bweng commited on
Commit
1eabca1
·
verified ·
1 Parent(s): b567a43

15s, moved Transpose. Not quantized

Browse files
Decoder.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4238c4e81ecd0dc94bd7dfbb60f7e2cc824107c1ffe0387b8607b72833dba350
3
+ size 243
Decoder.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18647af085d87bd8f3121c8a9b4d4564c1ede038dab63d295b4e745cf2d7fb99
3
+ size 554
Decoder.mlmodelc/metadata.json ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "shortDescription" : "Parakeet decoder (RNNT prediction network)",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float32",
10
+ "formattedType" : "MultiArray (Float32 1 × 640 × 1)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1, 640, 1]",
13
+ "name" : "decoder",
14
+ "type" : "MultiArray"
15
+ },
16
+ {
17
+ "hasShapeFlexibility" : "0",
18
+ "isOptional" : "0",
19
+ "dataType" : "Float32",
20
+ "formattedType" : "MultiArray (Float32 2 × 1 × 640)",
21
+ "shortDescription" : "",
22
+ "shape" : "[2, 1, 640]",
23
+ "name" : "h_out",
24
+ "type" : "MultiArray"
25
+ },
26
+ {
27
+ "hasShapeFlexibility" : "0",
28
+ "isOptional" : "0",
29
+ "dataType" : "Float32",
30
+ "formattedType" : "MultiArray (Float32 2 × 1 × 640)",
31
+ "shortDescription" : "",
32
+ "shape" : "[2, 1, 640]",
33
+ "name" : "c_out",
34
+ "type" : "MultiArray"
35
+ }
36
+ ],
37
+ "storagePrecision" : "Float16",
38
+ "modelParameters" : [
39
+
40
+ ],
41
+ "author" : "Fluid Inference",
42
+ "specificationVersion" : 8,
43
+ "mlProgramOperationTypeHistogram" : {
44
+ "Select" : 1,
45
+ "Ios17.squeeze" : 4,
46
+ "Ios17.gather" : 1,
47
+ "Ios17.cast" : 8,
48
+ "Ios17.lstm" : 2,
49
+ "Split" : 2,
50
+ "Ios17.add" : 1,
51
+ "Ios17.transpose" : 2,
52
+ "Ios17.greaterEqual" : 1,
53
+ "Identity" : 1,
54
+ "Stack" : 2
55
+ },
56
+ "computePrecision" : "Mixed (Float16, Float32, Int16, Int32)",
57
+ "isUpdatable" : "0",
58
+ "stateSchema" : [
59
+
60
+ ],
61
+ "availability" : {
62
+ "macOS" : "14.0",
63
+ "tvOS" : "17.0",
64
+ "visionOS" : "1.0",
65
+ "watchOS" : "10.0",
66
+ "iOS" : "17.0",
67
+ "macCatalyst" : "17.0"
68
+ },
69
+ "modelType" : {
70
+ "name" : "MLModelType_mlProgram"
71
+ },
72
+ "inputSchema" : [
73
+ {
74
+ "hasShapeFlexibility" : "0",
75
+ "isOptional" : "0",
76
+ "dataType" : "Int32",
77
+ "formattedType" : "MultiArray (Int32 1 × 1)",
78
+ "shortDescription" : "",
79
+ "shape" : "[1, 1]",
80
+ "name" : "targets",
81
+ "type" : "MultiArray"
82
+ },
83
+ {
84
+ "hasShapeFlexibility" : "0",
85
+ "isOptional" : "0",
86
+ "dataType" : "Int32",
87
+ "formattedType" : "MultiArray (Int32 1)",
88
+ "shortDescription" : "",
89
+ "shape" : "[1]",
90
+ "name" : "target_length",
91
+ "type" : "MultiArray"
92
+ },
93
+ {
94
+ "hasShapeFlexibility" : "0",
95
+ "isOptional" : "0",
96
+ "dataType" : "Float32",
97
+ "formattedType" : "MultiArray (Float32 2 × 1 × 640)",
98
+ "shortDescription" : "",
99
+ "shape" : "[2, 1, 640]",
100
+ "name" : "h_in",
101
+ "type" : "MultiArray"
102
+ },
103
+ {
104
+ "hasShapeFlexibility" : "0",
105
+ "isOptional" : "0",
106
+ "dataType" : "Float32",
107
+ "formattedType" : "MultiArray (Float32 2 × 1 × 640)",
108
+ "shortDescription" : "",
109
+ "shape" : "[2, 1, 640]",
110
