bweng's picture
Upload 10 files
68d82ad verified
raw
history blame
29.5 kB
program(1.0)
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3402.3.2"}, {"coremlc-version", "3402.4.1"}, {"coremltools-component-torch", "2.6.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.3.0"}})]
{
func main<ios15>(tensor<fp32, [1, 1, 160000]> audio) {
tensor<string, []> audio_to_fp16_dtype_0 = const()[name = tensor<string, []>("audio_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
tensor<fp16, [1]> sincnet_wav_norm1d_weight_to_fp16 = const()[name = tensor<string, []>("sincnet_wav_norm1d_weight_to_fp16"), val = tensor<fp16, [1]>([0x1.44p-7])];
tensor<fp16, [1]> sincnet_wav_norm1d_bias_to_fp16 = const()[name = tensor<string, []>("sincnet_wav_norm1d_bias_to_fp16"), val = tensor<fp16, [1]>([0x1.734p-5])];
tensor<fp16, []> var_25_to_fp16 = const()[name = tensor<string, []>("op_25_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
tensor<fp16, [1, 1, 160000]> audio_to_fp16 = cast(dtype = audio_to_fp16_dtype_0, x = audio)[name = tensor<string, []>("cast_19")];
tensor<fp16, [1, 1, 160000]> var_41_cast_fp16 = instance_norm(beta = sincnet_wav_norm1d_bias_to_fp16, epsilon = var_25_to_fp16, gamma = sincnet_wav_norm1d_weight_to_fp16, x = audio_to_fp16)[name = tensor<string, []>("op_41_cast_fp16")];
tensor<string, []> outputs_pad_type_0 = const()[name = tensor<string, []>("outputs_pad_type_0"), val = tensor<string, []>("valid")];
tensor<int32, [1]> outputs_strides_0 = const()[name = tensor<string, []>("outputs_strides_0"), val = tensor<int32, [1]>([10])];
tensor<int32, [2]> outputs_pad_0 = const()[name = tensor<string, []>("outputs_pad_0"), val = tensor<int32, [2]>([0, 0])];
tensor<int32, [1]> outputs_dilations_0 = const()[name = tensor<string, []>("outputs_dilations_0"), val = tensor<int32, [1]>([1])];
tensor<int32, []> outputs_groups_0 = const()[name = tensor<string, []>("outputs_groups_0"), val = tensor<int32, []>(1)];
tensor<fp16, [80, 1, 251]> var_113_to_fp16 = const()[name = tensor<string, []>("op_113_to_fp16"), val = tensor<fp16, [80, 1, 251]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
tensor<fp16, [1, 80, 15975]> outputs_cast_fp16 = conv(dilations = outputs_dilations_0, groups = outputs_groups_0, pad = outputs_pad_0, pad_type = outputs_pad_type_0, strides = outputs_strides_0, weight = var_113_to_fp16, x = var_41_cast_fp16)[name = tensor<string, []>("outputs_cast_fp16")];
tensor<fp16, [1, 80, 15975]> input_1_cast_fp16 = abs(x = outputs_cast_fp16)[name = tensor<string, []>("input_1_cast_fp16")];
tensor<int32, [1]> var_118 = const()[name = tensor<string, []>("op_118"), val = tensor<int32, [1]>([3])];
tensor<int32, [1]> var_119 = const()[name = tensor<string, []>("op_119"), val = tensor<int32, [1]>([3])];
tensor<string, []> input_3_pad_type_0 = const()[name = tensor<string, []>("input_3_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [2]> input_3_pad_0 = const()[name = tensor<string, []>("input_3_pad_0"), val = tensor<int32, [2]>([0, 0])];
tensor<bool, []> input_3_ceil_mode_0 = const()[name = tensor<string, []>("input_3_ceil_mode_0"), val = tensor<bool, []>(false)];
tensor<fp16, [1, 80, 5325]> input_3_cast_fp16 = max_pool(ceil_mode = input_3_ceil_mode_0, kernel_sizes = var_118, pad = input_3_pad_0, pad_type = input_3_pad_type_0, strides = var_119, x = input_1_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
tensor<fp16, [80]> sincnet_norm1d_0_weight_to_fp16 = const()[name = tensor<string, []>("sincnet_norm1d_0_weight_to_fp16"), val = tensor<fp16, [80]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(40320)))];
