "",
|
22 |
+
"shape" : "[2, 1, 640]",
|
23 |
+
"name" : "h_out",
|
24 |
+
"type" : "MultiArray"
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"hasShapeFlexibility" : "0",
|
28 |
+
"isOptional" : "0",
|
29 |
+
"dataType" : "Float32",
|
30 |
+
"formattedType" : "MultiArray (Float32 2 × 1 × 640)",
|
31 |
+
"shortDescription" : "",
|
32 |
+
"shape" : "[2, 1, 640]",
|
33 |
+
"name" : "c_out",
|
34 |
+
"type" : "MultiArray"
|
35 |
+
}
|
36 |
+
],
|
37 |
+
"storagePrecision" : "Float16",
|
38 |
+
"modelParameters" : [
|
39 |
+
|
40 |
+
],
|
41 |
+
"author" : "Fluid Inference",
|
42 |
+
"specificationVersion" : 8,
|
43 |
+
"mlProgramOperationTypeHistogram" : {
|
44 |
+
"Select" : 1,
|
45 |
+
"Ios17.squeeze" : 4,
|
46 |
+
"Ios17.gather" : 1,
|
47 |
+
"Ios17.cast" : 8,
|
48 |
+
"Ios17.lstm" : 2,
|
49 |
+
"Split" : 2,
|
50 |
+
"Ios17.add" : 1,
|
51 |
+
"Ios17.transpose" : 2,
|
52 |
+
"Ios17.greaterEqual" : 1,
|
53 |
+
"Identity" : 1,
|
54 |
+
"Stack" : 2
|
55 |
+
},
|
56 |
+
"computePrecision" : "Mixed (Float16, Float32, Int16, Int32)",
|
57 |
+
"isUpdatable" : "0",
|
58 |
+
"stateSchema" : [
|
59 |
+
|
60 |
+
],
|
61 |
+
"availability" : {
|
62 |
+
"macOS" : "14.0",
|
63 |
+
"tvOS" : "17.0",
|
64 |
+
"visionOS" : "1.0",
|
65 |
+
"watchOS" : "10.0",
|
66 |
+
"iOS" : "17.0",
|
67 |
+
"macCatalyst" : "17.0"
|
68 |
+
},
|
69 |
+
"modelType" : {
|
70 |
+
"name" : "MLModelType_mlProgram"
|
71 |
+
},
|
72 |
+
"inputSchema" : [
|
73 |
+
{
|
74 |
+
"hasShapeFlexibility" : "0",
|
75 |
+
"isOptional" : "0",
|
76 |
+
"dataType" : "Int32",
|
77 |
+
"formattedType" : "MultiArray (Int32 1 × 1)",
|
78 |
+
"shortDescription" : "",
|
79 |
+
"shape" : "[1, 1]",
|
80 |
+
"name" : "targets",
|
81 |
+
"type" : "MultiArray"
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"hasShapeFlexibility" : "0",
|
85 |
+
"isOptional" : "0",
|
86 |
+
"dataType" : "Int32",
|
87 |
+
"formattedType" : "MultiArray (Int32 1)",
|
88 |
+
"shortDescription" : "",
|
89 |
+
"shape" : "[1]",
|
90 |
+
"name" : "target_length",
|
91 |
+
"type" : "MultiArray"
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"hasShapeFlexibility" : "0",
|
95 |
+
"isOptional" : "0",
|
96 |
+
"dataType" : "Float32",
|
97 |
+
"formattedType" : "MultiArray (Float32 2 × 1 × 640)",
|
98 |
+
"shortDescription" : "",
|
99 |
+
"shape" : "[2, 1, 640]",
|
100 |
+
"name" : "h_in",
|
101 |
+
"type" : "MultiArray"
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"hasShapeFlexibility" : "0",
|
105 |
+
"isOptional" : "0",
|
106 |
+
"dataType" : "Float32",
|
107 |
+
"formattedType" : "MultiArray (Float32 2 × 1 × 640)",
|
108 |
+
"shortDescription" : "",
|
109 |
+
"shape" : "[2, 1, 640]",
|
110 |
+
"name" : "c_in",
|
111 |
+
"type" : "MultiArray"
|
112 |
+
}
|
113 |
+
],
|
114 |
+
"userDefinedMetadata" : {
|
115 |
+
"com.github.apple.coremltools.conversion_date" : "2025-09-19",
|
116 |
+
"com.github.apple.coremltools.source" : "torch==2.7.0",
|
117 |
+
"com.github.apple.coremltools.version" : "9.0b1",
|
118 |
+
"com.github.apple.coremltools.source_dialect" : "TorchScript"
|
119 |
+
},
|
120 |
+
"generatedClassName" : "parakeet_decoder",
|
121 |
+
"method" : "predict"
|
122 |
+
}
|
123 |
+
]
|
