bweng commited on
Commit
5cf3dfe
·
verified ·
1 Parent(s): 5d69708

Upload 15 files

Browse files
Embedding.mlmodelc/analytics/coremldata.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:28c3ba1fd51947d404655ab2322788f821e6851540444829082ad54915bb3363
3
  size 243
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b2449667626ef30bbcf9aad719b8ad5380aab470e3c3bddf5ece68c101cfd5c
3
  size 243
Embedding.mlmodelc/coremldata.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:eda47173407bfdadb8af3b6c18f9f2fa3146188ff42f3cb6ae7d9c6657e1fdc1
3
  size 646
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8af46b5ba390f4e1898446f30c318d19f114410e91bd4e2a30839ad3900e3f12
3
  size 646
Embedding.mlmodelc/metadata.json CHANGED
@@ -20,7 +20,7 @@
20
  ],
21
  "author" : "Fluid Inference",
22
  "specificationVersion" : 8,
23
- "storagePrecision" : "Float32",
24
  "license" : "CC-BY-4.0",
25
  "mlProgramOperationTypeHistogram" : {
26
  "Ios16.reduceL2Norm" : 1,
@@ -35,14 +35,15 @@
35
  "Ios17.gather" : 2,
36
  "Pad" : 2,
37
  "Ios17.log" : 1,
 
38
  "Ios17.sqrt" : 1,
39
  "Ios17.sub" : 5,
40
  "Ios17.conv" : 41,
41
  "Ios17.clip" : 3,
42
  "Ios16.relu" : 33,
43
- "Ios17.concat" : 1,
44
  "Ios17.pow" : 2,
45
  "Ios17.realDiv" : 4,
 
46
  "Ios17.mul" : 9
47
  },
48
  "computePrecision" : "Mixed (Float32, Int32)",
@@ -81,7 +82,7 @@
81
  "com.github.apple.coremltools.version" : "9.0b1",
82
  "com.github.apple.coremltools.source_dialect" : "TorchScript"
83
  },
84
- "generatedClassName" : "Embedding",
85
  "method" : "predict"
86
  }
87
  ]
 
20
  ],
21
  "author" : "Fluid Inference",
22
  "specificationVersion" : 8,
23
+ "storagePrecision" : "Mixed (Float32, Int8)",
24
  "license" : "CC-BY-4.0",
25
  "mlProgramOperationTypeHistogram" : {
26
  "Ios16.reduceL2Norm" : 1,
 
35
  "Ios17.gather" : 2,
36
  "Pad" : 2,
37
  "Ios17.log" : 1,
38
+ "Ios16.constexprAffineDequantize" : 40,
39
  "Ios17.sqrt" : 1,
40
  "Ios17.sub" : 5,
41
  "Ios17.conv" : 41,
42
  "Ios17.clip" : 3,
43
  "Ios16.relu" : 33,
 
44
  "Ios17.pow" : 2,
45
  "Ios17.realDiv" : 4,
46
+ "Ios17.concat" : 1,
47
  "Ios17.mul" : 9
48
  },
49
  "computePrecision" : "Mixed (Float32, Int32)",
 
82
  "com.github.apple.coremltools.version" : "9.0b1",
83
  "com.github.apple.coremltools.source_dialect" : "TorchScript"
84
  },
85
+ "generatedClassName" : "embedding_community_1_int8_per_channel",
86
  "method" : "predict"
87
  }
88
  ]
Embedding.mlmodelc/model.mil CHANGED
The diff for this file is too large to render. See raw diff
 