+ "name" : "c_in",
111
+ "type" : "MultiArray"
112
+ }
113
+ ],
114
+ "userDefinedMetadata" : {
115
+ "com.github.apple.coremltools.conversion_date" : "2025-09-19",
116
+ "com.github.apple.coremltools.source" : "torch==2.7.0",
117
+ "com.github.apple.coremltools.version" : "9.0b1",
118
+ "com.github.apple.coremltools.source_dialect" : "TorchScript"
119
+ },
120
+ "generatedClassName" : "parakeet_decoder",
121
+ "method" : "predict"
122
+ }
123
+ ]
Decoder.mlmodelc/model.mil ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ program(1.0)
2
+ [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3500.14.1"}, {"coremlc-version", "3500.32.1"}, {"coremltools-component-torch", "2.7.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "9.0b1"}})]
3
+ {
4
+ func main<ios17>(tensor<fp32, [2, 1, 640]> c_in, tensor<fp32, [2, 1, 640]> h_in, tensor<int32, [1]> target_length, tensor<int32, [1, 1]> targets) {
5
+ tensor<int32, []> y_batch_dims_0 = const()[name = tensor<string, []>("y_batch_dims_0"), val = tensor<int32, []>(0)];
6
+ tensor<bool, []> y_validate_indices_0 = const()[name = tensor<string, []>("y_validate_indices_0"), val = tensor<bool, []>(false)];
7
+ tensor<fp16, [8193, 640]> module_prediction_embed_weight_to_fp16 = const()[name = tensor<string, []>("module_prediction_embed_weight_to_fp16"), val = tensor<fp16, [8193, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
8
+ tensor<string, []> targets_to_int16_dtype_0 = const()[name = tensor<string, []>("targets_to_int16_dtype_0"), val = tensor<string, []>("int16")];
9
+ tensor<string, []> cast_1_dtype_0 = const()[name = tensor<string, []>("cast_1_dtype_0"), val = tensor<string, []>("int32")];
10
+ tensor<int32, []> greater_equal_0_y_0 = const()[name = tensor<string, []>("greater_equal_0_y_0"), val = tensor<int32, []>(0)];
11
+ tensor<int16, [1, 1]> targets_to_int16 = cast(dtype = targets_to_int16_dtype_0, x = targets)[name = tensor<string, []>("cast_9")];
12
+ tensor<int32, [1, 1]> cast_1 = cast(dtype = cast_1_dtype_0, x = targets_to_int16)[name = tensor<string, []>("cast_8")];
13
+ tensor<bool, [1, 1]> greater_equal_0 = greater_equal(x = cast_1, y = greater_equal_0_y_0)[name = tensor<string, []>("greater_equal_0")];
14
+ tensor<int32, []> slice_by_index_0 = const()[name = tensor<string, []>("slice_by_index_0"), val = tensor<int32, []>(8193)];
15
+ tensor<int32, [1, 1]> add_2 = add(x = cast_1, y = slice_by_index_0)[name = tensor<string, []>("add_2")];
16
+ tensor<int32, [1, 1]> select_0 = select(a = cast_1, b = add_2, cond = greater_equal_0)[name = tensor<string, []>("select_0")];
17
+ tensor<int32, []> y_cast_fp16_cast_uint16_axis_0 = const()[name = tensor<string, []>("y_cast_fp16_cast_uint16_axis_0"), val = tensor<int32, []>(0)];
18
+ tensor<string, []> select_0_to_int16_dtype_0 = const()[name = tensor<string, []>("select_0_to_int16_dtype_0"), val = tensor<string, []>("int16")];
19
+ tensor<int16, [1, 1]> select_0_to_int16 = cast(dtype = select_0_to_int16_dtype_0, x = select_0)[name = tensor<string, []>("cast_7")];
20
+ tensor<fp16, [1, 1, 640]> y_cast_fp16_cast_uint16_cast_uint16 = gather(axis = y_cast_fp16_cast_uint16_axis_0, batch_dims = y_batch_dims_0, indices = select_0_to_int16, validate_indices = y_validate_indices_0, x = module_prediction_embed_weight_to_fp16)[name = tensor<string, []>("y_cast_fp16_cast_uint16_cast_uint16")];
