1..32
Browse files
PldaRho.mlmodelc/analytics/coremldata.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 243
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8940ea6044dbcbefa22da8cc41e0b485e1fb5ed89aecaf37c6e0c483a97ddcd7
|
| 3 |
size 243
|
PldaRho.mlmodelc/coremldata.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4d9741477f721c79b09fcdfe455110c4b7d4272e2de3496bf1729d966d3ee418
|
| 3 |
+
size 763
|
PldaRho.mlmodelc/metadata.json
CHANGED
|
@@ -1,15 +1,15 @@
|
|
| 1 |
[
|
| 2 |
{
|
| 3 |
-
"shortDescription" : "pyannote community-1 PLDA rho (features scaled by sqrt(phi) for VBx clustering, batch
|
| 4 |
"metadataOutputVersion" : "3.0",
|
| 5 |
"outputSchema" : [
|
| 6 |
{
|
| 7 |
"hasShapeFlexibility" : "0",
|
| 8 |
"isOptional" : "0",
|
| 9 |
"dataType" : "Float32",
|
| 10 |
-
"formattedType" : "MultiArray (Float32
|
| 11 |
"shortDescription" : "",
|
| 12 |
-
"shape" : "[
|
| 13 |
"name" : "rho",
|
| 14 |
"type" : "MultiArray"
|
| 15 |
}
|
|
@@ -49,18 +49,20 @@
|
|
| 49 |
},
|
| 50 |
"inputSchema" : [
|
| 51 |
{
|
| 52 |
-
"
|
| 53 |
-
"isOptional" : "0",
|
| 54 |
"dataType" : "Float32",
|
|
|
|
|
|
|
|
|
|
| 55 |
"formattedType" : "MultiArray (Float32 32 × 256)",
|
| 56 |
-
"
|
| 57 |
"shape" : "[32, 256]",
|
| 58 |
"name" : "embeddings",
|
| 59 |
-
"
|
| 60 |
}
|
| 61 |
],
|
| 62 |
"userDefinedMetadata" : {
|
| 63 |
-
"com.github.apple.coremltools.conversion_date" : "2025-10-
|
| 64 |
"com.github.apple.coremltools.source" : "torch==2.8.0",
|
| 65 |
"com.github.apple.coremltools.version" : "9.0b1",
|
| 66 |
"com.github.apple.coremltools.source_dialect" : "TorchScript"
|
|
|
|
| 1 |
[
|
| 2 |
{
|
| 3 |
+
"shortDescription" : "pyannote community-1 PLDA rho (features scaled by sqrt(phi) for VBx clustering, batch 1-32)",
|
| 4 |
"metadataOutputVersion" : "3.0",
|
| 5 |
"outputSchema" : [
|
| 6 |
{
|
| 7 |
"hasShapeFlexibility" : "0",
|
| 8 |
"isOptional" : "0",
|
| 9 |
"dataType" : "Float32",
|
| 10 |
+
"formattedType" : "MultiArray (Float32)",
|
| 11 |
"shortDescription" : "",
|
| 12 |
+
"shape" : "[]",
|
| 13 |
"name" : "rho",
|
| 14 |
"type" : "MultiArray"
|
| 15 |
}
|
|
|
|
| 49 |
},
|
| 50 |
"inputSchema" : [
|
| 51 |
{
|
| 52 |
+
"shortDescription" : "",
|
|
|
|
| 53 |
"dataType" : "Float32",
|
| 54 |
+
"hasShapeFlexibility" : "1",
|
| 55 |
+
"isOptional" : "0",
|
| 56 |
+
"shapeFlexibility" : "32 × 256 | 1 × 256 | 2 × 256 | 3 × 256 | 4 × 256 | 5 × 256 | 6 × 256 | 7 × 256 | 8 × 256 | 9 × 256 | 10 × 256 | 11 × 256 | 12 × 256 | 13 × 256 | 14 × 256 | 15 × 256 | 16 × 256 | 17 × 256 | 18 × 256 | 19 × 256 | 20 × 256 | 21 × 256 | 22 × 256 | 23 × 256 | 24 × 256 | 25 × 256 | 26 × 256 | 27 × 256 | 28 × 256 | 29 × 256 | 30 × 256 | 31 × 256",
|
| 57 |
"formattedType" : "MultiArray (Float32 32 × 256)",
|
| 58 |
+
"type" : "MultiArray",
|
| 59 |
"shape" : "[32, 256]",
|
| 60 |
"name" : "embeddings",
|
| 61 |
+
"enumeratedShapes" : "[[32, 256], [1, 256], [2, 256], [3, 256], [4, 256], [5, 256], [6, 256], [7, 256], [8, 256], [9, 256], [10, 256], [11, 256], [12, 256], [13, 256], [14, 256], [15, 256], [16, 256], [17, 256], [18, 256], [19, 256], [20, 256], [21, 256], [22, 256], [23, 256], [24, 256], [25, 256], [26, 256], [27, 256], [28, 256], [29, 256], [30, 256], [31, 256]]"
|
| 62 |
}
|
| 63 |
],
|
| 64 |
"userDefinedMetadata" : {
|
| 65 |
+
"com.github.apple.coremltools.conversion_date" : "2025-10-04",