Embedding.mlmodelc/weights/weight.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ccbaea148fafa13a1741620e1cf41cb4027160da2a56c3b9a9acdd711252b057
3
- size 28303104
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ffc18432c23faf3d6b233c85e859876b3aaf0f1557cd4432bb24b8881eddecc
3
+ size 7124224
FBank.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e8bd3a8b82ac123580989f490e4d9245127c535857630b543311268accc3f0a
3
+ size 243
FBank.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57ac436bb0671cbb5527a339134d695f752eb77f7a18966b93c6835335595759
3
+ size 853
FBank.mlmodelc/metadata.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "shortDescription" : "pyannote community-1 FBANK frontend (10 s audio preprocessing to 80×998 features, batch 1-32, CPU preferred)",
4
+ "metadataOutputVersion" : "3.0",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float32",
10
+ "formattedType" : "MultiArray (Float32)",
11
+ "shortDescription" : "",
12
+ "shape" : "[]",
13
+ "name" : "fbank_features",
14
+ "type" : "MultiArray"
15
+ }
16
+ ],
17
+ "version" : "pyannote-speaker-diarization-community-1",
18
+ "modelParameters" : [
19
+
20
+ ],
21
+ "author" : "Fluid Inference",
22
+ "specificationVersion" : 8,
23
+ "storagePrecision" : "Float32",
24
+ "license" : "CC-BY-4.0",
25
+ "mlProgramOperationTypeHistogram" : {
26
+ "Ios17.mul" : 3,
27
+ "Ios17.transpose" : 2,
28
+ "Ios17.sub" : 3,
29
+ "Ios17.conv" : 4,
30
+ "Ios17.log" : 1,
31
+ "Ios17.sliceByIndex" : 1,
32
+ "Ios16.reduceMean" : 2,
33
+ "Ios17.add" : 2,
34
+ "Ios17.clip" : 1,
35
+ "Ios17.pow" : 2,
36
+ "Ios17.expandDims" : 4,
37
+ "Ios17.squeeze" : 4,
38
+ "Ios17.reshape" : 2,
39
+ "Pad" : 2
40
+ },
41
+ "computePrecision" : "Mixed (Float32, Int32)",
42
+ "stateSchema" : [
43
+
44
+ ],
45
+ "isUpdatable" : "0",
46
+ "availability" : {
47
+ "macOS" : "14.0",
48
+ "tvOS" : "17.0",
49
+ "visionOS" : "1.0",
50
+ "watchOS" : "10.0",
51
+ "iOS" : "17.0",
52
+ "macCatalyst" : "17.0"
53
+ },
54
+ "modelType" : {
55
+ "name" : "MLModelType_mlProgram"
56
+ },
57
+ "inputSchema" : [
58
+ {
59
+ "shortDescription" : "",
60
+ "dataType" : "Float32",
61
+ "hasShapeFlexibility" : "1",
62
+ "isOptional" : "0",
63
+ "shapeFlexibility" : "1 × 1 × 160000 | 2 × 1 × 160000 | 3 × 1 × 160000 | 4 × 1 × 160000 | 5 × 1 × 160000 | 6 × 1 × 160000 | 7 × 1 × 160000 | 8 × 1 × 160000 | 9 × 1 × 160000 | 10 × 1 × 160000 | 11 × 1 × 160000 | 12 × 1 × 160000 | 13 × 1 × 160000 | 14 × 1 × 160000 | 15 × 1 × 160000 | 16 × 1 × 160000 | 17 × 1 × 160000 | 18 × 1 × 160000 | 19 × 1 × 160000 | 20 × 1 × 160000 | 21 × 1 × 160000 | 22 × 1 × 160000 | 23 × 1 × 160000 | 24 × 1 × 160000 | 25 × 1 × 160000 | 26 × 1 × 160000 | 27 × 1 × 160000 | 28 × 1 × 160000 | 29 × 1 × 160000 | 30 × 1 × 160000 | 31 × 1 × 160000 | 32 × 1 × 160000",
64
+ "formattedType" : "MultiArray (Float32 1 × 1 × 160000)",
65
+ "type" : "MultiArray",
66
+ "shape" : "[1, 1, 160000]",
67
+ "name" : "audio",
68
+ "enumeratedShapes" : "[[1, 1, 160000], [2, 1, 160000], [3, 1, 160000], [4, 1, 160000], [5, 1, 160000], [6, 1, 160000], [7, 1, 160000], [8, 1, 160000], [9, 1, 160000], [10, 1, 160000], [11, 1, 160000], [12, 1, 160000], [13, 1, 160000], [14, 1, 160000], [15, 1, 160000], [16, 1, 160000], [17, 1, 160000], [18, 1, 160000], [19, 1, 160000], [20, 1, 160000], [21, 1, 160000], [22, 1, 160000], [23, 1, 160000], [24, 1, 160000], [25, 1, 160000], [26, 1, 160000], [27, 1, 160000], [28, 1, 160000], [29, 1, 160000], [30, 1, 160000], [31, 1, 160000], [32, 1, 160000]]"
69
+ }
70
+ ],
71
+ "userDefinedMetadata" : {
72
+ "com.github.apple.coremltools.conversion_date" : "2025-10-15",
73
+ "com.github.apple.coremltools.source" : "torch==2.8.0",
74
+ "com.github.apple.coremltools.version" : "9.0b1",
75
+ "com.github.apple.coremltools.source_dialect" : "TorchScript"
76
+ },
77
+ "generatedClassName" : "fbank_community_1",
78
+ "method" : "predict"
79
+ }
80
+ ]
FBank.mlmodelc/model.mil ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ program(1.0)
2
+ [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3500.14.1"}, {"coremlc-version", "3500.32.1"}, {"coremltools-component-torch", "2.8.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "9.0b1"}})]
3
+ {
4
+ func main<ios17>(tensor<fp32, [?, 1, 160000]> audio) [FlexibleShapeInformation = tuple<tuple<tensor<string, []>, dict<tensor<string, []>, tensor<int32, [?]>>>, tuple<tensor<string, []>, dict<tensor<string, []>, dict<tensor<string, []>, tensor<int32, [?]>>>>>((("DefaultShapes", {{"audio", [1, 1, 160000]}}), ("EnumeratedShapes", {{"audio_1_1_10_1_160000_", {{"audio", [10, 1, 160000]}}}, {"audio_1_1_11_1_160000_", {{"audio", [11, 1, 160000]}}}, {"audio_1_1_12_1_160000_", {{"audio", [12, 1, 160000]}}}, {"audio_1_1_13_1_160000_", {{"audio", [13, 1, 160000]}}}, {"audio_1_1_14_1_160000_", {{"audio", [14, 1, 160000]}}}, {"audio_1_1_15_1_160000_", {{"audio", [15, 1, 160000]}}}, {"audio_1_1_16_1_160000_", {{"audio", [16, 1, 160000]}}}, {"audio_1_1_17_1_160000_", {{"audio", [17, 1, 160000]}}}, {"audio_1_1_18_1_160000_", {{"audio", [18, 1, 160000]}}}, {"audio_1_1_19_1_160000_", {{"audio", [19, 1, 160000]}}}, {"audio_1_1_1_1_160000_", {{"audio", [1, 1, 160000]}}}, {"audio_1_1_20_1_160000_", {{"audio", [20, 1, 160000]}}}, {"audio_1_1_21_1_160000_", {{"audio", [21, 1, 160000]}}}, {"audio_1_1_22_1_160000_", {{"audio", [22, 1, 160000]}}}, {"audio_1_1_23_1_160000_", {{"audio", [23, 1, 160000]}}}, {"audio_1_1_24_1_160000_", {{"audio", [24, 1, 160000]}}}, {"audio_1_1_25_1_160000_", {{"audio", [25, 1, 160000]}}}, {"audio_1_1_26_1_160000_", {{"audio", [26, 1, 160000]}}}, {"audio_1_1_27_1_160000_", {{"audio", [27, 1, 160000]}}}, {"audio_1_1_28_1_160000_", {{"audio", [28, 1, 160000]}}}, {"audio_1_1_29_1_160000_", {{"audio", [29, 1, 160000]}}}, {"audio_1_1_2_1_160000_", {{"audio", [2, 1, 160000]}}}, {"audio_1_1_30_1_160000_", {{"audio", [30, 1, 160000]}}}, {"audio_1_1_31_1_160000_", {{"audio", [31, 1, 160000]}}}, {"audio_1_1_32_1_160000_", {{"audio", [32, 1, 160000]}}}, {"audio_1_1_3_1_160000_", {{"audio", [3, 1, 160000]}}}, {"audio_1_1_4_1_160000_", {{"audio", [4, 1, 160000]}}}, {"audio_1_1_5_1_160000_", {{"audio", [5, 1, 160000]}}}, {"audio_1_1_6_1_160000_", {{"audio", [6, 1, 160000]}}}, {"audio_1_1_7_1_160000_", {{"audio", [7, 1, 160000]}}}, {"audio_1_1_8_1_160000_", {{"audio", [8, 1, 160000]}}}, {"audio_1_1_9_1_160000_", {{"audio", [9, 1, 160000]}}}})))] {
5
+ tensor<fp32, [80, 257, 1]> _fbank_mel_weight = const()[name = tensor<string, []>("_fbank_mel_weight"), val = tensor<fp32, [80, 257, 1]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
6
+ tensor<fp32, [257, 1, 512]> _fbank_dft_imag_weight = const()[name = tensor<string, []>("_fbank_dft_imag_weight"), val = tensor<fp32, [257, 1, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(82368)))];
7
+ tensor<fp32, [257, 1, 512]> _fbank_dft_real_weight = const()[name = tensor<string, []>("_fbank_dft_real_weight"), val = tensor<fp32, [257, 1, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(608768)))];
8
+ tensor<fp32, [1, 400]> _fbank_window = const()[name = tensor<string, []>("_fbank_window"), val = tensor<fp32, [1, 400]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1135168)))];
9
+ tensor<fp32, []> _fbank_eps = const()[name = tensor<string, []>("_fbank_eps"), val = tensor<fp32, []>(0x1.0c6f7ap-20)];
10
+ tensor<fp32, [400, 1, 400]> _fbank_frame_kernel = const()[name = tensor<string, []>("_fbank_frame_kernel"), val = tensor<fp32, [400, 1, 400]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1136832)))];
11
+ tensor<fp32, []> var_3_promoted = const()[name = tensor<string, []>("op_3_promoted"), val = tensor<fp32, []>(0x1p+15)];
12
+ tensor<fp32, [?, 1, 160000]> waveforms_3 = mul(x = audio, y = var_3_promoted)[name = tensor<string, []>("waveforms_3")];
13
+ tensor<string, []> frames_1_pad_type_0 = const()[name = tensor<string, []>("frames_1_pad_type_0"), val = tensor<string, []>("valid")];
14
+ tensor<int32, [1]> frames_1_strides_0 = const()[name = tensor<string, []>("frames_1_strides_0"), val = tensor<int32, [1]>([160])];
15
+ tensor<int32, [2]> frames_1_pad_0 = const()[name = tensor<string, []>("frames_1_pad_0"), val = tensor<int32, [2]>([0, 0])];
16
+ tensor<int32, [1]> frames_1_dilations_0 = const()[name = tensor<string, []>("frames_1_dilations_0"), val = tensor<int32, [1]>([1])];
17
+ tensor<int32, []> frames_1_groups_0 = const()[name = tensor<string, []>("frames_1_groups_0"), val = tensor<int32, []>(1)];
18
+ tensor<fp32, [?, 400, 998]> frames_1 = conv(dilations = frames_1_dilations_0, groups = frames_1_groups_0, pad = frames_1_pad_0, pad_type = frames_1_pad_type_0, strides = frames_1_strides_0, weight = _fbank_frame_kernel, x = waveforms_3)[name = tensor<string, []>("frames_1")];
19
+ tensor<int32, [3]> frames_3_perm_0 = const()[name = tensor<string, []>("frames_3_perm_0"), val = tensor<int32, [3]>([0, 2, 1])];
20
+ tensor<int32, [2]> concat_0x = const()[name = tensor<string, []>("concat_0x"), val = tensor<int32, [2]>([-1, 400])];
21
+ tensor<fp32, [?, 998, 400]> frames_3 = transpose(perm = frames_3_perm_0, x = frames_1)[name = tensor<string, []>("transpose_1")];
22
+ tensor<fp32, [?, 400]> frames_5 = reshape(shape = concat_0x, x = frames_3)[name = tensor<string, []>("frames_5")];
23
+ tensor<int32, [1]> var_53_axes_0 = const()[name = tensor<string, []>("op_53_axes_0"), val = tensor<int32, [1]>([1])];
24
+ tensor<bool, []> var_53_keep_dims_0 = const()[name = tensor<string, []>("op_53_keep_dims_0"), val = tensor<bool, []>(true)];
25
+ tensor<fp32, [?, 1]> var_53 = reduce_mean(axes = var_53_axes_0, keep_dims = var_53_keep_dims_0, x = frames_5)[name = tensor<string, []>("op_53")];
26
+ tensor<fp32, [?, 400]> frames_7 = sub(x = frames_5, y = var_53)[name = tensor<string, []>("frames_7")];
27
+ tensor<int32, [1]> input_1_axes_0 = const()[name = tensor<string, []>("input_1_axes_0"), val = tensor<int32, [1]>([1])];
28
+ tensor<fp32, [?, 1, 400]> input_1 = expand_dims(axes = input_1_axes_0, x = frames_7)[name = tensor<string, []>("input_1")];