21
+ tensor<int32, [3]> input_3_perm_0 = const()[name = tensor<string, []>("input_3_perm_0"), val = tensor<int32, [3]>([1, 0, 2])];
22
+ tensor<int32, []> split_0_num_splits_0 = const()[name = tensor<string, []>("split_0_num_splits_0"), val = tensor<int32, []>(2)];
23
+ tensor<int32, []> split_0_axis_0 = const()[name = tensor<string, []>("split_0_axis_0"), val = tensor<int32, []>(0)];
24
+ tensor<string, []> h_in_to_fp16_dtype_0 = const()[name = tensor<string, []>("h_in_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
25
+ tensor<fp16, [2, 1, 640]> h_in_to_fp16 = cast(dtype = h_in_to_fp16_dtype_0, x = h_in)[name = tensor<string, []>("cast_6")];
26
+ tensor<fp16, [1, 1, 640]> split_0_cast_fp16_0, tensor<fp16, [1, 1, 640]> split_0_cast_fp16_1 = split(axis = split_0_axis_0, num_splits = split_0_num_splits_0, x = h_in_to_fp16)[name = tensor<string, []>("split_0_cast_fp16")];
27
+ tensor<int32, []> split_1_num_splits_0 = const()[name = tensor<string, []>("split_1_num_splits_0"), val = tensor<int32, []>(2)];
28
+ tensor<int32, []> split_1_axis_0 = const()[name = tensor<string, []>("split_1_axis_0"), val = tensor<int32, []>(0)];
29
+ tensor<string, []> c_in_to_fp16_dtype_0 = const()[name = tensor<string, []>("c_in_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
30
+ tensor<fp16, [2, 1, 640]> c_in_to_fp16 = cast(dtype = c_in_to_fp16_dtype_0, x = c_in)[name = tensor<string, []>("cast_5")];
31
+ tensor<fp16, [1, 1, 640]> split_1_cast_fp16_0, tensor<fp16, [1, 1, 640]> split_1_cast_fp16_1 = split(axis = split_1_axis_0, num_splits = split_1_num_splits_0, x = c_in_to_fp16)[name = tensor<string, []>("split_1_cast_fp16")];
32
+ tensor<int32, [1]> input_lstm_layer_0_lstm_h0_squeeze_axes_0 = const()[name = tensor<string, []>("input_lstm_layer_0_lstm_h0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
33
+ tensor<fp16, [1, 640]> input_lstm_layer_0_lstm_h0_squeeze_cast_fp16 = squeeze(axes = input_lstm_layer_0_lstm_h0_squeeze_axes_0, x = split_0_cast_fp16_0)[name = tensor<string, []>("input_lstm_layer_0_lstm_h0_squeeze_cast_fp16")];
34
+ tensor<int32, [1]> input_lstm_layer_0_lstm_c0_squeeze_axes_0 = const()[name = tensor<string, []>("input_lstm_layer_0_lstm_c0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
35
+ tensor<fp16, [1, 640]> input_lstm_layer_0_lstm_c0_squeeze_cast_fp16 = squeeze(axes = input_lstm_layer_0_lstm_c0_squeeze_axes_0, x = split_1_cast_fp16_0)[name = tensor<string, []>("input_lstm_layer_0_lstm_c0_squeeze_cast_fp16")];
36
+ tensor<string, []> input_lstm_layer_0_direction_0 = const()[name = tensor<string, []>("input_lstm_layer_0_direction_0"), val = tensor<string, []>("forward")];
37
+ tensor<bool, []> input_lstm_layer_0_output_sequence_0 = const()[name = tensor<string, []>("input_lstm_layer_0_output_sequence_0"), val = tensor<bool, []>(true)];
38
+ tensor<string, []> input_lstm_layer_0_recurrent_activation_0 = const()[name = tensor<string, []>("input_lstm_layer_0_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
39
+ tensor<string, []> input_lstm_layer_0_cell_activation_0 = const()[name = tensor<string, []>("input_lstm_layer_0_cell_activation_0"), val = tensor<string, []>("tanh")];
