File size: 15,379 Bytes
1ac1652 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
import Accelerate
import AVFoundation
import CoreML
import Foundation
struct Segment: Hashable {
let start: Double
let end: Double
}
struct SlidingWindow {
var start: Double
var duration: Double
var step: Double
func time(forFrame index: Int) -> Double {
return start + Double(index) * step
}
func segment(forFrame index: Int) -> Segment {
let s = time(forFrame: index)
return Segment(start: s, end: s + duration)
}
}
struct SlidingWindowFeature {
var data: [[[Float]]] // (1, 589, 3)
var slidingWindow: SlidingWindow
}
var speakerDB: [String: [Float]] = [:] // Global speaker database
let threshold: Float = 0.7 // Distance threshold
func cosineDistance(_ x: [Float], _ y: [Float]) -> Float {
precondition(x.count == y.count, "Vectors must be same size")
let dot = zip(x, y).map(*).reduce(0, +)
let normX = sqrt(x.map { $0 * $0 }.reduce(0, +))
let normY = sqrt(y.map { $0 * $0 }.reduce(0, +))
return 1.0 - (dot / (normX * normY + 1e-6))
}
func updateSpeakerDB(_ speaker: String, _ newEmbedding: [Float], alpha: Float = 0.9) {
guard var oldEmbedding = speakerDB[speaker] else { return }
for i in 0..<oldEmbedding.count {
oldEmbedding[i] = alpha * oldEmbedding[i] + (1 - alpha) * newEmbedding[i]
}
speakerDB[speaker] = oldEmbedding
}
func assignSpeaker(embedding: [Float], threshold: Float = 0.7) -> String {
if speakerDB.isEmpty {
let speaker = "Speaker 1"
speakerDB[speaker] = embedding
return speaker
}
var minDistance: Float = Float.greatestFiniteMagnitude
var identifiedSpeaker: String? = nil
for (speaker, refEmbedding) in speakerDB {
let distance = cosineDistance(embedding, refEmbedding)
if distance < minDistance {
minDistance = distance
identifiedSpeaker = speaker
}
}
if let bestSpeaker = identifiedSpeaker {
if minDistance > threshold {
let newSpeaker = "Speaker \(speakerDB.count + 1)"
speakerDB[newSpeaker] = embedding
return newSpeaker
} else {
updateSpeakerDB(bestSpeaker, embedding)
return bestSpeaker
}
}
return "Unknown"
}
func getAnnotation(annotation: inout [Segment: String],
speakerMapping: [Int: Int],
binarizedSegments: [[[Float]]],
slidingWindow: SlidingWindow) {
let segmentation = binarizedSegments[0] // shape: [589][3]
let numFrames = segmentation.count
// Step 1: argmax to get dominant speaker per frame
var frameSpeakers: [Int] = []
for frame in segmentation {
if let maxIdx = frame.indices.max(by: { frame[$0] < frame[$1] }) {
frameSpeakers.append(maxIdx)
} else {
frameSpeakers.append(0) // fallback
}
}
// Step 2: group contiguous same-speaker segments
var currentSpeaker = frameSpeakers[0]
var startFrame = 0
for i in 1..<numFrames {
if frameSpeakers[i] != currentSpeaker {
let startTime = slidingWindow.time(forFrame: startFrame)
let endTime = slidingWindow.time(forFrame: i)
let segment = Segment(start: startTime, end: endTime)
if let mappedSpeaker = speakerMapping[currentSpeaker] {
annotation[segment] = "Speaker \(mappedSpeaker)"
}
currentSpeaker = frameSpeakers[i]
startFrame = i
}
}
// Final segment
let finalStart = slidingWindow.time(forFrame: startFrame)
let finalEnd = slidingWindow.segment(forFrame: numFrames - 1).end
let finalSegment = Segment(start: finalStart, end: finalEnd)
if let mappedSpeaker = speakerMapping[currentSpeaker] {
annotation[finalSegment] = "Speaker \(mappedSpeaker)"
}
}
func getEmbedding(audioChunk: [Float],
binarizedSegments _: [[[Float]]],
slidingWindowSegments: SlidingWindowFeature,
chunkSize: Int = 10 * 16000,
embeddingModel: MLModel) -> MLMultiArray?