tensor<fp16, [80]> sincnet_norm1d_0_bias_to_fp16 = const()[name = tensor<string, []>("sincnet_norm1d_0_bias_to_fp16"), val = tensor<fp16, [80]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(40576)))];
tensor<fp16, [1, 80, 5325]> input_5_cast_fp16 = instance_norm(beta = sincnet_norm1d_0_bias_to_fp16, epsilon = var_25_to_fp16, gamma = sincnet_norm1d_0_weight_to_fp16, x = input_3_cast_fp16)[name = tensor<string, []>("input_5_cast_fp16")];
tensor<fp16, []> var_9_to_fp16 = const()[name = tensor<string, []>("op_9_to_fp16"), val = tensor<fp16, []>(0x1.47cp-7)];
tensor<fp16, [1, 80, 5325]> input_7_cast_fp16 = leaky_relu(alpha = var_9_to_fp16, x = input_5_cast_fp16)[name = tensor<string, []>("input_7_cast_fp16")];
tensor<string, []> input_9_pad_type_0 = const()[name = tensor<string, []>("input_9_pad_type_0"), val = tensor<string, []>("valid")];
tensor<int32, [1]> input_9_strides_0 = const()[name = tensor<string, []>("input_9_strides_0"), val = tensor<int32, [1]>([1])];
tensor<int32, [2]> input_9_pad_0 = const()[name = tensor<string, []>("input_9_pad_0"), val = tensor<int32, [2]>([0, 0])];
tensor<int32, [1]> input_9_dilations_0 = const()[name = tensor<string, []>("input_9_dilations_0"), val = tensor<int32, [1]>([1])];
tensor<int32, []> input_9_groups_0 = const()[name = tensor<string, []>("input_9_groups_0"), val = tensor<int32, []>(1)];
tensor<fp16, [60, 80, 5]> sincnet_conv1d_1_weight_to_fp16 = const()[name = tensor<string, []>("sincnet_conv1d_1_weight_to_fp16"), val = tensor<fp16, [60, 80, 5]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(40832)))];
tensor<fp16, [60]> sincnet_conv1d_1_bias_to_fp16 = const()[name = tensor<string, []>("sincnet_conv1d_1_bias_to_fp16"), val = tensor<fp16, [60]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(88896)))];
tensor<fp16, [1, 60, 5321]> input_9_cast_fp16 = conv(bias = sincnet_conv1d_1_bias_to_fp16, dilations = input_9_dilations_0, groups = input_9_groups_0, pad = input_9_pad_0, pad_type = input_9_pad_type_0, strides = input_9_strides_0, weight = sincnet_conv1d_1_weight_to_fp16, x = input_7_cast_fp16)[name = tensor<string, []>("input_9_cast_fp16")];
tensor<int32, [1]> var_134 = const()[name = tensor<string, []>("op_134"), val = tensor<int32, [1]>([3])];
tensor<int32, [1]> var_135 = const()[name = tensor<string, []>("op_135"), val = tensor<int32, [1]>([3])];
tensor<string, []> input_11_pad_type_0 = const()[name = tensor<string, []>("input_11_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [2]> input_11_pad_0 = const()[name = tensor<string, []>("input_11_pad_0"), val = tensor<int32, [2]>([0, 0])];
tensor<bool, []> input_11_ceil_mode_0 = const()[name = tensor<string, []>("input_11_ceil_mode_0"), val = tensor<bool, []>(false)];
tensor<fp16, [1, 60, 1773]> input_11_cast_fp16 = max_pool(ceil_mode = input_11_ceil_mode_0, kernel_sizes = var_134, pad = input_11_pad_0, pad_type = input_11_pad_type_0, strides = var_135, x = input_9_cast_fp16)[name = tensor<string, []>("input_11_cast_fp16")];
tensor<fp16, [60]> sincnet_norm1d_1_weight_to_fp16 = const()[name = tensor<string, []>("sincnet_norm1d_1_weight_to_fp16"), val = tensor<fp16, [60]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(89088)))];
tensor<fp16, [60]> sincnet_norm1d_1_bias_to_fp16 = const()[name = tensor<string, []>("sincnet_norm1d_1_bias_to_fp16"), val = tensor<fp16, [60]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(89280)))];
tensor<fp16, [1, 60, 1773]> input_13_cast_fp16 = instance_norm(beta = sincnet_norm1d_1_bias_to_fp16, epsilon = var_25_to_fp16, gamma = sincnet_norm1d_1_weight_to_fp16, x = input_11_cast_fp16)[name = tensor<string, []>("input_13_cast_fp16")];