Decoder.mlmodelc/model.mil
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
program(1.0)
|
2 |
+
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3500.14.1"}, {"coremlc-version", "3500.32.1"}, {"coremltools-component-torch", "2.7.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "9.0b1"}})]
|
3 |
+
{
|
4 |
+
func main<ios17>(tensor<fp32, [2, 1, 640]> c_in, tensor<fp32, [2, 1, 640]> h_in, tensor<int32, [1]> target_length, tensor<int32, [1, 1]> targets) {
|
5 |
+
tensor<int32, []> y_batch_dims_0 = const()[name = tensor<string, []>("y_batch_dims_0"), val = tensor<int32, []>(0)];
|
6 |
+
tensor<bool, []> y_validate_indices_0 = const()[name = tensor<string, []>("y_validate_indices_0"), val = tensor<bool, []>(false)];
|
7 |
+
tensor<fp16, [8193, 640]> module_prediction_embed_weight_to_fp16 = const()[name = tensor<string, []>("module_prediction_embed_weight_to_fp16"), val = tensor<fp16, [8193, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
|
8 |
+
tensor<string, []> targets_to_int16_dtype_0 = const()[name = tensor<string, []>("targets_to_int16_dtype_0"), val = tensor<string, []>("int16")];
|
9 |
+
tensor<string, []> cast_1_dtype_0 = const()[name = tensor<string, []>("cast_1_dtype_0"), val = tensor<string, []>("int32")];
|
10 |
+
tensor<int32, []> greater_equal_0_y_0 = const()[name = tensor<string, []>("greater_equal_0_y_0"), val = tensor<int32, []>(0)];
|
11 |
+
tensor<int16, [1, 1]> targets_to_int16 = cast(dtype = targets_to_int16_dtype_0, x = targets)[name = tensor<string, []>("cast_9")];
|
12 |
+
tensor<int32, [1, 1]> cast_1 = cast(dtype = cast_1_dtype_0, x = targets_to_int16)[name = tensor<string, []>("cast_8")];
|
13 |
+
tensor<bool, [1, 1]> greater_equal_0 = greater_equal(x = cast_1, y = greater_equal_0_y_0)[name = tensor<string, []>("greater_equal_0")];
|
14 |
+
tensor<int32, []> slice_by_index_0 = const()[name = tensor<string, []>("slice_by_index_0"), val = tensor<int32, []>(8193)];
|
15 |
+
tensor<int32, [1, 1]> add_2 = add(x = cast_1, y = slice_by_index_0)[name = tensor<string, []>("add_2")];
|
16 |
+
tensor<int32, [1, 1]> select_0 = select(a = cast_1, b = add_2, cond = greater_equal_0)[name = tensor<string, []>("select_0")];
|
17 |
+
tensor<int32, []> y_cast_fp16_cast_uint16_axis_0 = const()[name = tensor<string, []>("y_cast_fp16_cast_uint16_axis_0"), val = tensor<int32, []>(0)];
|
18 |
+
tensor<string, []> select_0_to_int16_dtype_0 = const()[name = tensor<string, []>("select_0_to_int16_dtype_0"), val = tensor<string, []>("int16")];
|
19 |
+
tensor<int16, [1, 1]> select_0_to_int16 = cast(dtype = select_0_to_int16_dtype_0, x = select_0)[name = tensor<string, []>("cast_7")];
|
20 |
+
tensor<fp16, [1, 1, 640]> y_cast_fp16_cast_uint16_cast_uint16 = gather(axis = y_cast_fp16_cast_uint16_axis_0, batch_dims = y_batch_dims_0, indices = select_0_to_int16, validate_indices = y_validate_indices_0, x = module_prediction_embed_weight_to_fp16)[name = tensor<string, []>("y_cast_fp16_cast_uint16_cast_uint16")];
|
21 |
+
tensor<int32, [3]> input_3_perm_0 = const()[name = tensor<string, []>("input_3_perm_0"), val = tensor<int32, [3]>([1, 0, 2])];
|
22 |
+