29
+ tensor<fp32, []> const_0 = const()[name = tensor<string, []>("const_0"), val = tensor<fp32, []>(0x0p+0)];
30
+ tensor<int32, [6]> var_57_pad_0 = const()[name = tensor<string, []>("op_57_pad_0"), val = tensor<int32, [6]>([0, 0, 0, 0, 1, 0])];
31
+ tensor<string, []> var_57_mode_0 = const()[name = tensor<string, []>("op_57_mode_0"), val = tensor<string, []>("replicate")];
32
+ tensor<fp32, [?, 1, 401]> var_57 = pad(constant_val = const_0, mode = var_57_mode_0, pad = var_57_pad_0, x = input_1)[name = tensor<string, []>("op_57")];
33
+ tensor<int32, [1]> padded_axes_0 = const()[name = tensor<string, []>("padded_axes_0"), val = tensor<int32, [1]>([1])];
34
+ tensor<fp32, [?, 401]> padded = squeeze(axes = padded_axes_0, x = var_57)[name = tensor<string, []>("padded")];
35
+ tensor<int32, [2]> var_60_begin_0 = const()[name = tensor<string, []>("op_60_begin_0"), val = tensor<int32, [2]>([0, 0])];
36
+ tensor<int32, [2]> var_60_end_0 = const()[name = tensor<string, []>("op_60_end_0"), val = tensor<int32, [2]>([0, 400])];
37
+ tensor<bool, [2]> var_60_end_mask_0 = const()[name = tensor<string, []>("op_60_end_mask_0"), val = tensor<bool, [2]>([true, false])];
38
+ tensor<fp32, [?, 400]> var_60 = slice_by_index(begin = var_60_begin_0, end = var_60_end_0, end_mask = var_60_end_mask_0, x = padded)[name = tensor<string, []>("op_60")];
39
+ tensor<fp32, []> var_61 = const()[name = tensor<string, []>("op_61"), val = tensor<fp32, []>(0x1.f0a3d8p-1)];
40
+ tensor<fp32, [?, 400]> var_62 = mul(x = var_60, y = var_61)[name = tensor<string, []>("op_62")];
41
+ tensor<fp32, [?, 400]> frames_9 = sub(x = frames_7, y = var_62)[name = tensor<string, []>("frames_9")];
42
+ tensor<fp32, [?, 400]> frames_11 = mul(x = frames_9, y = _fbank_window)[name = tensor<string, []>("frames_11")];
43
+ tensor<int32, [1]> input_axes_0 = const()[name = tensor<string, []>("input_axes_0"), val = tensor<int32, [1]>([1])];
44
+ tensor<fp32, [?, 1, 400]> input = expand_dims(axes = input_axes_0, x = frames_11)[name = tensor<string, []>("input")];
45
+ tensor<fp32, []> const_1 = const()[name = tensor<string, []>("const_1"), val = tensor<fp32, []>(0x0p+0)];
46
+ tensor<int32, [6]> var_67_pad_0 = const()[name = tensor<string, []>("op_67_pad_0"), val = tensor<int32, [6]>([0, 0, 0, 0, 0, 112])];
47
+ tensor<string, []> var_67_mode_0 = const()[name = tensor<string, []>("op_67_mode_0"), val = tensor<string, []>("constant")];
48
+ tensor<fp32, [?, 1, 512]> var_67 = pad(constant_val = const_1, mode = var_67_mode_0, pad = var_67_pad_0, x = input)[name = tensor<string, []>("op_67")];
49
+ tensor<string, []> var_74_pad_type_0 = const()[name = tensor<string, []>("op_74_pad_type_0"), val = tensor<string, []>("valid")];
50
+ tensor<int32, [1]> var_74_strides_0 = const()[name = tensor<string, []>("op_74_strides_0"), val = tensor<int32, [1]>([1])];
51
+ tensor<int32, [2]> var_74_pad_0 = const()[name = tensor<string, []>("op_74_pad_0"), val = tensor<int32, [2]>([0, 0])];
52
+ tensor<int32, [1]> var_74_dilations_0 = const()[name = tensor<string, []>("op_74_dilations_0"), val = tensor<int32, [1]>([1])];
53
+ tensor<int32, []> var_74_groups_0 = const()[name = tensor<string, []>("op_74_groups_0"), val = tensor<int32, []>(1)];
54
+ tensor<fp32, [?, 257, 1]> var_74 = conv(dilations = var_74_dilations_0, groups = var_74_groups_0, pad = var_74_pad_0, pad_type = var_74_pad_type_0, strides = var_74_strides_0, weight = _fbank_dft_real_weight, x = var_67)[name = tensor<string, []>("op_74")];
55
+ tensor<int32, [1]> real_axes_0 = const()[name = tensor<string, []>("real_axes_0"), val = tensor<int32, [1]>([-1])];
56
+ tensor<fp32, [?, 257]> real = squeeze(axes = real_axes_0, x = var_74)[name = tensor<string, []>("real")];
57
+ tensor<string, []> var_80_pad_type_0 = const()[name = tensor<string, []>("op_80_pad_type_0"), val = tensor<string, []>("valid")];
58
+ tensor<int32, [1]> var_80_strides_0 = const()[name = tensor<string, []>("op_80_strides_0"), val = tensor<int32, [1]>([1])];
59
+ tensor<int32, [2]> var_80_pad_0 = const()[name = tensor<string, []>("op_80_pad_0"), val = tensor<int32, [2]>([0, 0])];
60
+ tensor<int32, [1]> var_80_dilations_0 = const()[name = tensor<string, []>("op_80_dilations_0"), val = tensor<int32, [1]>([1])];
61
+ tensor<int32, []> var_80_groups_0 = const()[name = tensor<string, []>("op_80_groups_0"), val = tensor<int32, []>(1)];
62
+ tensor<fp32, [?, 257, 1]> var_80 = conv(dilations = var_80_dilations_0, groups = var_80_groups_0, pad = var_80_pad_0, pad_type = var_80_pad_type_0, strides = var_80_strides_0, weight = _fbank_dft_imag_weight, x = var_67)[name = tensor<string, []>("op_80")];
63
+ tensor<int32, [1]> imag_axes_0 = const()[name = tensor<string, []>("imag_axes_0"), val = tensor<int32, [1]>([-1])];
64
+ tensor<fp32, [?, 257]> imag = squeeze(axes = imag_axes_0, x = var_80)[name = tensor<string, []>("imag")];
65
+ tensor<fp32, []> var_22_promoted = const()[name = tensor<string, []>("op_22_promoted"), val = tensor<fp32, []>(0x1p+1)];
66
+ tensor<fp32, [?, 257]> var_82 = pow(x = real, y = var_22_promoted)[name = tensor<string, []>("op_82")];
67
+ tensor<fp32, []> var_22_promoted_1 = const()[name = tensor<string, []>("op_22_promoted_1"), val = tensor<fp32, []>(0x1p+1)];
68
+ tensor<fp32, [?, 257]> var_83 = pow(x = imag, y = var_22_promoted_1)[name = tensor<string, []>("op_83")];
69
+ tensor<fp32, [?, 257]> power = add(x = var_82, y = var_83)[name = tensor<string, []>("power")];
70
+ tensor<int32, [1]> var_85_axes_0 = const()[name = tensor<string, []>("op_85_axes_0"), val = tensor<int32, [1]>([-1])];
71
+ tensor<fp32, [?, 257, 1]> var_85 = expand_dims(axes = var_85_axes_0, x = power)[name = tensor<string, []>("op_85")];
72
+ tensor<string, []> var_90_pad_type_0 = const()[name = tensor<string, []>("op_90_pad_type_0"), val = tensor<string, []>("valid")];
73
+ tensor<int32, [1]> var_90_strides_0 = const()[name = tensor<string, []>("op_90_strides_0"), val = tensor<int32, [1]>([1])];
74
+ tensor<int32, [2]> var_90_pad_0 = const()[name = tensor<string, []>("op_90_pad_0"), val = tensor<int32, [2]>([0, 0])];
75
+ tensor<int32, [1]> var_90_dilations_0 = const()[name = tensor<string, []>("op_90_dilations_0"), val = tensor<int32, [1]>([1])];
76
+ tensor<int32, []> var_90_groups_0 = const()[name = tensor<string, []>("op_90_groups_0"), val = tensor<int32, []>(1)];
77
+ tensor<fp32, [?, 80, 1]> var_90 = conv(dilations = var_90_dilations_0, groups = var_90_groups_0, pad = var_90_pad_0, pad_type = var_90_pad_type_0, strides = var_90_strides_0, weight = _fbank_mel_weight, x = var_85)[name = tensor<string, []>("op_90")];
78
+ tensor<int32, [1]> mel_1_axes_0 = const()[name = tensor<string, []>("mel_1_axes_0"), val = tensor<int32, [1]>([-1])];
79
+ tensor<fp32, [?, 80]> mel_1 = squeeze(axes = mel_1_axes_0, x = var_90)[name = tensor<string, []>("mel_1")];
80
+ tensor<fp32, [?, 80]> mel_3 = add(x = mel_1, y = _fbank_eps)[name = tensor<string, []>("mel_3")];
81
+ tensor<fp32, []> const_2 = const()[name = tensor<string, []>("const_2"), val = tensor<fp32, []>(0x1.fffffep+127)];
82
+ tensor<fp32, [?, 80]> clip_0 = clip(alpha = _fbank_eps, beta = const_2, x = mel_3)[name = tensor<string, []>("clip_0")];
83
+ tensor<fp32, []> mel_epsilon_0 = const()[name = tensor<string, []>("mel_epsilon_0"), val = tensor<fp32, []>(0x1p-149)];
84
+ tensor<fp32, [?, 80]> mel = log(epsilon = mel_epsilon_0, x = clip_0)[name = tensor<string, []>("mel")];
85
+ tensor<int32, [3]> concat_1x = const()[name = tensor<string, []>("concat_1x"), val = tensor<int32, [3]>([-1, 998, 80])];
86
+ tensor<fp32, [?, 998, 80]> var_96 = reshape(shape = concat_1x, x = mel)[name = tensor<string, []>("op_96")];
87
+ tensor<int32, [1]> centered_axes_0 = const()[name = tensor<string, []>("centered_axes_0"), val = tensor<int32, [1]>([1])];
88
+ tensor<bool, []> centered_keep_dims_0 = const()[name = tensor<string, []>("centered_keep_dims_0"), val = tensor<bool, []>(true)];
89
+ tensor<fp32, [?, 1, 80]> centered = reduce_mean(axes = centered_axes_0, keep_dims = centered_keep_dims_0, x = var_96)[name = tensor<string, []>("centered")];
90
+ tensor<fp32, [?, 998, 80]> features = sub(x = var_96, y = centered)[name = tensor<string, []>("features")];
91
+ tensor<int32, [3]> var_115 = const()[name = tensor<string, []>("op_115"), val = tensor<int32, [3]>([0, 2, 1])];
92
+ tensor<int32, [1]> var_118_axes_0 = const()[name = tensor<string, []>("op_118_axes_0"), val = tensor<int32, [1]>([1])];
93
+ tensor<fp32, [?, 80, 998]> var_116 = transpose(perm = var_115, x = features)[name = tensor<string, []>("transpose_0")];
94
+ tensor<fp32, [?, 1, 80, 998]> fbank_features = expand_dims(axes = var_118_axes_0, x = var_116)[name = tensor<string, []>("op_118")];
95
+ } -> (fbank_features);
96
+ }
FBank.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e83fdd3ea78064b078069e4d9141603c61c47a27fd19e7e3142ff7476f8db36
3
+ size 1776896
Segmentation.mlmodelc/analytics/coremldata.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:64265f8e7ad41a5f68d630c15288c2499cca5892ad49e20096819cdeac004cdb
3
  size 243
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:518731a13df50d0924c86c919d8b587280dfc40b2f4cd7b7ef3aac75a037305e
3
  size 243
Segmentation.mlmodelc/coremldata.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5b18b494dc985ac5dabaad0c8ed283044439e4d045dc16eaf5b2aa4bfae4555d
3
  size 812
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59adec00fd697d87742db7052380da0ac91bde91acc37ac48a843f0ff07517bb
3
  size 812
Segmentation.mlmodelc/metadata.json CHANGED
@@ -20,7 +20,7 @@
20
  ],
21
  "author" : "Fluid Inference",
22
  "specificationVersion" : 8,
23
- "storagePrecision" : "Float32",
24
  "license" : "CC-BY-4.0",
25
  "mlProgramOperationTypeHistogram" : {
26
  "Ios17.linear" : 3,
@@ -31,16 +31,17 @@
31
  "Ios17.leakyRelu" : 5,
32
  "Ios17.gather" : 1,
33
  "Ios17.concat" : 9,
34
- "Fill" : 1,
35
- "Ios17.abs" : 1,
36
  "Ios16.maxPool" : 3,
 