tensor<fp16, [1, 60, 1773]> input_15_cast_fp16 = leaky_relu(alpha = var_9_to_fp16, x = input_13_cast_fp16)[name = tensor<string, []>("input_15_cast_fp16")];
tensor<string, []> input_17_pad_type_0 = const()[name = tensor<string, []>("input_17_pad_type_0"), val = tensor<string, []>("valid")];
tensor<int32, [1]> input_17_strides_0 = const()[name = tensor<string, []>("input_17_strides_0"), val = tensor<int32, [1]>([1])];
tensor<int32, [2]> input_17_pad_0 = const()[name = tensor<string, []>("input_17_pad_0"), val = tensor<int32, [2]>([0, 0])];
tensor<int32, [1]> input_17_dilations_0 = const()[name = tensor<string, []>("input_17_dilations_0"), val = tensor<int32, [1]>([1])];
tensor<int32, []> input_17_groups_0 = const()[name = tensor<string, []>("input_17_groups_0"), val = tensor<int32, []>(1)];
tensor<fp16, [60, 60, 5]> sincnet_conv1d_2_weight_to_fp16 = const()[name = tensor<string, []>("sincnet_conv1d_2_weight_to_fp16"), val = tensor<fp16, [60, 60, 5]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(89472)))];
tensor<fp16, [60]> sincnet_conv1d_2_bias_to_fp16 = const()[name = tensor<string, []>("sincnet_conv1d_2_bias_to_fp16"), val = tensor<fp16, [60]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(125568)))];
tensor<fp16, [1, 60, 1769]> input_17_cast_fp16 = conv(bias = sincnet_conv1d_2_bias_to_fp16, dilations = input_17_dilations_0, groups = input_17_groups_0, pad = input_17_pad_0, pad_type = input_17_pad_type_0, strides = input_17_strides_0, weight = sincnet_conv1d_2_weight_to_fp16, x = input_15_cast_fp16)[name = tensor<string, []>("input_17_cast_fp16")];
tensor<int32, [1]> var_150 = const()[name = tensor<string, []>("op_150"), val = tensor<int32, [1]>([3])];
tensor<int32, [1]> var_151 = const()[name = tensor<string, []>("op_151"), val = tensor<int32, [1]>([3])];
tensor<string, []> input_19_pad_type_0 = const()[name = tensor<string, []>("input_19_pad_type_0"), val = tensor<string, []>("custom")];
tensor<int32, [2]> input_19_pad_0 = const()[name = tensor<string, []>("input_19_pad_0"), val = tensor<int32, [2]>([0, 0])];
tensor<bool, []> input_19_ceil_mode_0 = const()[name = tensor<string, []>("input_19_ceil_mode_0"), val = tensor<bool, []>(false)];
tensor<fp16, [1, 60, 589]> input_19_cast_fp16 = max_pool(ceil_mode = input_19_ceil_mode_0, kernel_sizes = var_150, pad = input_19_pad_0, pad_type = input_19_pad_type_0, strides = var_151, x = input_17_cast_fp16)[name = tensor<string, []>("input_19_cast_fp16")];
tensor<fp16, [60]> sincnet_norm1d_2_weight_to_fp16 = const()[name = tensor<string, []>("sincnet_norm1d_2_weight_to_fp16"), val = tensor<fp16, [60]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(125760)))];
tensor<fp16, [60]> sincnet_norm1d_2_bias_to_fp16 = const()[name = tensor<string, []>("sincnet_norm1d_2_bias_to_fp16"), val = tensor<fp16, [60]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(125952)))];
tensor<fp16, [1, 60, 589]> input_21_cast_fp16 = instance_norm(beta = sincnet_norm1d_2_bias_to_fp16, epsilon = var_25_to_fp16, gamma = sincnet_norm1d_2_weight_to_fp16, x = input_19_cast_fp16)[name = tensor<string, []>("input_21_cast_fp16")];
tensor<fp16, [1, 60, 589]> x_cast_fp16 = leaky_relu(alpha = var_9_to_fp16, x = input_21_cast_fp16)[name = tensor<string, []>("x_cast_fp16")];
tensor<int32, [3]> transpose_4_perm_0 = const()[name = tensor<string, []>("transpose_4_perm_0"), val = tensor<int32, [3]>([2, 0, 1])];
tensor<string, []> transpose_4_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("transpose_4_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
tensor<fp32, [512]> add_0 = const()[name = tensor<string, []>("add_0"), val = tensor<fp32, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(126144)))];