40
+ tensor<string, []> input_lstm_layer_0_activation_0 = const()[name = tensor<string, []>("input_lstm_layer_0_activation_0"), val = tensor<string, []>("tanh")];
41
+ tensor<fp16, [2560, 640]> concat_1_to_fp16 = const()[name = tensor<string, []>("concat_1_to_fp16"), val = tensor<fp16, [2560, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10487168)))];
42
+ tensor<fp16, [2560, 640]> concat_2_to_fp16 = const()[name = tensor<string, []>("concat_2_to_fp16"), val = tensor<fp16, [2560, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13764032)))];
43
+ tensor<fp16, [2560]> concat_0_to_fp16 = const()[name = tensor<string, []>("concat_0_to_fp16"), val = tensor<fp16, [2560]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(17040896)))];
44
+ tensor<fp16, [1, 1, 640]> input_3_cast_fp16 = transpose(perm = input_3_perm_0, x = y_cast_fp16_cast_uint16_cast_uint16)[name = tensor<string, []>("transpose_2")];
45
+ tensor<fp16, [1, 1, 640]> input_lstm_layer_0_cast_fp16_0, tensor<fp16, [1, 640]> input_lstm_layer_0_cast_fp16_1, tensor<fp16, [1, 640]> input_lstm_layer_0_cast_fp16_2 = lstm(activation = input_lstm_layer_0_activation_0, bias = concat_0_to_fp16, cell_activation = input_lstm_layer_0_cell_activation_0, direction = input_lstm_layer_0_direction_0, initial_c = input_lstm_layer_0_lstm_c0_squeeze_cast_fp16, initial_h = input_lstm_layer_0_lstm_h0_squeeze_cast_fp16, output_sequence = input_lstm_layer_0_output_sequence_0, recurrent_activation = input_lstm_layer_0_recurrent_activation_0, weight_hh = concat_2_to_fp16, weight_ih = concat_1_to_fp16, x = input_3_cast_fp16)[name = tensor<string, []>("input_lstm_layer_0_cast_fp16")];
46
+ tensor<int32, [1]> input_lstm_h0_squeeze_axes_0 = const()[name = tensor<string, []>("input_lstm_h0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
47
+ tensor<fp16, [1, 640]> input_lstm_h0_squeeze_cast_fp16 = squeeze(axes = input_lstm_h0_squeeze_axes_0, x = split_0_cast_fp16_1)[name = tensor<string, []>("input_lstm_h0_squeeze_cast_fp16")];
48
+ tensor<int32, [1]> input_lstm_c0_squeeze_axes_0 = const()[name = tensor<string, []>("input_lstm_c0_squeeze_axes_0"), val = tensor<int32, [1]>([0])];
49
+ tensor<fp16, [1, 640]> input_lstm_c0_squeeze_cast_fp16 = squeeze(axes = input_lstm_c0_squeeze_axes_0, x = split_1_cast_fp16_1)[name = tensor<string, []>("input_lstm_c0_squeeze_cast_fp16")];
50
+ tensor<string, []> input_direction_0 = const()[name = tensor<string, []>("input_direction_0"), val = tensor<string, []>("forward")];
51
+ tensor<bool, []> input_output_sequence_0 = const()[name = tensor<string, []>("input_output_sequence_0"), val = tensor<bool, []>(true)];
52
+ tensor<string, []> input_recurrent_activation_0 = const()[name = tensor<string, []>("input_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
53
+ tensor<string, []> input_cell_activation_0 = const()[name = tensor<string, []>("input_cell_activation_0"), val = tensor<string, []>("tanh")];
54
+ tensor<string, []> input_activation_0 = const()[name = tensor<string, []>("input_activation_0"), val = tensor<string, []>("tanh")];
55