 
37
  "Ios17.lstm" : 4,
38
  "Ios16.softmax" : 1,
39
  "Ios17.instanceNorm" : 4,
 
40
  "Split" : 10,
41
  "Ios17.squeeze" : 8
42
  },
43
- "computePrecision" : "Mixed (Float32, Int32)",
44
  "stateSchema" : [
45
 
46
  ],
@@ -71,7 +72,7 @@
71
  }
72
  ],
73
  "userDefinedMetadata" : {
74
- "com.github.apple.coremltools.conversion_date" : "2025-10-13",
75
  "com.github.apple.coremltools.source" : "torch==2.8.0",
76
  "com.github.apple.coremltools.version" : "9.0b1",
77
  "com.github.apple.coremltools.source_dialect" : "TorchScript"
 
20
  ],
21
  "author" : "Fluid Inference",
22
  "specificationVersion" : 8,
23
+ "storagePrecision" : "Float16",
24
  "license" : "CC-BY-4.0",
25
  "mlProgramOperationTypeHistogram" : {
26
  "Ios17.linear" : 3,
 
31
  "Ios17.leakyRelu" : 5,
32
  "Ios17.gather" : 1,
33
  "Ios17.concat" : 9,
 
 
34
  "Ios16.maxPool" : 3,
35
+ "Ios17.abs" : 1,
36
+ "Fill" : 1,
37
  "Ios17.lstm" : 4,
38
  "Ios16.softmax" : 1,
39
  "Ios17.instanceNorm" : 4,
40
+ "Ios17.cast" : 4,
41
  "Split" : 10,
42
  "Ios17.squeeze" : 8
43
  },
44
+ "computePrecision" : "Mixed (Float16, Float32, Int16, Int32, UInt16)",
45
  "stateSchema" : [
46
 
47
  ],
 
72
  }
73
  ],
74
  "userDefinedMetadata" : {
75
+ "com.github.apple.coremltools.conversion_date" : "2025-10-15",
76
  "com.github.apple.coremltools.source" : "torch==2.8.0",
77
  "com.github.apple.coremltools.version" : "9.0b1",
78
  "com.github.apple.coremltools.source_dialect" : "TorchScript"
Segmentation.mlmodelc/model.mil CHANGED
@@ -2,217 +2,225 @@ program(1.0)
2
  [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3500.14.1"}, {"coremlc-version", "3500.32.1"}, {"coremltools-component-torch", "2.8.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "9.0b1"}})]
3
  {
4
  func main<ios17>(tensor<fp32, [?, 1, 160000]> audio) [FlexibleShapeInformation = tuple<tuple<tensor<string, []>, dict<tensor<string, []>, tensor<int32, [?]>>>, tuple<tensor<string, []>, dict<tensor<string, []>, dict<tensor<string, []>, tensor<int32, [?]>>>>>((("DefaultShapes", {{"audio", [32, 1, 160000]}}), ("EnumeratedShapes", {{"audio_1_1_10_1_160000_", {{"audio", [10, 1, 160000]}}}, {"audio_1_1_11_1_160000_", {{"audio", [11, 1, 160000]}}}, {"audio_1_1_12_1_160000_", {{"audio", [12, 1, 160000]}}}, {"audio_1_1_13_1_160000_", {{"audio", [13, 1, 160000]}}}, {"audio_1_1_14_1_160000_", {{"audio", [14, 1, 160000]}}}, {"audio_1_1_15_1_160000_", {{"audio", [15, 1, 160000]}}}, {"audio_1_1_16_1_160000_", {{"audio", [16, 1, 160000]}}}, {"audio_1_1_17_1_160000_", {{"audio", [17, 1, 160000]}}}, {"audio_1_1_18_1_160000_", {{"audio", [18, 1, 160000]}}}, {"audio_1_1_19_1_160000_", {{"audio", [19, 1, 160000]}}}, {"audio_1_1_1_1_160000_", {{"audio", [1, 1, 160000]}}}, {"audio_1_1_20_1_160000_", {{"audio", [20, 1, 160000]}}}, {"audio_1_1_21_1_160000_", {{"audio", [21, 1, 160000]}}}, {"audio_1_1_22_1_160000_", {{"audio", [22, 1, 160000]}}}, {"audio_1_1_23_1_160000_", {{"audio", [23, 1, 160000]}}}, {"audio_1_1_24_1_160000_", {{"audio", [24, 1, 160000]}}}, {"audio_1_1_25_1_160000_", {{"audio", [25, 1, 160000]}}}, {"audio_1_1_26_1_160000_", {{"audio", [26, 1, 160000]}}}, {"audio_1_1_27_1_160000_", {{"audio", [27, 1, 160000]}}}, {"audio_1_1_28_1_160000_", {{"audio", [28, 1, 160000]}}}, {"audio_1_1_29_1_160000_", {{"audio", [29, 1, 160000]}}}, {"audio_1_1_2_1_160000_", {{"audio", [2, 1, 160000]}}}, {"audio_1_1_30_1_160000_", {{"audio", [30, 1, 160000]}}}, {"audio_1_1_31_1_160000_", {{"audio", [31, 1, 160000]}}}, {"audio_1_1_32_1_160000_", {{"audio", [32, 1, 160000]}}}, {"audio_1_1_3_1_160000_", {{"audio", [3, 1, 160000]}}}, {"audio_1_1_4_1_160000_", {{"audio", [4, 1, 160000]}}}, {"audio_1_1_5_1_160000_", {{"audio", [5, 1, 160000]}}}, {"audio_1_1_6_1_160000_", {{"audio", [6, 1, 160000]}}}, {"audio_1_1_7_1_160000_", {{"audio", [7, 1, 160000]}}}, {"audio_1_1_8_1_160000_", {{"audio", [8, 1, 160000]}}}, {"audio_1_1_9_1_160000_", {{"audio", [9, 1, 160000]}}}})))] {
5
- tensor<fp32, [1]> sincnet_wav_norm1d_bias = const()[name = tensor<string, []>("sincnet_wav_norm1d_bias"), val = tensor<fp32, [1]>([0x1.73505ep-5])];
6
- tensor<fp32, [1]> sincnet_wav_norm1d_weight = const()[name = tensor<string, []>("sincnet_wav_norm1d_weight"), val = tensor<fp32, [1]>([0x1.43f862p-7])];
7
- tensor<fp32, [80]> sincnet_norm1d_0_bias = const()[name = tensor<string, []>("sincnet_norm1d_0_bias"), val = tensor<fp32, [80]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
8
- tensor<fp32, [80]> sincnet_norm1d_0_weight = const()[name = tensor<string, []>("sincnet_norm1d_0_weight"), val = tensor<fp32, [80]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(448)))];
9
- tensor<fp32, [60]> sincnet_conv1d_1_bias = const()[name = tensor<string, []>("sincnet_conv1d_1_bias"), val = tensor<fp32, [60]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(832)))];
10
- tensor<fp32, [60, 80, 5]> sincnet_conv1d_1_weight = const()[name = tensor<string, []>("sincnet_conv1d_1_weight"), val = tensor<fp32, [60, 80, 5]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1152)))];
11
- tensor<fp32, [60]> sincnet_norm1d_1_bias = const()[name = tensor<string, []>("sincnet_norm1d_1_bias"), val = tensor<fp32, [60]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97216)))];
12
- tensor<fp32, [60]> sincnet_norm1d_1_weight = const()[name = tensor<string, []>("sincnet_norm1d_1_weight"), val = tensor<fp32, [60]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97536)))];
13
- tensor<fp32, [60]> sincnet_conv1d_2_bias = const()[name = tensor<string, []>("sincnet_conv1d_2_bias"), val = tensor<fp32, [60]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(97856)))];
14
- tensor<fp32, [60, 60, 5]> sincnet_conv1d_2_weight = const()[name = tensor<string, []>("sincnet_conv1d_2_weight"), val = tensor<fp32, [60, 60, 5]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(98176)))];
15
- tensor<fp32, [60]> sincnet_norm1d_2_bias = const()[name = tensor<string, []>("sincnet_norm1d_2_bias"), val = tensor<fp32, [60]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(170240)))];
16
- tensor<fp32, [60]> sincnet_norm1d_2_weight = const()[name = tensor<string, []>("sincnet_norm1d_2_weight"), val = tensor<fp32, [60]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(170560)))];
17
- tensor<fp32, [128]> linear_0_bias = const()[name = tensor<string, []>("linear_0_bias"), val = tensor<fp32, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(170880)))];
18
- tensor<fp32, [128, 256]> linear_0_weight = const()[name = tensor<string, []>("linear_0_weight"), val = tensor<fp32, [128, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(171456)))];
19
- tensor<fp32, [128]> linear_1_bias = const()[name = tensor<string, []>("linear_1_bias"), val = tensor<fp32, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(302592)))];
20
- tensor<fp32, [128, 128]> linear_1_weight = const()[name = tensor<string, []>("linear_1_weight"), val = tensor<fp32, [128, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(303168)))];
21
- tensor<fp32, [7]> classifier_bias = const()[name = tensor<string, []>("classifier_bias"), val = tensor<fp32, [7]>([-0x1.00e888p+0, 0x1.67cb52p-2, 0x1.3d87fp-1, 0x1.c8aa8p-2, -0x1.445f5ep-2, -0x1.591274p-1, -0x1.8fb70ep-2])];
22
- tensor<fp32, [7, 128]> classifier_weight = const()[name = tensor<string, []>("classifier_weight"), val = tensor<fp32, [7, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(368768)))];
23
  tensor<fp32, []> var_9 = const()[name = tensor<string, []>("op_9"), val = tensor<fp32, []>(0x1.47ae14p-7)];
24
- tensor<fp32, []> var_24 = const()[name = tensor<string, []>("op_24"), val = tensor<fp32, []>(0x1.4f8b58p-17)];
25
- tensor<fp32, [?, 1, 160000]> waveform = instance_norm(beta = sincnet_wav_norm1d_bias, epsilon = var_24, gamma = sincnet_wav_norm1d_weight, x = audio)[name = tensor<string, []>("waveform")];
26
- tensor<fp32, [80, 1, 251]> filters = const()[name = tensor<string, []>("filters"), val = tensor<fp32, [80, 1, 251]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(372416)))];
 