tensor<fp32, [512]> add_1 = const()[name = tensor<string, []>("add_1"), val = tensor<fp32, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(128256)))];
tensor<fp32, [512, 60]> concat_4 = const()[name = tensor<string, []>("concat_4"), val = tensor<fp32, [512, 60]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(130368)))];
tensor<fp32, [512, 128]> concat_5 = const()[name = tensor<string, []>("concat_5"), val = tensor<fp32, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(253312)))];
tensor<fp32, [512, 60]> concat_6 = const()[name = tensor<string, []>("concat_6"), val = tensor<fp32, [512, 60]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(515520)))];
tensor<fp32, [512, 128]> concat_7 = const()[name = tensor<string, []>("concat_7"), val = tensor<fp32, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(638464)))];
tensor<fp32, [1, 256]> input_25_lstm_layer_0_lstm_h0_reshaped = const()[name = tensor<string, []>("input_25_lstm_layer_0_lstm_h0_reshaped"), val = tensor<fp32, [1, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(900672)))];
tensor<string, []> input_25_lstm_layer_0_direction_0 = const()[name = tensor<string, []>("input_25_lstm_layer_0_direction_0"), val = tensor<string, []>("bidirectional")];
tensor<bool, []> input_25_lstm_layer_0_output_sequence_0 = const()[name = tensor<string, []>("input_25_lstm_layer_0_output_sequence_0"), val = tensor<bool, []>(true)];
tensor<string, []> input_25_lstm_layer_0_recurrent_activation_0 = const()[name = tensor<string, []>("input_25_lstm_layer_0_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
tensor<string, []> input_25_lstm_layer_0_cell_activation_0 = const()[name = tensor<string, []>("input_25_lstm_layer_0_cell_activation_0"), val = tensor<string, []>("tanh")];
tensor<string, []> input_25_lstm_layer_0_activation_0 = const()[name = tensor<string, []>("input_25_lstm_layer_0_activation_0"), val = tensor<string, []>("tanh")];
tensor<fp16, [589, 1, 60]> transpose_4_cast_fp16 = transpose(perm = transpose_4_perm_0, x = x_cast_fp16)[name = tensor<string, []>("transpose_6")];
tensor<fp32, [589, 1, 60]> transpose_4_cast_fp16_to_fp32 = cast(dtype = transpose_4_cast_fp16_to_fp32_dtype_0, x = transpose_4_cast_fp16)[name = tensor<string, []>("cast_18")];
tensor<fp32, [589, 1, 256]> input_25_lstm_layer_0_0, tensor<fp32, [1, 256]> input_25_lstm_layer_0_1, tensor<fp32, [1, 256]> input_25_lstm_layer_0_2 = lstm(activation = input_25_lstm_layer_0_activation_0, bias = add_0, bias_back = add_1, cell_activation = input_25_lstm_layer_0_cell_activation_0, direction = input_25_lstm_layer_0_direction_0, initial_c = input_25_lstm_layer_0_lstm_h0_reshaped, initial_h = input_25_lstm_layer_0_lstm_h0_reshaped, output_sequence = input_25_lstm_layer_0_output_sequence_0, recurrent_activation = input_25_lstm_layer_0_recurrent_activation_0, weight_hh = concat_5, weight_hh_back = concat_7, weight_ih = concat_4, weight_ih_back = concat_6, x = transpose_4_cast_fp16_to_fp32)[name = tensor<string, []>("input_25_lstm_layer_0")];
tensor<fp32, [512]> add_2 = const()[name = tensor<string, []>("add_2"), val = tensor<fp32, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(901760)))];
tensor<fp32, [512]> add_3 = const()[name = tensor<string, []>("add_3"), val = tensor<fp32, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(903872)))];
tensor<fp32, [512, 256]> concat_14 = const()[name = tensor<string, []>("concat_14"), val = tensor<fp32, [512, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(905984)))];
tensor<fp32, [512, 128]> concat_15 = const()[name = tensor<string, []>("concat_15"), val = tensor<fp32, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1430336)))];