+ tensor<fp16, [2560, 640]> concat_4_to_fp16 = const()[name = tensor<string, []>("concat_4_to_fp16"), val = tensor<fp16, [2560, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(17046080)))];
56
+ tensor<fp16, [2560, 640]> concat_5_to_fp16 = const()[name = tensor<string, []>("concat_5_to_fp16"), val = tensor<fp16, [2560, 640]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(20322944)))];
57
+ tensor<fp16, [2560]> concat_3_to_fp16 = const()[name = tensor<string, []>("concat_3_to_fp16"), val = tensor<fp16, [2560]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(23599808)))];
58
+ tensor<fp16, [1, 1, 640]> input_cast_fp16_0, tensor<fp16, [1, 640]> input_cast_fp16_1, tensor<fp16, [1, 640]> input_cast_fp16_2 = lstm(activation = input_activation_0, bias = concat_3_to_fp16, cell_activation = input_cell_activation_0, direction = input_direction_0, initial_c = input_lstm_c0_squeeze_cast_fp16, initial_h = input_lstm_h0_squeeze_cast_fp16, output_sequence = input_output_sequence_0, recurrent_activation = input_recurrent_activation_0, weight_hh = concat_5_to_fp16, weight_ih = concat_4_to_fp16, x = input_lstm_layer_0_cast_fp16_0)[name = tensor<string, []>("input_cast_fp16")];
59
+ tensor<int32, []> obj_3_axis_0 = const()[name = tensor<string, []>("obj_3_axis_0"), val = tensor<int32, []>(0)];
60
+ tensor<fp16, [2, 1, 640]> obj_3_cast_fp16 = stack(axis = obj_3_axis_0, values = (input_lstm_layer_0_cast_fp16_1, input_cast_fp16_1))[name = tensor<string, []>("obj_3_cast_fp16")];
61
+ tensor<string, []> obj_3_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("obj_3_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
62
+ tensor<int32, []> obj_axis_0 = const()[name = tensor<string, []>("obj_axis_0"), val = tensor<int32, []>(0)];
63
+ tensor<fp16, [2, 1, 640]> obj_cast_fp16 = stack(axis = obj_axis_0, values = (input_lstm_layer_0_cast_fp16_2, input_cast_fp16_2))[name = tensor<string, []>("obj_cast_fp16")];
64
+ tensor<string, []> obj_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("obj_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
65
+ tensor<int32, [3]> transpose_0_perm_0 = const()[name = tensor<string, []>("transpose_0_perm_0"), val = tensor<int32, [3]>([1, 2, 0])];
66
+ tensor<string, []> transpose_0_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("transpose_0_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
67
+ tensor<fp16, [1, 640, 1]> transpose_0_cast_fp16 = transpose(perm = transpose_0_perm_0, x = input_cast_fp16_0)[name = tensor<string, []>("transpose_1")];
68
+ tensor<fp32, [1, 640, 1]> decoder = cast(dtype = transpose_0_cast_fp16_to_fp32_dtype_0, x = transpose_0_cast_fp16)[name = tensor<string, []>("cast_2")];
69
+ tensor<fp32, [2, 1, 640]> c_out = cast(dtype = obj_cast_fp16_to_fp32_dtype_0, x = obj_cast_fp16)[name = tensor<string, []>("cast_3")];
70
+ tensor<fp32, [2, 1, 640]> h_out = cast(dtype = obj_3_cast_fp16_to_fp32_dtype_0, x = obj_3_cast_fp16)[name = tensor<string, []>("cast_4")];
71
+ tensor<int32, [1]> target_length_tmp = identity(x = target_length)[name = tensor<string, []>("target_length_tmp")];
72
+ } -> (decoder, h_out, c_out);
73
+ }
Decoder.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48adf0f0d47c406c8253d4f7fef967436a39da14f5a65e66d5a4b407be355d41
3
+ size 23604992