tensor<int32, []> split_0_num_splits_0 = const()[name = tensor<string, []>("split_0_num_splits_0"), val = tensor<int32, []>(2)];
|
23 |
+
tensor<int32, []> split_0_axis_0 = const()[name = tensor<string, []>("split_0_axis_0"), val = tensor<int32, []>(0)];
|
24 |
+
tensor<string, []> h_in_to_fp16_dtype_0 = const()[name = tensor<string, []>("h_in_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
|
25 |
+
tensor<fp16, [2, 1, 640]> h_in_to_fp16 = cast(dtype = h_in_to_fp16_dtype_0, x = h_in)[name = tensor<string, []>("cast_6")];
|
26 |
+
tensor<fp16, [1, 1, 640]> split_0_cast_fp16_0, tensor<fp16, [1, 1, 640]> split_0_cast_fp16_1 = split(axis = split_0_axis_0, num_splits = split_0_num_splits_0, x = h_in_to_fp16)[name = tensor<string, []>("split_0_cast_fp16")];
|
27 |
+
tensor<int32, []> split_1_num_splits_0 = const()[name = tensor<string, []>("split_1_num_splits_0"), val = tensor<int32, []>(2)];
|
28 |
+
tensor<int32, []> split_1_axis_0 = const()[name = tensor<string, []>("split_1_axis_0"), val = tensor<int32, []>(0)];
|
29 |
+
tensor<string, []> c_in_to_fp16_dtype_0 = const()[name = tensor<string, []>("c_in_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
|
30 |
+
tensor<fp16, [2, 1, 640]> c_in_to_fp16 = cast(dtype = c_in_to_fp16_dtype_0, x = c_in)[name = tensor<string, []>("cast_5")];
|
31 |
+
tensor<fp16, [1, 1, 640]> split_1_cast_fp16_0, tensor<fp16, [1, 1, 640]> split_1_cast_fp16_1 = split(axis = split_1_axis_0, num_splits = split_1_num_splits_0, x = c_in_to_fp16)[name = tensor<string, []>("split_1_cast_fp16")];
|
32 |
+
tensor<int32, [1]> input_lstm_layer_0_lstm_h0_squeeze_axes_0 = const()[name = tensor<string, []>("input_lstm_layer_0_lstm_h0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
|
33 |
+
tensor<fp16, [1, 640]> input_lstm_layer_0_lstm_h0_squeeze_cast_fp16 = squeeze(axes = input_lstm_layer_0_lstm_h0_squeeze_axes_0, x = split_0_cast_fp16_0)[name = tensor<string, []>("input_lstm_layer_0_lstm_h0_squeeze_cast_fp16")];
|
34 |
+
tensor<int32, [1]> input_lstm_layer_0_lstm_c0_squeeze_axes_0 = const()[name = tensor<string, []>("input_lstm_layer_0_lstm_c0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
|
35 |
+
tensor<fp16, [1, 640]> input_lstm_layer_0_lstm_c0_squeeze_cast_fp16 = squeeze(axes = input_lstm_layer_0_lstm_c0_squeeze_axes_0, x = split_1_cast_fp16_0)[name = tensor<string, []>("input_lstm_layer_0_lstm_c0_squeeze_cast_fp16")];
|
36 |
+
tensor<string, []> input_lstm_layer_0_direction_0 = const()[name = tensor<string, []>("input_lstm_layer_0_direction_0"), val = tensor<string, []>("forward")];
|
37 |
+
tensor<bool, []> input_lstm_layer_0_output_sequence_0 = const()[name = tensor<string, []>("input_lstm_layer_0_output_sequence_0"), val = tensor<bool, []>(true)];
|
38 |
+
tensor<string, []> input_lstm_layer_0_recurrent_activation_0 = const()[name = tensor<string, []>("input_lstm_layer_0_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
|
39 |
+
tensor<string, []> input_lstm_layer_0_cell_activation_0 = const()[name = tensor<string, []>("input_lstm_layer_0_cell_activation_0"), val = tensor<string, []>("tanh")];
|
40 |
+
tensor<string, []> input_lstm_layer_0_activation_0 = const()[name = tensor<string, []>("input_lstm_layer_0_activation_0"), val = tensor<string, []>("tanh")];