{
// 1. Create audio_tensor of shape (1, 1, chunkSize)
let audioTensor = audioChunk
let batchSize = slidingWindowSegments.data.count
let numFrames = slidingWindowSegments.data[0].count
let numSpeakers = slidingWindowSegments.data[0][0].count
// 2. Compute clean_frames = 1.0 where active speakers < 2
var cleanFrames = Array(repeating: Array(repeating: 0.0 as Float, count: 1), count: numFrames)
for f in 0 ..< numFrames {
let frame = slidingWindowSegments.data[0][f]
let speakerSum = frame.reduce(0, +)
cleanFrames[f][0] = (speakerSum < 2.0) ? 1.0 : 0.0
}
// 3. Multiply slidingWindowSegments.data by cleanFrames
var cleanSegmentData = Array(
repeating: Array(repeating: Array(repeating: 0.0 as Float, count: numSpeakers), count: numFrames),
count: 1
)
for f in 0 ..< numFrames {
for s in 0 ..< numSpeakers {
cleanSegmentData[0][f][s] = slidingWindowSegments.data[0][f][s] * cleanFrames[f][0]
}
}
// 4. Flatten audio tensor to shape (3, 160000)
var audioBatch: [[Float]] = []
for _ in 0 ..< 3 {
audioBatch.append(audioTensor)
}
// 5. Transpose mask shape to (3, 589)
var cleanMasks: [[Float]] = Array(repeating: Array(repeating: 0.0, count: numFrames), count: numSpeakers)
for s in 0 ..< numSpeakers {
for f in 0 ..< numFrames {
cleanMasks[s][f] = cleanSegmentData[0][f][s]
}
}
// 6. Prepare MLMultiArray inputs
guard let waveformArray = try? MLMultiArray(shape: [3, chunkSize] as [NSNumber], dataType: .float32),
let maskArray = try? MLMultiArray(shape: [3, numFrames] as [NSNumber], dataType: .float32)
else {
print("Failed to allocate MLMultiArray")
return nil
}
// Fill waveform
for s in 0 ..< 3 {
for i in 0 ..< chunkSize {
waveformArray[s * chunkSize + i] = NSNumber(value: audioBatch[s][i])
}
}
// Fill mask
for s in 0 ..< 3 {
for f in 0 ..< numFrames {
maskArray[s * numFrames + f] = NSNumber(value: cleanMasks[s][f])
}
}
// 7. Run model
let inputs: [String: Any] = [
"waveform": waveformArray,
"mask": maskArray,
]
guard let output = try? embeddingModel.prediction(from: MLDictionaryFeatureProvider(dictionary: inputs)) else {
print("Embedding model prediction failed")
return nil
}
return output.featureValue(for: "embedding")?.multiArrayValue
}
func loadAudioSamples(from url: URL, expectedSampleRate: Double = 16000.0) throws -> [Float] {
let file = try AVAudioFile(forReading: url)
let format = AVAudioFormat(commonFormat: .pcmFormatFloat32,
sampleRate: expectedSampleRate,
channels: 1,
interleaved: false)!
let engine = AVAudioEngine()
let player = AVAudioPlayerNode()
engine.attach(player)
let converter = AVAudioConverter(from: file.processingFormat, to: format)!
let frameCapacity = AVAudioFrameCount(file.length)
let buffer = AVAudioPCMBuffer(pcmFormat: file.processingFormat, frameCapacity: frameCapacity)!
try file.read(into: buffer)
let outputBuffer = AVAudioPCMBuffer(pcmFormat: format, frameCapacity: frameCapacity)!
let inputBlock: AVAudioConverterInputBlock = { _, outStatus in
outStatus.pointee = .haveData
return buffer
}
try converter.convert(to: outputBuffer, error: nil, withInputFrom: inputBlock)
guard let floatChannelData = outputBuffer.floatChannelData else {
throw NSError(domain: "Audio", code: -1, userInfo: [NSLocalizedDescriptionKey: "Missing float data"])
}
let channelData = floatChannelData[0]
let samples = Array(UnsafeBufferPointer(start: channelData, count: Int(outputBuffer.frameLength)))
return samples
}
func chunkAndRunSegmentation(samples: [Float], chunkSize: Int = 160_000, model: MLModel, embeddingModel: MLModel) throws {
let totalSamples = samples.count
let numberOfChunks = Int(ceil(Double(totalSamples) / Double(chunkSize)))
var annotations: [Segment: String] = [:]
for i in 0 ..< numberOfChunks {
let start = i * chunkSize
let end = min((i + 1) * chunkSize, totalSamples)
let chunk = Array(samples[start ..< end])
// If chunk is shorter than 10s, pad with zeros
var paddedChunk = chunk
if chunk.count < chunkSize {
paddedChunk += Array(repeating: 0.0, count: chunkSize - chunk.count)
}
let binarizedSegments = try getSegments(audioChunk: paddedChunk, model: model)
let frames = SlidingWindow(start: Double(i) * 10.0, duration: 0.0619375, step: 0.016875)
let slidingFeature = SlidingWindowFeature(data: binarizedSegments, slidingWindow: frames)
if let embeddings = getEmbedding(audioChunk: paddedChunk,
binarizedSegments: binarizedSegments,
slidingWindowSegments: slidingFeature,
embeddingModel: embeddingModel)
{
print("Embeddings shape: \(embeddings.shape.map { $0.intValue })")
let shape = embeddings.shape.map { $0.intValue } // [3, 256]
let numSpeakers = shape[0]
let embeddingDim = shape[1]
let strides = embeddings.strides.map { $0.intValue }