tensor<fp32, [512, 256]> concat_16 = const()[name = tensor<string, []>("concat_16"), val = tensor<fp32, [512, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1692544)))];
tensor<fp32, [512, 128]> concat_17 = const()[name = tensor<string, []>("concat_17"), val = tensor<fp32, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2216896)))];
tensor<string, []> input_25_lstm_layer_1_direction_0 = const()[name = tensor<string, []>("input_25_lstm_layer_1_direction_0"), val = tensor<string, []>("bidirectional")];
tensor<bool, []> input_25_lstm_layer_1_output_sequence_0 = const()[name = tensor<string, []>("input_25_lstm_layer_1_output_sequence_0"), val = tensor<bool, []>(true)];
tensor<string, []> input_25_lstm_layer_1_recurrent_activation_0 = const()[name = tensor<string, []>("input_25_lstm_layer_1_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
tensor<string, []> input_25_lstm_layer_1_cell_activation_0 = const()[name = tensor<string, []>("input_25_lstm_layer_1_cell_activation_0"), val = tensor<string, []>("tanh")];
tensor<string, []> input_25_lstm_layer_1_activation_0 = const()[name = tensor<string, []>("input_25_lstm_layer_1_activation_0"), val = tensor<string, []>("tanh")];
tensor<fp32, [589, 1, 256]> input_25_lstm_layer_1_0, tensor<fp32, [1, 256]> input_25_lstm_layer_1_1, tensor<fp32, [1, 256]> input_25_lstm_layer_1_2 = lstm(activation = input_25_lstm_layer_1_activation_0, bias = add_2, bias_back = add_3, cell_activation = input_25_lstm_layer_1_cell_activation_0, direction = input_25_lstm_layer_1_direction_0, initial_c = input_25_lstm_layer_0_lstm_h0_reshaped, initial_h = input_25_lstm_layer_0_lstm_h0_reshaped, output_sequence = input_25_lstm_layer_1_output_sequence_0, recurrent_activation = input_25_lstm_layer_1_recurrent_activation_0, weight_hh = concat_15, weight_hh_back = concat_17, weight_ih = concat_14, weight_ih_back = concat_16, x = input_25_lstm_layer_0_0)[name = tensor<string, []>("input_25_lstm_layer_1")];
tensor<fp32, [512]> add_4 = const()[name = tensor<string, []>("add_4"), val = tensor<fp32, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2479104)))];
tensor<fp32, [512]> add_5 = const()[name = tensor<string, []>("add_5"), val = tensor<fp32, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2481216)))];
tensor<fp32, [512, 256]> concat_24 = const()[name = tensor<string, []>("concat_24"), val = tensor<fp32, [512, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2483328)))];
tensor<fp32, [512, 128]> concat_25 = const()[name = tensor<string, []>("concat_25"), val = tensor<fp32, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3007680)))];
tensor<fp32, [512, 256]> concat_26 = const()[name = tensor<string, []>("concat_26"), val = tensor<fp32, [512, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3269888)))];
tensor<fp32, [512, 128]> concat_27 = const()[name = tensor<string, []>("concat_27"), val = tensor<fp32, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3794240)))];
tensor<string, []> input_25_lstm_layer_2_direction_0 = const()[name = tensor<string, []>("input_25_lstm_layer_2_direction_0"), val = tensor<string, []>("bidirectional")];
tensor<bool, []> input_25_lstm_layer_2_output_sequence_0 = const()[name = tensor<string, []>("input_25_lstm_layer_2_output_sequence_0"), val = tensor<bool, []>(true)];
tensor<string, []> input_25_lstm_layer_2_recurrent_activation_0 = const()[name = tensor<string, []>("input_25_lstm_layer_2_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
tensor<string, []> input_25_lstm_layer_2_cell_activation_0 = const()[name = tensor<string, []>("input_25_lstm_layer_2_cell_activation_0"), val = tensor<string, []>("tanh")];