 
 
27
  tensor<string, []> outputs_pad_type_0 = const()[name = tensor<string, []>("outputs_pad_type_0"), val = tensor<string, []>("valid")];
28
  tensor<int32, [1]> outputs_strides_0 = const()[name = tensor<string, []>("outputs_strides_0"), val = tensor<int32, [1]>([10])];
29
  tensor<int32, [2]> outputs_pad_0 = const()[name = tensor<string, []>("outputs_pad_0"), val = tensor<int32, [2]>([0, 0])];
30
  tensor<int32, [1]> outputs_dilations_0 = const()[name = tensor<string, []>("outputs_dilations_0"), val = tensor<int32, [1]>([1])];
31
  tensor<int32, []> outputs_groups_0 = const()[name = tensor<string, []>("outputs_groups_0"), val = tensor<int32, []>(1)];
32
- tensor<fp32, [?, 80, 15975]> outputs = conv(dilations = outputs_dilations_0, groups = outputs_groups_0, pad = outputs_pad_0, pad_type = outputs_pad_type_0, strides = outputs_strides_0, weight = filters, x = waveform)[name = tensor<string, []>("outputs")];
33
- tensor<fp32, [?, 80, 15975]> input_1 = abs(x = outputs)[name = tensor<string, []>("input_1")];
 
34
  tensor<int32, [1]> var_119 = const()[name = tensor<string, []>("op_119"), val = tensor<int32, [1]>([3])];
35
  tensor<int32, [1]> var_120 = const()[name = tensor<string, []>("op_120"), val = tensor<int32, [1]>([3])];
36
  tensor<string, []> input_3_pad_type_0 = const()[name = tensor<string, []>("input_3_pad_type_0"), val = tensor<string, []>("custom")];
37
  tensor<int32, [2]> input_3_pad_0 = const()[name = tensor<string, []>("input_3_pad_0"), val = tensor<int32, [2]>([0, 0])];
38
  tensor<bool, []> input_3_ceil_mode_0 = const()[name = tensor<string, []>("input_3_ceil_mode_0"), val = tensor<bool, []>(false)];
39
- tensor<fp32, [?, 80, 5325]> input_3 = max_pool(ceil_mode = input_3_ceil_mode_0, kernel_sizes = var_119, pad = input_3_pad_0, pad_type = input_3_pad_type_0, strides = var_120, x = input_1)[name = tensor<string, []>("input_3")];
40
- tensor<fp32, [?, 80, 5325]> input_5 = instance_norm(beta = sincnet_norm1d_0_bias, epsilon = var_24, gamma = sincnet_norm1d_0_weight, x = input_3)[name = tensor<string, []>("input_5")];
41
- tensor<fp32, [?, 80, 5325]> input_7 = leaky_relu(alpha = var_9, x = input_5)[name = tensor<string, []>("input_7")];
 
 
42
  tensor<string, []> input_9_pad_type_0 = const()[name = tensor<string, []>("input_9_pad_type_0"), val = tensor<string, []>("valid")];
43
  tensor<int32, [1]> input_9_strides_0 = const()[name = tensor<string, []>("input_9_strides_0"), val = tensor<int32, [1]>([1])];
44
  tensor<int32, [2]> input_9_pad_0 = const()[name = tensor<string, []>("input_9_pad_0"), val = tensor<int32, [2]>([0, 0])];
45
  tensor<int32, [1]> input_9_dilations_0 = const()[name = tensor<string, []>("input_9_dilations_0"), val = tensor<int32, [1]>([1])];
46
  tensor<int32, []> input_9_groups_0 = const()[name = tensor<string, []>("input_9_groups_0"), val = tensor<int32, []>(1)];
47
- tensor<fp32, [?, 60, 5321]> input_9 = conv(bias = sincnet_conv1d_1_bias, dilations = input_9_dilations_0, groups = input_9_groups_0, pad = input_9_pad_0, pad_type = input_9_pad_type_0, strides = input_9_strides_0, weight = sincnet_conv1d_1_weight, x = input_7)[name = tensor<string, []>("input_9")];
 
 
48
  tensor<int32, [1]> var_135 = const()[name = tensor<string, []>("op_135"), val = tensor<int32, [1]>([3])];
49
  tensor<int32, [1]> var_136 = const()[name = tensor<string, []>("op_136"), val = tensor<int32, [1]>([3])];
50
  tensor<string, []> input_11_pad_type_0 = const()[name = tensor<string, []>("input_11_pad_type_0"), val = tensor<string, []>("custom")];
51
  tensor<int32, [2]> input_11_pad_0 = const()[name = tensor<string, []>("input_11_pad_0"), val = tensor<int32, [2]>([0, 0])];
52
  tensor<bool, []> input_11_ceil_mode_0 = const()[name = tensor<string, []>("input_11_ceil_mode_0"), val = tensor<bool, []>(false)];
53
- tensor<fp32, [?, 60, 1773]> input_11 = max_pool(ceil_mode = input_11_ceil_mode_0, kernel_sizes = var_135, pad = input_11_pad_0, pad_type = input_11_pad_type_0, strides = var_136, x = input_9)[name = tensor<string, []>("input_11")];
54
- tensor<fp32, [?, 60, 1773]> input_13 = instance_norm(beta = sincnet_norm1d_1_bias, epsilon = var_24, gamma = sincnet_norm1d_1_weight, x = input_11)[name = tensor<string, []>("input_13")];
55
- tensor<fp32, [?, 60, 1773]> input_15 = leaky_relu(alpha = var_9, x = input_13)[name = tensor<string, []>("input_15")];
 
 
56
  tensor<string, []> input_17_pad_type_0 = const()[name = tensor<string, []>("input_17_pad_type_0"), val = tensor<string, []>("valid")];
57
  tensor<int32, [1]> input_17_strides_0 = const()[name = tensor<string, []>("input_17_strides_0"), val = tensor<int32, [1]>([1])];
58
  tensor<int32, [2]> input_17_pad_0 = const()[name = tensor<string, []>("input_17_pad_0"), val = tensor<int32, [2]>([0, 0])];
59
  tensor<int32, [1]> input_17_dilations_0 = const()[name = tensor<string, []>("input_17_dilations_0"), val = tensor<int32, [1]>([1])];
60
  tensor<int32, []> input_17_groups_0 = const()[name = tensor<string, []>("input_17_groups_0"), val = tensor<int32, []>(1)];
61
- tensor<fp32, [?, 60, 1769]> input_17 = conv(bias = sincnet_conv1d_2_bias, dilations = input_17_dilations_0, groups = input_17_groups_0, pad = input_17_pad_0, pad_type = input_17_pad_type_0, strides = input_17_strides_0, weight = sincnet_conv1d_2_weight, x = input_15)[name = tensor<string, []>("input_17")];
 
 
62
  tensor<int32, [1]> var_151 = const()[name = tensor<string, []>("op_151"), val = tensor<int32, [1]>([3])];
63
  tensor<int32, [1]> var_152 = const()[name = tensor<string, []>("op_152"), val = tensor<int32, [1]>([3])];
64
  tensor<string, []> input_19_pad_type_0 = const()[name = tensor<string, []>("input_19_pad_type_0"), val = tensor<string, []>("custom")];
65
  tensor<int32, [2]> input_19_pad_0 = const()[name = tensor<string, []>("input_19_pad_0"), val = tensor<int32, [2]>([0, 0])];
66
  tensor<bool, []> input_19_ceil_mode_0 = const()[name = tensor<string, []>("input_19_ceil_mode_0"), val = tensor<bool, []>(false)];
67
- tensor<fp32, [?, 60, 589]> input_19 = max_pool(ceil_mode = input_19_ceil_mode_0, kernel_sizes = var_151, pad = input_19_pad_0, pad_type = input_19_pad_type_0, strides = var_152, x = input_17)[name = tensor<string, []>("input_19")];
68
- tensor<fp32, [?, 60, 589]> input_21 = instance_norm(beta = sincnet_norm1d_2_bias, epsilon = var_24, gamma = sincnet_norm1d_2_weight, x = input_19)[name = tensor<string, []>("input_21")];
69
- tensor<fp32, [?, 60, 589]> x = leaky_relu(alpha = var_9, x = input_21)[name = tensor<string, []>("x")];
 
 
70
  tensor<int32, [3]> var_163 = const()[name = tensor<string, []>("op_163"), val = tensor<int32, [3]>([0, 2, 1])];
71
  tensor<int32, []> var_172 = const()[name = tensor<string, []>("op_172"), val = tensor<int32, []>(128)];
72
  tensor<int32, []> var_173 = const()[name = tensor<string, []>("op_173"), val = tensor<int32, []>(8)];
73
- tensor<fp32, [?, 589, 60]> input_23 = transpose(perm = var_163, x = x)[name = tensor<string, []>("transpose_6")];
74
- tensor<int32, [3]> var_207_shape = shape(x = input_23)[name = tensor<string, []>("op_207_shape")];
 
75
  tensor<int32, []> gather_0_batch_dims_0 = const()[name = tensor<string, []>("gather_0_batch_dims_0"), val = tensor<int32, []>(0)];
76
  tensor<bool, []> gather_0_validate_indices_0 = const()[name = tensor<string, []>("gather_0_validate_indices_0"), val = tensor<bool, []>(false)];
77
- tensor<int32, []> select_0 = const()[name = tensor<string, []>("select_0"), val = tensor<int32, []>(0)];
78
- tensor<int32, []> gather_0_axis_1 = const()[name = tensor<string, []>("gather_0_axis_1"), val = tensor<int32, []>(0)];
79
- tensor<int32, []> gather_0 = gather(axis = gather_0_axis_1, batch_dims = gather_0_batch_dims_0, indices = select_0, validate_indices = gather_0_validate_indices_0, x = var_207_shape)[name = tensor<string, []>("gather_0")];
 