|
| 66 |
"com.github.apple.coremltools.source" : "torch==2.8.0",
|
| 67 |
"com.github.apple.coremltools.version" : "9.0b1",
|
| 68 |
"com.github.apple.coremltools.source_dialect" : "TorchScript"
|
PldaRho.mlmodelc/model.mil
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
program(1.0)
|
| 2 |
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3500.14.1"}, {"coremlc-version", "3500.32.1"}, {"coremltools-component-torch", "2.8.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "9.0b1"}})]
|
| 3 |
{
|
| 4 |
-
func main<ios17>(tensor<fp32, [32, 256]
|
| 5 |
tensor<fp32, [128]> sqrt_phi = const()[name = tensor<string, []>("sqrt_phi"), val = tensor<fp32, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
|
| 6 |
tensor<fp32, [128, 128]> transform_plda_tr = const()[name = tensor<string, []>("transform_plda_tr"), val = tensor<fp32, [128, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(640)))];
|
| 7 |
tensor<fp32, [128]> transform_mu = const()[name = tensor<string, []>("transform_mu"), val = tensor<fp32, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(66240)))];
|
|
@@ -10,31 +10,31 @@ program(1.0)
|
|
| 10 |
tensor<fp32, []> transform_lda_scale = const()[name = tensor<string, []>("transform_lda_scale"), val = tensor<fp32, []>(0x1p+4)];
|
| 11 |
tensor<fp32, [256]> transform_mean1 = const()[name = tensor<string, []>("transform_mean1"), val = tensor<fp32, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(67392)))];
|
| 12 |
tensor<fp32, []> var_4 = const()[name = tensor<string, []>("op_4"), val = tensor<fp32, []>(0x1.197998p-40)];
|
| 13 |
-
tensor<fp32, [
|
| 14 |
-
tensor<fp32, [
|
| 15 |
tensor<int32, [1]> var_19_axes_0 = const()[name = tensor<string, []>("op_19_axes_0"), val = tensor<int32, [1]>([-1])];
|
| 16 |
tensor<bool, []> var_19_keep_dims_0 = const()[name = tensor<string, []>("op_19_keep_dims_0"), val = tensor<bool, []>(true)];
|
| 17 |
-
tensor<fp32, [
|
| 18 |
tensor<fp32, []> const_0 = const()[name = tensor<string, []>("const_0"), val = tensor<fp32, []>(0x1.fffffep+127)];
|
| 19 |
-
tensor<fp32, [
|
| 20 |
-
tensor<fp32, [
|
| 21 |
-
tensor<fp32, [
|
| 22 |
tensor<fp32, [128, 256]> transpose_0 = const()[name = tensor<string, []>("transpose_0"), val = tensor<fp32, [128, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(68480)))];
|
| 23 |
tensor<fp32, [128]> var_23_bias_0 = const()[name = tensor<string, []>("op_23_bias_0"), val = tensor<fp32, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(199616)))];
|
| 24 |
-
tensor<fp32, [
|
| 25 |
-
tensor<fp32, [
|
| 26 |
-
tensor<fp32, [
|
| 27 |
-
tensor<fp32, [
|
| 28 |
tensor<int32, [1]> var_28_axes_0 = const()[name = tensor<string, []>("op_28_axes_0"), val = tensor<int32, [1]>([-1])];
|
| 29 |
tensor<bool, []> var_28_keep_dims_0 = const()[name = tensor<string, []>("op_28_keep_dims_0"), val = tensor<bool, []>(true)];
|
| 30 |
-
tensor<fp32, [
|
| 31 |
tensor<fp32, []> const_1 = const()[name = tensor<string, []>("const_1"), val = tensor<fp32, []>(0x1.fffffep+127)];
|
| 32 |
-
tensor<fp32, [
|
| 33 |
-
tensor<fp32, [
|
| 34 |
-
tensor<fp32, [
|
| 35 |
-
tensor<fp32, [
|
| 36 |
-
tensor<fp32, [
|
| 37 |
-
tensor<fp32, [
|
| 38 |
-
tensor<fp32, [
|
| 39 |
} -> (rho);
|
| 40 |
}
|
|
|
|
| 1 |
program(1.0)
|
| 2 |