tensor<string, []> input_25_lstm_layer_2_activation_0 = const()[name = tensor<string, []>("input_25_lstm_layer_2_activation_0"), val = tensor<string, []>("tanh")];
tensor<fp32, [589, 1, 256]> input_25_lstm_layer_2_0, tensor<fp32, [1, 256]> input_25_lstm_layer_2_1, tensor<fp32, [1, 256]> input_25_lstm_layer_2_2 = lstm(activation = input_25_lstm_layer_2_activation_0, bias = add_4, bias_back = add_5, cell_activation = input_25_lstm_layer_2_cell_activation_0, direction = input_25_lstm_layer_2_direction_0, initial_c = input_25_lstm_layer_0_lstm_h0_reshaped, initial_h = input_25_lstm_layer_0_lstm_h0_reshaped, output_sequence = input_25_lstm_layer_2_output_sequence_0, recurrent_activation = input_25_lstm_layer_2_recurrent_activation_0, weight_hh = concat_25, weight_hh_back = concat_27, weight_ih = concat_24, weight_ih_back = concat_26, x = input_25_lstm_layer_1_0)[name = tensor<string, []>("input_25_lstm_layer_2")];
tensor<fp32, [512]> add_6 = const()[name = tensor<string, []>("add_6"), val = tensor<fp32, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4056448)))];
tensor<fp32, [512]> add_7 = const()[name = tensor<string, []>("add_7"), val = tensor<fp32, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4058560)))];
tensor<fp32, [512, 256]> concat_34 = const()[name = tensor<string, []>("concat_34"), val = tensor<fp32, [512, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4060672)))];
tensor<fp32, [512, 128]> concat_35 = const()[name = tensor<string, []>("concat_35"), val = tensor<fp32, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4585024)))];
tensor<fp32, [512, 256]> concat_36 = const()[name = tensor<string, []>("concat_36"), val = tensor<fp32, [512, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4847232)))];
tensor<fp32, [512, 128]> concat_37 = const()[name = tensor<string, []>("concat_37"), val = tensor<fp32, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5371584)))];
tensor<string, []> input_25_batch_first_direction_0 = const()[name = tensor<string, []>("input_25_batch_first_direction_0"), val = tensor<string, []>("bidirectional")];
tensor<bool, []> input_25_batch_first_output_sequence_0 = const()[name = tensor<string, []>("input_25_batch_first_output_sequence_0"), val = tensor<bool, []>(true)];
tensor<string, []> input_25_batch_first_recurrent_activation_0 = const()[name = tensor<string, []>("input_25_batch_first_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
tensor<string, []> input_25_batch_first_cell_activation_0 = const()[name = tensor<string, []>("input_25_batch_first_cell_activation_0"), val = tensor<string, []>("tanh")];
tensor<string, []> input_25_batch_first_activation_0 = const()[name = tensor<string, []>("input_25_batch_first_activation_0"), val = tensor<string, []>("tanh")];
tensor<fp32, [589, 1, 256]> input_25_batch_first_0, tensor<fp32, [1, 256]> input_25_batch_first_1, tensor<fp32, [1, 256]> input_25_batch_first_2 = lstm(activation = input_25_batch_first_activation_0, bias = add_6, bias_back = add_7, cell_activation = input_25_batch_first_cell_activation_0, direction = input_25_batch_first_direction_0, initial_c = input_25_lstm_layer_0_lstm_h0_reshaped, initial_h = input_25_lstm_layer_0_lstm_h0_reshaped, output_sequence = input_25_batch_first_output_sequence_0, recurrent_activation = input_25_batch_first_recurrent_activation_0, weight_hh = concat_35, weight_hh_back = concat_37, weight_ih = concat_34, weight_ih_back = concat_36, x = input_25_lstm_layer_2_0)[name = tensor<string, []>("input_25_batch_first")];
tensor<int32, [3]> input_25_perm_0 = const()[name = tensor<string, []>("input_25_perm_0"), val = tensor<int32, [3]>([1, 0, 2])];