|
41 |
+
tensor<fp16, [2560, 640]> concat_1_to_fp16 = const()[name = tensor<string, []>("concat_1_to_fp16"), val = tensor<fp16, [2560, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10487168)))];
|
42 |
+
tensor<fp16, [2560, 640]> concat_2_to_fp16 = const()[name = tensor<string, []>("concat_2_to_fp16"), val = tensor<fp16, [2560, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13764032)))];
|
43 |
+
tensor<fp16, [2560]> concat_0_to_fp16 = const()[name = tensor<string, []>("concat_0_to_fp16"), val = tensor<fp16, [2560]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(17040896)))];
|
44 |
+
tensor<fp16, [1, 1, 640]> input_3_cast_fp16 = transpose(perm = input_3_perm_0, x = y_cast_fp16_cast_uint16_cast_uint16)[name = tensor<string, []>("transpose_2")];
|
45 |
+
tensor<fp16, [1, 1, 640]> input_lstm_layer_0_cast_fp16_0, tensor<fp16, [1, 640]> input_lstm_layer_0_cast_fp16_1, tensor<fp16, [1, 640]> input_lstm_layer_0_cast_fp16_2 = lstm(activation = input_lstm_layer_0_activation_0, bias = concat_0_to_fp16, cell_activation = input_lstm_layer_0_cell_activation_0, direction = input_lstm_layer_0_direction_0, initial_c = input_lstm_layer_0_lstm_c0_squeeze_cast_fp16, initial_h = input_lstm_layer_0_lstm_h0_squeeze_cast_fp16, output_sequence = input_lstm_layer_0_output_sequence_0, recurrent_activation = input_lstm_layer_0_recurrent_activation_0, weight_hh = concat_2_to_fp16, weight_ih = concat_1_to_fp16, x = input_3_cast_fp16)[name = tensor<string, []>("input_lstm_layer_0_cast_fp16")];
|
46 |
+
tensor<int32, [1]> input_lstm_h0_squeeze_axes_0 = const()[name = tensor<string, []>("input_lstm_h0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
|
47 |
+
tensor<fp16, [1, 640]> input_lstm_h0_squeeze_cast_fp16 = squeeze(axes = input_lstm_h0_squeeze_axes_0, x = split_0_cast_fp16_1)[name = tensor<string, []>("input_lstm_h0_squeeze_cast_fp16")];
|
48 |
+
tensor<int32, [1]> input_lstm_c0_squeeze_axes_0 = const()[name = tensor<string, []>("input_lstm_c0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
|
49 |
+
tensor<fp16, [1, 640]> input_lstm_c0_squeeze_cast_fp16 = squeeze(axes = input_lstm_c0_squeeze_axes_0, x = split_1_cast_fp16_1)[name = tensor<string, []>("input_lstm_c0_squeeze_cast_fp16")];
|
50 |
+
tensor<string, []> input_direction_0 = const()[name = tensor<string, []>("input_direction_0"), val = tensor<string, []>("forward")];
|
51 |
+
tensor<bool, []> input_output_sequence_0 = const()[name = tensor<string, []>("input_output_sequence_0"), val = tensor<bool, []>(true)];
|
52 |
+
tensor<string, []> input_recurrent_activation_0 = const()[name = tensor<string, []>("input_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
|
53 |
+
tensor<string, []> input_cell_activation_0 = const()[name = tensor<string, []>("input_cell_activation_0"), val = tensor<string, []>("tanh")];
|
54 |
+
tensor<string, []> input_activation_0 = const()[name = tensor<string, []>("input_activation_0"), val = tensor<string, []>("tanh")];
|
55 |
+
tensor<fp16, [2560, 640]> concat_4_to_fp16 = const()[name = tensor<string, []>("concat_4_to_fp16"), val = tensor<fp16, [2560, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(17046080)))];