 
80
  tensor<int32, []> concat_0_axis_0 = const()[name = tensor<string, []>("concat_0_axis_0"), val = tensor<int32, []>(0)];
81
  tensor<bool, []> concat_0_interleave_0 = const()[name = tensor<string, []>("concat_0_interleave_0"), val = tensor<bool, []>(false)];
82
- tensor<int32, [3]> concat_0 = concat(axis = concat_0_axis_0, interleave = concat_0_interleave_0, values = (var_173, gather_0, var_172))[name = tensor<string, []>("concat_0")];
83
- tensor<fp32, []> hx_1_value_0 = const()[name = tensor<string, []>("hx_1_value_0"), val = tensor<fp32, []>(0x0p+0)];
84
- tensor<fp32, [8, ?, 128]> hx_1 = fill(shape = concat_0, value = hx_1_value_0)[name = tensor<string, []>("hx_1")];
 
85
  tensor<int32, [3]> input_23_batch_first_transpose_perm_0 = const()[name = tensor<string, []>("input_23_batch_first_transpose_perm_0"), val = tensor<int32, [3]>([1, 0, 2])];
86
  tensor<int32, []> split_0_num_splits_0 = const()[name = tensor<string, []>("split_0_num_splits_0"), val = tensor<int32, []>(4)];
87
  tensor<int32, []> split_0_axis_0 = const()[name = tensor<string, []>("split_0_axis_0"), val = tensor<int32, []>(0)];
88
- tensor<fp32, [2, ?, 128]> split_0_0, tensor<fp32, [2, ?, 128]> split_0_1, tensor<fp32, [2, ?, 128]> split_0_2, tensor<fp32, [2, ?, 128]> split_0_3 = split(axis = split_0_axis_0, num_splits = split_0_num_splits_0, x = hx_1)[name = tensor<string, []>("split_0")];
89
  tensor<int32, []> split_1_num_splits_0 = const()[name = tensor<string, []>("split_1_num_splits_0"), val = tensor<int32, []>(4)];
90
  tensor<int32, []> split_1_axis_0 = const()[name = tensor<string, []>("split_1_axis_0"), val = tensor<int32, []>(0)];
91
- tensor<fp32, [2, ?, 128]> split_1_0, tensor<fp32, [2, ?, 128]> split_1_1, tensor<fp32, [2, ?, 128]> split_1_2, tensor<fp32, [2, ?, 128]> split_1_3 = split(axis = split_1_axis_0, num_splits = split_1_num_splits_0, x = hx_1)[name = tensor<string, []>("split_1")];
92
- tensor<fp32, [512]> add_0 = const()[name = tensor<string, []>("add_0"), val = tensor<fp32, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(452800)))];
93
- tensor<fp32, [512]> add_1 = const()[name = tensor<string, []>("add_1"), val = tensor<fp32, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(454912)))];
94
- tensor<fp32, [512, 60]> concat_6 = const()[name = tensor<string, []>("concat_6"), val = tensor<fp32, [512, 60]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(457024)))];
95
- tensor<fp32, [512, 128]> concat_7 = const()[name = tensor<string, []>("concat_7"), val = tensor<fp32, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(579968)))];
96
- tensor<fp32, [512, 60]> concat_8 = const()[name = tensor<string, []>("concat_8"), val = tensor<fp32, [512, 60]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(842176)))];
97
- tensor<fp32, [512, 128]> concat_9 = const()[name = tensor<string, []>("concat_9"), val = tensor<fp32, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(965120)))];
98
  tensor<int32, [2]> split_10_split_sizes_0 = const()[name = tensor<string, []>("split_10_split_sizes_0"), val = tensor<int32, [2]>([1, 1])];
99
  tensor<int32, []> split_10_axis_0 = const()[name = tensor<string, []>("split_10_axis_0"), val = tensor<int32, []>(0)];
100
- tensor<fp32, [1, ?, 128]> split_10_0, tensor<fp32, [1, ?, 128]> split_10_1 = split(axis = split_10_axis_0, split_sizes = split_10_split_sizes_0, x = split_0_0)[name = tensor<string, []>("split_10")];
101
  tensor<int32, []> concat_10_axis_0 = const()[name = tensor<string, []>("concat_10_axis_0"), val = tensor<int32, []>(2)];
102
  tensor<bool, []> concat_10_interleave_0 = const()[name = tensor<string, []>("concat_10_interleave_0"), val = tensor<bool, []>(false)];
103
- tensor<fp32, [1, ?, 256]> concat_10 = concat(axis = concat_10_axis_0, interleave = concat_10_interleave_0, values = (split_10_0, split_10_1))[name = tensor<string, []>("concat_10")];
104
  tensor<int32, [1]> input_25_lstm_layer_0_lstm_h0_reshaped_axes_0 = const()[name = tensor<string, []>("input_25_lstm_layer_0_lstm_h0_reshaped_axes_0"), val = tensor<int32, [1]>([0])];
105
- tensor<fp32, [?, 256]> input_25_lstm_layer_0_lstm_h0_reshaped = squeeze(axes = input_25_lstm_layer_0_lstm_h0_reshaped_axes_0, x = concat_10)[name = tensor<string, []>("input_25_lstm_layer_0_lstm_h0_reshaped")];
106
  tensor<int32, [2]> split_11_split_sizes_0 = const()[name = tensor<string, []>("split_11_split_sizes_0"), val = tensor<int32, [2]>([1, 1])];
107
  tensor<int32, []> split_11_axis_0 = const()[name = tensor<string, []>("split_11_axis_0"), val = tensor<int32, []>(0)];
108
- tensor<fp32, [1, ?, 128]> split_11_0, tensor<fp32, [1, ?, 128]> split_11_1 = split(axis = split_11_axis_0, split_sizes = split_11_split_sizes_0, x = split_1_0)[name = tensor<string, []>("split_11")];
109
  tensor<int32, []> concat_11_axis_0 = const()[name = tensor<string, []>("concat_11_axis_0"), val = tensor<int32, []>(2)];
110
  tensor<bool, []> concat_11_interleave_0 = const()[name = tensor<string, []>("concat_11_interleave_0"), val = tensor<bool, []>(false)];
111
- tensor<fp32, [1, ?, 256]> concat_11 = concat(axis = concat_11_axis_0, interleave = concat_11_interleave_0, values = (split_11_0, split_11_1))[name = tensor<string, []>("concat_11")];
112
  tensor<int32, [1]> input_25_lstm_layer_0_lstm_c0_reshaped_axes_0 = const()[name = tensor<string, []>("input_25_lstm_layer_0_lstm_c0_reshaped_axes_0"), val = tensor<int32, [1]>([0])];
113
- tensor<fp32, [?, 256]> input_25_lstm_layer_0_lstm_c0_reshaped = squeeze(axes = input_25_lstm_layer_0_lstm_c0_reshaped_axes_0, x = concat_11)[name = tensor<string, []>("input_25_lstm_layer_0_lstm_c0_reshaped")];
114
  tensor<string, []> input_25_lstm_layer_0_direction_0 = const()[name = tensor<string, []>("input_25_lstm_layer_0_direction_0"), val = tensor<string, []>("bidirectional")];
115
  tensor<bool, []> input_25_lstm_layer_0_output_sequence_0 = const()[name = tensor<string, []>("input_25_lstm_layer_0_output_sequence_0"), val = tensor<bool, []>(true)];
116
  tensor<string, []> input_25_lstm_layer_0_recurrent_activation_0 = const()[name = tensor<string, []>("input_25_lstm_layer_0_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
117
  tensor<string, []> input_25_lstm_layer_0_cell_activation_0 = const()[name = tensor<string, []>("input_25_lstm_layer_0_cell_activation_0"), val = tensor<string, []>("tanh")];
118
  tensor<string, []> input_25_lstm_layer_0_activation_0 = const()[name = tensor<string, []>("input_25_lstm_layer_0_activation_0"), val = tensor<string, []>("tanh")];
119
- tensor<fp32, [589, ?, 60]> input_23_batch_first_transpose = transpose(perm = input_23_batch_first_transpose_perm_0, x = input_23)[name = tensor<string, []>("transpose_5")];
120
- tensor<fp32, [589, ?, 256]> input_25_lstm_layer_0_0, tensor<fp32, [?, 256]> input_25_lstm_layer_0_1, tensor<fp32, [?, 256]> input_25_lstm_layer_0_2 = lstm(activation = input_25_lstm_layer_0_activation_0, bias = add_0, bias_back = add_1, cell_activation = input_25_lstm_layer_0_cell_activation_0, direction = input_25_lstm_layer_0_direction_0, initial_c = input_25_lstm_layer_0_lstm_c0_reshaped, initial_h = input_25_lstm_layer_0_lstm_h0_reshaped, output_sequence = input_25_lstm_layer_0_output_sequence_0, recurrent_activation = input_25_lstm_layer_0_recurrent_activation_0, weight_hh = concat_7, weight_hh_back = concat_9, weight_ih = concat_6, weight_ih_back = concat_8, x = input_23_batch_first_transpose)[name = tensor<string, []>("input_25_lstm_layer_0")];
121
- tensor<fp32, [512]> add_2 = const()[name = tensor<string, []>("add_2"), val = tensor<fp32, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1227328)))];
122
- tensor<fp32, [512]> add_3 = const()[name = tensor<string, []>("add_3"), val = tensor<fp32, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1229440)))];
123
- tensor<fp32, [512, 256]> concat_16 = const()[name = tensor<string, []>("concat_16"), val = tensor<fp32, [512, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1231552)))];
124
- tensor<fp32, [512, 128]> concat_17 = const()[name = tensor<string, []>("concat_17"), val = tensor<fp32, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1755904)))];
125
- tensor<fp32, [512, 256]> concat_18 = const()[name = tensor<string, []>("concat_18"), val = tensor<fp32, [512, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2018112)))];
126
- tensor<fp32, [512, 128]> concat_19 = const()[name = tensor<string, []>("concat_19"), val = tensor<fp32, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2542464)))];
127
  tensor<int32, [2]> split_20_split_sizes_0 = const()[name = tensor<string, []>("split_20_split_sizes_0"), val = tensor<int32, [2]>([1, 1])];
128
  tensor<int32, []> split_20_axis_0 = const()[name = tensor<string, []>("split_20_axis_0"), val = tensor<int32, []>(0)];
129
- tensor<fp32, [1, ?, 128]> split_20_0, tensor<fp32, [1, ?, 128]> split_20_1 = split(axis = split_20_axis_0, split_sizes = split_20_split_sizes_0, x = split_0_1)[name = tensor<string, []>("split_20")];
130
  tensor<int32, []> concat_20_axis_0 = const()[name = tensor<string, []>("concat_20_axis_0"), val = tensor<int32, []>(2)];
131
  tensor<bool, []> concat_20_interleave_0 = const()[name = tensor<string, []>("concat_20_interleave_0"), val = tensor<bool, []>(false)];
132
- tensor<fp32, [1, ?, 256]> concat_20 = concat(axis = concat_20_axis_0, interleave = concat_20_interleave_0, values = (split_20_0, split_20_1))[name = tensor<string, []>("concat_20")];
133
  tensor<int32, [1]> input_25_lstm_layer_1_lstm_h0_reshaped_axes_0 = const()[name = tensor<string, []>("input_25_lstm_layer_1_lstm_h0_reshaped_axes_0"), val = tensor<int32, [1]>([0])];
134
- tensor<fp32, [?, 256]> input_25_lstm_layer_1_lstm_h0_reshaped = squeeze(axes = input_25_lstm_layer_1_lstm_h0_reshaped_axes_0, x = concat_20)[name = tensor<string, []>("input_25_lstm_layer_1_lstm_h0_reshaped")];
135
  tensor<int32, [2]> split_21_split_sizes_0 = const()[name = tensor<string, []>("split_21_split_sizes_0"), val = tensor<int32, [2]>([1, 1])];
136
  tensor<int32, []> split_21_axis_0 = const()[name = tensor<string, []>("split_21_axis_0"), val = tensor<int32, []>(0)];
137
- tensor<fp32, [1, ?, 128]> split_21_0, tensor<fp32, [1, ?, 128]> split_21_1 = split(axis = split_21_axis_0, split_sizes = split_21_split_sizes_0, x = split_1_1)[name = tensor<string, []>("split_21")];
138
  tensor<int32, []> concat_21_axis_0 = const()[name = tensor<string, []>("concat_21_axis_0"), val = tensor<int32, []>(2)];
139
  tensor<bool, []> concat_21_interleave_0 = const()[name = tensor<string, []>("concat_21_interleave_0"), val = tensor<bool, []>(false)];
140
- tensor<fp32, [1, ?, 256]> concat_21 = concat(axis = concat_21_axis_0, interleave = concat_21_interleave_0, values = (split_21_0, split_21_1))[name = tensor<string, []>("concat_21")];
141
  tensor<int32, [1]> input_25_lstm_layer_1_lstm_c0_reshaped_axes_0 = const()[name = tensor<string, []>("input_25_lstm_layer_1_lstm_c0_reshaped_axes_0"), val = tensor<int32, [1]>([0])];
142
- tensor<fp32, [?, 256]> input_25_lstm_layer_1_lstm_c0_reshaped = squeeze(axes = input_25_lstm_layer_1_lstm_c0_reshaped_axes_0, x = concat_21)[name = tensor<string, []>("input_25_lstm_layer_1_lstm_c0_reshaped")];
143
  tensor<string, []> input_25_lstm_layer_1_direction_0 = const()[name = tensor<string, []>("input_25_lstm_layer_1_direction_0"), val = tensor<string, []>("bidirectional")];
144
  tensor<bool, []> input_25_lstm_layer_1_output_sequence_0 = const()[name = tensor<string, []>("input_25_lstm_layer_1_output_sequence_0"), val = tensor<bool, []>(true)];
145
  tensor<string, []> input_25_lstm_layer_1_recurrent_activation_0 = const()[name = tensor<string, []>("input_25_lstm_layer_1_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
146