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3500.14.1"}, {"coremlc-version", "3500.32.1"}, {"coremltools-component-torch", "2.8.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "9.0b1"}})]
|
| 3 |
{
|
| 4 |
+
func main<ios17>(tensor<fp32, [?, 256]> embeddings) [FlexibleShapeInformation = tuple<tuple<tensor<string, []>, dict<tensor<string, []>, tensor<int32, [?]>>>, tuple<tensor<string, []>, dict<tensor<string, []>, dict<tensor<string, []>, tensor<int32, [?]>>>>>((("DefaultShapes", {{"embeddings", [32, 256]}}), ("EnumeratedShapes", {{"embeddings_1_1_1_10_256_", {{"embeddings", [10, 256]}}}, {"embeddings_1_1_1_11_256_", {{"embeddings", [11, 256]}}}, {"embeddings_1_1_1_12_256_", {{"embeddings", [12, 256]}}}, {"embeddings_1_1_1_13_256_", {{"embeddings", [13, 256]}}}, {"embeddings_1_1_1_14_256_", {{"embeddings", [14, 256]}}}, {"embeddings_1_1_1_15_256_", {{"embeddings", [15, 256]}}}, {"embeddings_1_1_1_16_256_", {{"embeddings", [16, 256]}}}, {"embeddings_1_1_1_17_256_", {{"embeddings", [17, 256]}}}, {"embeddings_1_1_1_18_256_", {{"embeddings", [18, 256]}}}, {"embeddings_1_1_1_19_256_", {{"embeddings", [19, 256]}}}, {"embeddings_1_1_1_1_256_", {{"embeddings", [1, 256]}}}, {"embeddings_1_1_1_20_256_", {{"embeddings", [20, 256]}}}, {"embeddings_1_1_1_21_256_", {{"embeddings", [21, 256]}}}, {"embeddings_1_1_1_22_256_", {{"embeddings", [22, 256]}}}, {"embeddings_1_1_1_23_256_", {{"embeddings", [23, 256]}}}, {"embeddings_1_1_1_24_256_", {{"embeddings", [24, 256]}}}, {"embeddings_1_1_1_25_256_", {{"embeddings", [25, 256]}}}, {"embeddings_1_1_1_26_256_", {{"embeddings", [26, 256]}}}, {"embeddings_1_1_1_27_256_", {{"embeddings", [27, 256]}}}, {"embeddings_1_1_1_28_256_", {{"embeddings", [28, 256]}}}, {"embeddings_1_1_1_29_256_", {{"embeddings", [29, 256]}}}, {"embeddings_1_1_1_2_256_", {{"embeddings", [2, 256]}}}, {"embeddings_1_1_1_30_256_", {{"embeddings", [30, 256]}}}, {"embeddings_1_1_1_31_256_", {{"embeddings", [31, 256]}}}, {"embeddings_1_1_1_32_256_", {{"embeddings", [32, 256]}}}, {"embeddings_1_1_1_3_256_", {{"embeddings", [3, 256]}}}, {"embeddings_1_1_1_4_256_", {{"embeddings", [4, 256]}}}, {"embeddings_1_1_1_5_256_", {{"embeddings", [5, 256]}}}, {"embeddings_1_1_1_6_256_", {{"embeddings", [6, 256]}}}, {"embeddings_1_1_1_7_256_", {{"embeddings", [7, 256]}}}, {"embeddings_1_1_1_8_256_", {{"embeddings", [8, 256]}}}, {"embeddings_1_1_1_9_256_", {{"embeddings", [9, 256]}}}})))] {
|
| 5 |
tensor<fp32, [128]> sqrt_phi = const()[name = tensor<string, []>("sqrt_phi"), val = tensor<fp32, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
|
| 6 |
tensor<fp32, [128, 128]> transform_plda_tr = const()[name = tensor<string, []>("transform_plda_tr"), val = tensor<fp32, [128, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(640)))];
|
| 7 |
tensor<fp32, [128]> transform_mu = const()[name = tensor<string, []>("transform_mu"), val = tensor<fp32, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(66240)))];
|
|
|
|
| 10 |
tensor<fp32, []> transform_lda_scale = const()[name = tensor<string, []>("transform_lda_scale"), val = tensor<fp32, []>(0x1p+4)];
|
| 11 |
tensor<fp32, [256]> transform_mean1 = const()[name = tensor<string, []>("transform_mean1"), val = tensor<fp32, [256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(67392)))];
|
| 12 |
tensor<fp32, []> var_4 = const()[name = tensor<string, []>("op_4"), val = tensor<fp32, []>(0x1.197998p-40)];
|
| 13 |
+