|
56 |
+
tensor<fp16, [2560, 640]> concat_5_to_fp16 = const()[name = tensor<string, []>("concat_5_to_fp16"), val = tensor<fp16, [2560, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(20322944)))];
|
57 |
+
tensor<fp16, [2560]> concat_3_to_fp16 = const()[name = tensor<string, []>("concat_3_to_fp16"), val = tensor<fp16, [2560]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(23599808)))];
|
58 |
+
tensor<fp16, [1, 1, 640]> input_cast_fp16_0, tensor<fp16, [1, 640]> input_cast_fp16_1, tensor<fp16, [1, 640]> input_cast_fp16_2 = lstm(activation = input_activation_0, bias = concat_3_to_fp16, cell_activation = input_cell_activation_0, direction = input_direction_0, initial_c = input_lstm_c0_squeeze_cast_fp16, initial_h = input_lstm_h0_squeeze_cast_fp16, output_sequence = input_output_sequence_0, recurrent_activation = input_recurrent_activation_0, weight_hh = concat_5_to_fp16, weight_ih = concat_4_to_fp16, x = input_lstm_layer_0_cast_fp16_0)[name = tensor<string, []>("input_cast_fp16")];
|
59 |
+
tensor<int32, []> obj_3_axis_0 = const()[name = tensor<string, []>("obj_3_axis_0"), val = tensor<int32, []>(0)];
|
60 |
+
tensor<fp16, [2, 1, 640]> obj_3_cast_fp16 = stack(axis = obj_3_axis_0, values = (input_lstm_layer_0_cast_fp16_1, input_cast_fp16_1))[name = tensor<string, []>("obj_3_cast_fp16")];
|
61 |
+
tensor<string, []> obj_3_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("obj_3_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
|
62 |
+
tensor<int32, []> obj_axis_0 = const()[name = tensor<string, []>("obj_axis_0"), val = tensor<int32, []>(0)];
|
63 |
+
tensor<fp16, [2, 1, 640]> obj_cast_fp16 = stack(axis = obj_axis_0, values = (input_lstm_layer_0_cast_fp16_2, input_cast_fp16_2))[name = tensor<string, []>("obj_cast_fp16")];
|
64 |
+
tensor<string, []> obj_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("obj_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
|
65 |
+
tensor<int32, [3]> transpose_0_perm_0 = const()[name = tensor<string, []>("transpose_0_perm_0"), val = tensor<int32, [3]>([1, 2, 0])];
|
66 |
+
tensor<string, []> transpose_0_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("transpose_0_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
|
67 |
+
tensor<fp16, [1, 640, 1]> transpose_0_cast_fp16 = transpose(perm = transpose_0_perm_0, x = input_cast_fp16_0)[name = tensor<string, []>("transpose_1")];
|
68 |
+
tensor<fp32, [1, 640, 1]> decoder = cast(dtype = transpose_0_cast_fp16_to_fp32_dtype_0, x = transpose_0_cast_fp16)[name = tensor<string, []>("cast_2")];
|
69 |
+
tensor<fp32, [2, 1, 640]> c_out = cast(dtype = obj_cast_fp16_to_fp32_dtype_0, x = obj_cast_fp16)[name = tensor<string, []>("cast_3")];
|
70 |
+
tensor<fp32, [2, 1, 640]> h_out = cast(dtype = obj_3_cast_fp16_to_fp32_dtype_0, x = obj_3_cast_fp16)[name = tensor<string, []>("cast_4")];
|
71 |
+
tensor<int32, [1]> target_length_tmp = identity(x = target_length)[name = tensor<string, []>("target_length_tmp")];
|
72 |
+
} -> (decoder, h_out, c_out);
|
73 |
+
}
|
Decoder.mlmodelc/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48adf0f0d47c406c8253d4f7fef967436a39da14f5a65e66d5a4b407be355d41
|
3 |
+
size 23604992
|