var speakerSums = [Float](repeating: 0.0, count: numSpeakers)
for s in 0 ..< numSpeakers {
for d in 0 ..< embeddingDim {
let index = s * strides[0] + d * strides[1]
speakerSums[s] += embeddings[index].floatValue
}
}
print("Sum along axis 1 (per speaker): \(speakerSums)")
// Step 3: Assign speaker label to each embedding
var speakerLabels = [String]()
for s in 0..<numSpeakers {
var embeddingVec = [Float](repeating: 0.0, count: embeddingDim)
for d in 0..<embeddingDim {
let index = s * strides[0] + d * strides[1]
embeddingVec[d] = embeddings[index].floatValue
}
let label = assignSpeaker(embedding: embeddingVec)
speakerLabels.append(label)
}
print("Chunk \(i + 1): Assigned Speakers: \(speakerLabels)")
// Step 4: Update annotations
// Map speaker index 0,1,2 → assigned speakerLabels
var labelMapping: [Int: Int] = [:]
for (idx, label) in speakerLabels.enumerated() {
if let spkNum = Int(label.components(separatedBy: " ").last ?? "") {
labelMapping[idx] = spkNum
}
}
getAnnotation(annotation: &annotations,
speakerMapping: labelMapping,
binarizedSegments: binarizedSegments,
slidingWindow: frames)
print("Chunk \(i + 1) → Segments shape: \(binarizedSegments[0].count) frames")
}
}
// Final result
print("\n=== Final Annotations ===")
for (segment, speaker) in annotations.sorted(by: { $0.key.start < $1.key.start }) {
print("\(speaker): \(segment.start) - \(segment.end)")
}
}
func powersetConversion(_ segments: [[[Float]]]) -> [[[Float]]] {
let powerset: [[Int]] = [
[], // 0
[0], // 1
[1], // 2
[2], // 3
[0, 1], // 4
[0, 2], // 5
[1, 2], // 6
]
let batchSize = segments.count
let numFrames = segments[0].count
let numCombos = segments[0][0].count // 7
let numSpeakers = 3
var binarized = Array(
repeating: Array(
repeating: Array(repeating: 0.0 as Float, count: numSpeakers),
count: numFrames
),
count: batchSize
)
for b in 0 ..< batchSize {
for f in 0 ..< numFrames {
let frame = segments[b][f]
// Find index of max value in this frame
guard let bestIdx = frame.indices.max(by: { frame[$0] < frame[$1] }) else {
continue
}
// Mark the corresponding speakers as active
for speaker in powerset[bestIdx] {
binarized[b][f][speaker] = 1.0
}
}
}
return binarized
}
func getSegments(audioChunk: [Float], sampleRate _: Int = 16000, chunkSize: Int = 160_000, model: MLModel) throws -> [[[Float]]] {
// Ensure correct shape: (1, 1, chunk_size)
let audioArray = try MLMultiArray(shape: [1, 1, NSNumber(value: chunkSize)], dataType: .float32)
for i in 0 ..< audioChunk.count {
audioArray[i] = NSNumber(value: audioChunk[i])
}
// Prepare input
let input = try MLDictionaryFeatureProvider(dictionary: ["audio": audioArray])
// Run prediction
let output = try model.prediction(from: input)
// Extract segments output: shape assumed (1, frames, 7)
guard let segmentOutput = output.featureValue(for: "segments")?.multiArrayValue else {
throw NSError(domain: "ModelOutput", code: -1, userInfo: [NSLocalizedDescriptionKey: "Missing segments output"])
}
let frames = segmentOutput.shape[1].intValue
let combinations = segmentOutput.shape[2].intValue
// Convert MLMultiArray to [[[Float]]]
var segments = Array(repeating: Array(repeating: Array(repeating: 0.0 as Float, count: combinations), count: frames), count: 1)
for f in 0 ..< frames {
for c in 0 ..< combinations {
let index = f * combinations + c
segments[0][f][c] = segmentOutput[index].floatValue
}
}
// Apply powerset conversion
let binarizedSegments = powersetConversion(segments)
// Assume segments shape is (1, 589, 3)
guard binarizedSegments.count == 1 else {
fatalError("Expected batch size 1")
}
let b_frames = binarizedSegments[0]
let numSpeakers = b_frames[0].count
// Initialize sum array
var speakerSums = Array(repeating: 0.0 as Float, count: numSpeakers)
// Sum across axis 1 (frames)
for frame in b_frames {
for (i, value) in frame.enumerated() {
speakerSums[i] += value
}
}
print("Sum across axis 1 (frames): \(speakerSums)")
return binarizedSegments
}
func loadModel(from path: String) throws -> MLModel {
let url = URL(fileURLWithPath: path)
let model = try MLModel(contentsOf: url)
return model
}
do {
let modelPath = "./pyannote_segmentation.mlmodelc"
let embeddingPath = "./wespeaker.mlmodelc"
let model = try loadModel(from: modelPath)
let embeddingModel = try loadModel(from: embeddingPath)
print("Model loaded successfully.")
// let audioPath = "./first_10_seconds.wav"
let audioPath = "./TS3003b_mix_headset.wav"
let audioSamples = try loadAudioSamples(from: URL(fileURLWithPath: audioPath))
try chunkAndRunSegmentation(samples: audioSamples, model: model, embeddingModel: embeddingModel)
} catch {
print("Error: \(error)")
}
|