  tensor<string, []> input_25_lstm_layer_1_cell_activation_0 = const()[name = tensor<string, []>("input_25_lstm_layer_1_cell_activation_0"), val = tensor<string, []>("tanh")];
147
  tensor<string, []> input_25_lstm_layer_1_activation_0 = const()[name = tensor<string, []>("input_25_lstm_layer_1_activation_0"), val = tensor<string, []>("tanh")];
148
- tensor<fp32, [589, ?, 256]> input_25_lstm_layer_1_0, tensor<fp32, [?, 256]> input_25_lstm_layer_1_1, tensor<fp32, [?, 256]> input_25_lstm_layer_1_2 = lstm(activation = input_25_lstm_layer_1_activation_0, bias = add_2, bias_back = add_3, cell_activation = input_25_lstm_layer_1_cell_activation_0, direction = input_25_lstm_layer_1_direction_0, initial_c = input_25_lstm_layer_1_lstm_c0_reshaped, initial_h = input_25_lstm_layer_1_lstm_h0_reshaped, output_sequence = input_25_lstm_layer_1_output_sequence_0, recurrent_activation = input_25_lstm_layer_1_recurrent_activation_0, weight_hh = concat_17, weight_hh_back = concat_19, weight_ih = concat_16, weight_ih_back = concat_18, x = input_25_lstm_layer_0_0)[name = tensor<string, []>("input_25_lstm_layer_1")];
149
- tensor<fp32, [512]> add_4 = const()[name = tensor<string, []>("add_4"), val = tensor<fp32, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2804672)))];
150
- tensor<fp32, [512]> add_5 = const()[name = tensor<string, []>("add_5"), val = tensor<fp32, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2806784)))];
151
- tensor<fp32, [512, 256]> concat_26 = const()[name = tensor<string, []>("concat_26"), val = tensor<fp32, [512, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2808896)))];
152
- tensor<fp32, [512, 128]> concat_27 = const()[name = tensor<string, []>("concat_27"), val = tensor<fp32, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3333248)))];
153
- tensor<fp32, [512, 256]> concat_28 = const()[name = tensor<string, []>("concat_28"), val = tensor<fp32, [512, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3595456)))];
154
- tensor<fp32, [512, 128]> concat_29 = const()[name = tensor<string, []>("concat_29"), val = tensor<fp32, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4119808)))];
155
  tensor<int32, [2]> split_30_split_sizes_0 = const()[name = tensor<string, []>("split_30_split_sizes_0"), val = tensor<int32, [2]>([1, 1])];
156
  tensor<int32, []> split_30_axis_0 = const()[name = tensor<string, []>("split_30_axis_0"), val = tensor<int32, []>(0)];
157
- tensor<fp32, [1, ?, 128]> split_30_0, tensor<fp32, [1, ?, 128]> split_30_1 = split(axis = split_30_axis_0, split_sizes = split_30_split_sizes_0, x = split_0_2)[name = tensor<string, []>("split_30")];
158
  tensor<int32, []> concat_30_axis_0 = const()[name = tensor<string, []>("concat_30_axis_0"), val = tensor<int32, []>(2)];
159
  tensor<bool, []> concat_30_interleave_0 = const()[name = tensor<string, []>("concat_30_interleave_0"), val = tensor<bool, []>(false)];
160
- tensor<fp32, [1, ?, 256]> concat_30 = concat(axis = concat_30_axis_0, interleave = concat_30_interleave_0, values = (split_30_0, split_30_1))[name = tensor<string, []>("concat_30")];
161
  tensor<int32, [1]> input_25_lstm_layer_2_lstm_h0_reshaped_axes_0 = const()[name = tensor<string, []>("input_25_lstm_layer_2_lstm_h0_reshaped_axes_0"), val = tensor<int32, [1]>([0])];
162
- tensor<fp32, [?, 256]> input_25_lstm_layer_2_lstm_h0_reshaped = squeeze(axes = input_25_lstm_layer_2_lstm_h0_reshaped_axes_0, x = concat_30)[name = tensor<string, []>("input_25_lstm_layer_2_lstm_h0_reshaped")];
163
  tensor<int32, [2]> split_31_split_sizes_0 = const()[name = tensor<string, []>("split_31_split_sizes_0"), val = tensor<int32, [2]>([1, 1])];
164
  tensor<int32, []> split_31_axis_0 = const()[name = tensor<string, []>("split_31_axis_0"), val = tensor<int32, []>(0)];
165
- tensor<fp32, [1, ?, 128]> split_31_0, tensor<fp32, [1, ?, 128]> split_31_1 = split(axis = split_31_axis_0, split_sizes = split_31_split_sizes_0, x = split_1_2)[name = tensor<string, []>("split_31")];
166
  tensor<int32, []> concat_31_axis_0 = const()[name = tensor<string, []>("concat_31_axis_0"), val = tensor<int32, []>(2)];
167
  tensor<bool, []> concat_31_interleave_0 = const()[name = tensor<string, []>("concat_31_interleave_0"), val = tensor<bool, []>(false)];
168
- tensor<fp32, [1, ?, 256]> concat_31 = concat(axis = concat_31_axis_0, interleave = concat_31_interleave_0, values = (split_31_0, split_31_1))[name = tensor<string, []>("concat_31")];
169
  tensor<int32, [1]> input_25_lstm_layer_2_lstm_c0_reshaped_axes_0 = const()[name = tensor<string, []>("input_25_lstm_layer_2_lstm_c0_reshaped_axes_0"), val = tensor<int32, [1]>([0])];
170
- tensor<fp32, [?, 256]> input_25_lstm_layer_2_lstm_c0_reshaped = squeeze(axes = input_25_lstm_layer_2_lstm_c0_reshaped_axes_0, x = concat_31)[name = tensor<string, []>("input_25_lstm_layer_2_lstm_c0_reshaped")];
171
  tensor<string, []> input_25_lstm_layer_2_direction_0 = const()[name = tensor<string, []>("input_25_lstm_layer_2_direction_0"), val = tensor<string, []>("bidirectional")];
172
  tensor<bool, []> input_25_lstm_layer_2_output_sequence_0 = const()[name = tensor<string, []>("input_25_lstm_layer_2_output_sequence_0"), val = tensor<bool, []>(true)];
173
  tensor<string, []> input_25_lstm_layer_2_recurrent_activation_0 = const()[name = tensor<string, []>("input_25_lstm_layer_2_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
174
  tensor<string, []> input_25_lstm_layer_2_cell_activation_0 = const()[name = tensor<string, []>("input_25_lstm_layer_2_cell_activation_0"), val = tensor<string, []>("tanh")];
175
  tensor<string, []> input_25_lstm_layer_2_activation_0 = const()[name = tensor<string, []>("input_25_lstm_layer_2_activation_0"), val = tensor<string, []>("tanh")];
176
- tensor<fp32, [589, ?, 256]> input_25_lstm_layer_2_0, tensor<fp32, [?, 256]> input_25_lstm_layer_2_1, tensor<fp32, [?, 256]> input_25_lstm_layer_2_2 = lstm(activation = input_25_lstm_layer_2_activation_0, bias = add_4, bias_back = add_5, cell_activation = input_25_lstm_layer_2_cell_activation_0, direction = input_25_lstm_layer_2_direction_0, initial_c = input_25_lstm_layer_2_lstm_c0_reshaped, initial_h = input_25_lstm_layer_2_lstm_h0_reshaped, output_sequence = input_25_lstm_layer_2_output_sequence_0, recurrent_activation = input_25_lstm_layer_2_recurrent_activation_0, weight_hh = concat_27, weight_hh_back = concat_29, weight_ih = concat_26, weight_ih_back = concat_28, x = input_25_lstm_layer_1_0)[name = tensor<string, []>("input_25_lstm_layer_2")];
177
- tensor<fp32, [512]> add_6 = const()[name = tensor<string, []>("add_6"), val = tensor<fp32, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4382016)))];
178
- tensor<fp32, [512]> add_7 = const()[name = tensor<string, []>("add_7"), val = tensor<fp32, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4384128)))];
179
- tensor<fp32, [512, 256]> concat_36 = const()[name = tensor<string, []>("concat_36"), val = tensor<fp32, [512, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4386240)))];
180
- tensor<fp32, [512, 128]> concat_37 = const()[name = tensor<string, []>("concat_37"), val = tensor<fp32, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4910592)))];
181
- tensor<fp32, [512, 256]> concat_38 = const()[name = tensor<string, []>("concat_38"), val = tensor<fp32, [512, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5172800)))];
182
- tensor<fp32, [512, 128]> concat_39 = const()[name = tensor<string, []>("concat_39"), val = tensor<fp32, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5697152)))];
183
  tensor<int32, [2]> split_40_split_sizes_0 = const()[name = tensor<string, []>("split_40_split_sizes_0"), val = tensor<int32, [2]>([1, 1])];
184
  tensor<int32, []> split_40_axis_0 = const()[name = tensor<string, []>("split_40_axis_0"), val = tensor<int32, []>(0)];
185
- tensor<fp32, [1, ?, 128]> split_40_0, tensor<fp32, [1, ?, 128]> split_40_1 = split(axis = split_40_axis_0, split_sizes = split_40_split_sizes_0, x = split_0_3)[name = tensor<string, []>("split_40")];
186
  tensor<int32, []> concat_40_axis_0 = const()[name = tensor<string, []>("concat_40_axis_0"), val = tensor<int32, []>(2)];
187
  tensor<bool, []> concat_40_interleave_0 = const()[name = tensor<string, []>("concat_40_interleave_0"), val = tensor<bool, []>(false)];
188
- tensor<fp32, [1, ?, 256]> concat_40 = concat(axis = concat_40_axis_0, interleave = concat_40_interleave_0, values = (split_40_0, split_40_1))[name = tensor<string, []>("concat_40")];
189
  tensor<int32, [1]> input_25_batch_first_lstm_h0_reshaped_axes_0 = const()[name = tensor<string, []>("input_25_batch_first_lstm_h0_reshaped_axes_0"), val = tensor<int32, [1]>([0])];
190
- tensor<fp32, [?, 256]> input_25_batch_first_lstm_h0_reshaped = squeeze(axes = input_25_batch_first_lstm_h0_reshaped_axes_0, x = concat_40)[name = tensor<string, []>("input_25_batch_first_lstm_h0_reshaped")];
191
  tensor<int32, [2]> split_41_split_sizes_0 = const()[name = tensor<string, []>("split_41_split_sizes_0"), val = tensor<int32, [2]>([1, 1])];
192
  tensor<int32, []> split_41_axis_0 = const()[name = tensor<string, []>("split_41_axis_0"), val = tensor<int32, []>(0)];
193
- tensor<fp32, [1, ?, 128]> split_41_0, tensor<fp32, [1, ?, 128]> split_41_1 = split(axis = split_41_axis_0, split_sizes = split_41_split_sizes_0, x = split_1_3)[name = tensor<string, []>("split_41")];
194
  tensor<int32, []> concat_41_axis_0 = const()[name = tensor<string, []>("concat_41_axis_0"), val = tensor<int32, []>(2)];
195
  tensor<bool, []> concat_41_interleave_0 = const()[name = tensor<string, []>("concat_41_interleave_0"), val = tensor<bool, []>(false)];
196
- tensor<fp32, [1, ?, 256]> concat_41 = concat(axis = concat_41_axis_0, interleave = concat_41_interleave_0, values = (split_41_0, split_41_1))[name = tensor<string, []>("concat_41")];
197
  tensor<int32, [1]> input_25_batch_first_lstm_c0_reshaped_axes_0 = const()[name = tensor<string, []>("input_25_batch_first_lstm_c0_reshaped_axes_0"), val = tensor<int32, [1]>([0])];
198
- tensor<fp32, [?, 256]> input_25_batch_first_lstm_c0_reshaped = squeeze(axes = input_25_batch_first_lstm_c0_reshaped_axes_0, x = concat_41)[name = tensor<string, []>("input_25_batch_first_lstm_c0_reshaped")];
199
  tensor<string, []> input_25_batch_first_direction_0 = const()[name = tensor<string, []>("input_25_batch_first_direction_0"), val = tensor<string, []>("bidirectional")];
200
  tensor<bool, []> input_25_batch_first_output_sequence_0 = const()[name = tensor<string, []>("input_25_batch_first_output_sequence_0"), val = tensor<bool, []>(true)];
201
  tensor<string, []> input_25_batch_first_recurrent_activation_0 = const()[name = tensor<string, []>("input_25_batch_first_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
202
  tensor<string, []> input_25_batch_first_cell_activation_0 = const()[name = tensor<string, []>("input_25_batch_first_cell_activation_0"), val = tensor<string, []>("tanh")];
203
  tensor<string, []> input_25_batch_first_activation_0 = const()[name = tensor<string, []>("input_25_batch_first_activation_0"), val = tensor<string, []>("tanh")];
204
- tensor<fp32, [589, ?, 256]> input_25_batch_first_0, tensor<fp32, [?, 256]> input_25_batch_first_1, tensor<fp32, [?, 256]> input_25_batch_first_2 = lstm(activation = input_25_batch_first_activation_0, bias = add_6, bias_back = add_7, cell_activation = input_25_batch_first_cell_activation_0, direction = input_25_batch_first_direction_0, initial_c = input_25_batch_first_lstm_c0_reshaped, initial_h = input_25_batch_first_lstm_h0_reshaped, output_sequence = input_25_batch_first_output_sequence_0, recurrent_activation = input_25_batch_first_recurrent_activation_0, weight_hh = concat_37, weight_hh_back = concat_39, weight_ih = concat_36, weight_ih_back = concat_38, x = input_25_lstm_layer_2_0)[name = tensor<string, []>("input_25_batch_first")];
 