tensor<string, []> input_25_batch_first_0_to_fp16_dtype_0 = const()[name = tensor<string, []>("input_25_batch_first_0_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
tensor<fp16, [128, 256]> linear_0_weight_to_fp16 = const()[name = tensor<string, []>("linear_0_weight_to_fp16"), val = tensor<fp16, [128, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5633792)))];
tensor<fp16, [128]> linear_0_bias_to_fp16 = const()[name = tensor<string, []>("linear_0_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5699392)))];
tensor<fp16, [589, 1, 256]> input_25_batch_first_0_to_fp16 = cast(dtype = input_25_batch_first_0_to_fp16_dtype_0, x = input_25_batch_first_0)[name = tensor<string, []>("cast_17")];
tensor<fp16, [1, 589, 256]> input_25_cast_fp16 = transpose(perm = input_25_perm_0, x = input_25_batch_first_0_to_fp16)[name = tensor<string, []>("transpose_5")];
tensor<fp16, [1, 589, 128]> linear_0_cast_fp16 = linear(bias = linear_0_bias_to_fp16, weight = linear_0_weight_to_fp16, x = input_25_cast_fp16)[name = tensor<string, []>("linear_0_cast_fp16")];
tensor<fp16, []> var_219_to_fp16 = const()[name = tensor<string, []>("op_219_to_fp16"), val = tensor<fp16, []>(0x1.47cp-7)];
tensor<fp16, [1, 589, 128]> input_29_cast_fp16 = leaky_relu(alpha = var_219_to_fp16, x = linear_0_cast_fp16)[name = tensor<string, []>("input_29_cast_fp16")];
tensor<fp16, [128, 128]> linear_1_weight_to_fp16 = const()[name = tensor<string, []>("linear_1_weight_to_fp16"), val = tensor<fp16, [128, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5699712)))];
tensor<fp16, [128]> linear_1_bias_to_fp16 = const()[name = tensor<string, []>("linear_1_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5732544)))];
tensor<fp16, [1, 589, 128]> linear_1_cast_fp16 = linear(bias = linear_1_bias_to_fp16, weight = linear_1_weight_to_fp16, x = input_29_cast_fp16)[name = tensor<string, []>("linear_1_cast_fp16")];
tensor<fp16, []> var_224_to_fp16 = const()[name = tensor<string, []>("op_224_to_fp16"), val = tensor<fp16, []>(0x1.47cp-7)];
tensor<fp16, [1, 589, 128]> input_33_cast_fp16 = leaky_relu(alpha = var_224_to_fp16, x = linear_1_cast_fp16)[name = tensor<string, []>("input_33_cast_fp16")];
tensor<fp16, [7, 128]> classifier_weight_to_fp16 = const()[name = tensor<string, []>("classifier_weight_to_fp16"), val = tensor<fp16, [7, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5732864)))];
tensor<fp16, [7]> classifier_bias_to_fp16 = const()[name = tensor<string, []>("classifier_bias_to_fp16"), val = tensor<fp16, [7]>([-0x1.01p+0, 0x1.67cp-2, 0x1.3d8p-1, 0x1.c8cp-2, -0x1.444p-2, -0x1.59p-1, -0x1.8fcp-2])];
tensor<fp16, [1, 589, 7]> linear_2_cast_fp16 = linear(bias = classifier_bias_to_fp16, weight = classifier_weight_to_fp16, x = input_33_cast_fp16)[name = tensor<string, []>("linear_2_cast_fp16")];
tensor<int32, []> var_230 = const()[name = tensor<string, []>("op_230"), val = tensor<int32, []>(-1)];
tensor<fp16, [1, 589, 7]> var_231_softmax_cast_fp16 = softmax(axis = var_230, x = linear_2_cast_fp16)[name = tensor<string, []>("op_231_softmax_cast_fp16")];
tensor<fp16, []> var_231_epsilon_0_to_fp16 = const()[name = tensor<string, []>("op_231_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
tensor<fp16, [1, 589, 7]> var_231_cast_fp16 = log(epsilon = var_231_epsilon_0_to_fp16, x = var_231_softmax_cast_fp16)[name = tensor<string, []>("op_231_cast_fp16")];
tensor<string, []> var_231_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_231_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
tensor<fp32, [1, 589, 7]> segments = cast(dtype = var_231_cast_fp16_to_fp32_dtype_0, x = var_231_cast_fp16)[name = tensor<string, []>("cast_16")];
} -> (segments);
}