tensor<fp32, [?, 256]> x_1 = sub(x = embeddings, y = transform_mean1)[name = tensor<string, []>("x_1")];
|
| 14 |
+
tensor<fp32, [?, 256]> var_17 = mul(x = x_1, y = x_1)[name = tensor<string, []>("op_17")];
|
| 15 |
tensor<int32, [1]> var_19_axes_0 = const()[name = tensor<string, []>("op_19_axes_0"), val = tensor<int32, [1]>([-1])];
|
| 16 |
tensor<bool, []> var_19_keep_dims_0 = const()[name = tensor<string, []>("op_19_keep_dims_0"), val = tensor<bool, []>(true)];
|
| 17 |
+
tensor<fp32, [?, 1]> var_19 = reduce_sum(axes = var_19_axes_0, keep_dims = var_19_keep_dims_0, x = var_17)[name = tensor<string, []>("op_19")];
|
| 18 |
tensor<fp32, []> const_0 = const()[name = tensor<string, []>("const_0"), val = tensor<fp32, []>(0x1.fffffep+127)];
|
| 19 |
+
tensor<fp32, [?, 1]> clip_0 = clip(alpha = var_4, beta = const_0, x = var_19)[name = tensor<string, []>("clip_0")];
|
| 20 |
+
tensor<fp32, [?, 1]> norm_1 = sqrt(x = clip_0)[name = tensor<string, []>("norm_1")];
|
| 21 |
+
tensor<fp32, [?, 256]> normalized1 = real_div(x = x_1, y = norm_1)[name = tensor<string, []>("normalized1")];
|
| 22 |
tensor<fp32, [128, 256]> transpose_0 = const()[name = tensor<string, []>("transpose_0"), val = tensor<fp32, [128, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(68480)))];
|
| 23 |
tensor<fp32, [128]> var_23_bias_0 = const()[name = tensor<string, []>("op_23_bias_0"), val = tensor<fp32, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(199616)))];
|
| 24 |
+
tensor<fp32, [?, 128]> var_23 = linear(bias = var_23_bias_0, weight = transpose_0, x = normalized1)[name = tensor<string, []>("op_23")];
|
| 25 |
+
tensor<fp32, [?, 128]> projected = mul(x = var_23, y = transform_lda_scale)[name = tensor<string, []>("projected")];
|
| 26 |
+
tensor<fp32, [?, 128]> x = sub(x = projected, y = transform_mean2)[name = tensor<string, []>("x")];
|
| 27 |
+
tensor<fp32, [?, 128]> var_26 = mul(x = x, y = x)[name = tensor<string, []>("op_26")];
|
| 28 |
tensor<int32, [1]> var_28_axes_0 = const()[name = tensor<string, []>("op_28_axes_0"), val = tensor<int32, [1]>([-1])];
|
| 29 |
tensor<bool, []> var_28_keep_dims_0 = const()[name = tensor<string, []>("op_28_keep_dims_0"), val = tensor<bool, []>(true)];
|
| 30 |
+
tensor<fp32, [?, 1]> var_28 = reduce_sum(axes = var_28_axes_0, keep_dims = var_28_keep_dims_0, x = var_26)[name = tensor<string, []>("op_28")];
|
| 31 |
tensor<fp32, []> const_1 = const()[name = tensor<string, []>("const_1"), val = tensor<fp32, []>(0x1.fffffep+127)];
|
| 32 |
+
tensor<fp32, [?, 1]> clip_1 = clip(alpha = var_4, beta = const_1, x = var_28)[name = tensor<string, []>("clip_1")];
|
| 33 |
+
tensor<fp32, [?, 1]> norm = sqrt(x = clip_1)[name = tensor<string, []>("norm")];
|
| 34 |
+
tensor<fp32, [?, 128]> var_31 = real_div(x = x, y = norm)[name = tensor<string, []>("op_31")];
|
| 35 |
+
tensor<fp32, [?, 128]> normalized2 = mul(x = var_31, y = transform_lda_dim_scale)[name = tensor<string, []>("normalized2")];
|
| 36 |
+
tensor<fp32, [?, 128]> plda_centered = sub(x = normalized2, y = transform_mu)[name = tensor<string, []>("plda_centered")];
|
| 37 |
+
tensor<fp32, [?, 128]> features = linear(bias = var_23_bias_0, weight = transform_plda_tr, x = plda_centered)[name = tensor<string, []>("features")];
|
| 38 |
+
tensor<fp32, [?, 128]> rho = mul(x = features, y = sqrt_phi)[name = tensor<string, []>("op_36")];
|
| 39 |
} -> (rho);
|
| 40 |
}
|