 
 
 
 
 
205
  tensor<int32, [3]> input_25_perm_0 = const()[name = tensor<string, []>("input_25_perm_0"), val = tensor<int32, [3]>([1, 0, 2])];
206
- tensor<fp32, [?, 589, 256]> input_25 = transpose(perm = input_25_perm_0, x = input_25_batch_first_0)[name = tensor<string, []>("transpose_4")];
207
- tensor<fp32, [?, 589, 128]> input_27 = linear(bias = linear_0_bias, weight = linear_0_weight, x = input_25)[name = tensor<string, []>("linear_0")];
 
 
208
  tensor<fp32, []> var_220 = const()[name = tensor<string, []>("op_220"), val = tensor<fp32, []>(0x1.47ae14p-7)];
209
- tensor<fp32, [?, 589, 128]> input_29 = leaky_relu(alpha = var_220, x = input_27)[name = tensor<string, []>("input_29")];
210
- tensor<fp32, [?, 589, 128]> input_31 = linear(bias = linear_1_bias, weight = linear_1_weight, x = input_29)[name = tensor<string, []>("linear_1")];
 
 
211
  tensor<fp32, []> var_225 = const()[name = tensor<string, []>("op_225"), val = tensor<fp32, []>(0x1.47ae14p-7)];
212
- tensor<fp32, [?, 589, 128]> input_33 = leaky_relu(alpha = var_225, x = input_31)[name = tensor<string, []>("input_33")];
213
- tensor<fp32, [?, 589, 7]> input = linear(bias = classifier_bias, weight = classifier_weight, x = input_33)[name = tensor<string, []>("linear_2")];
 
 
 
214
  tensor<int32, []> var_231 = const()[name = tensor<string, []>("op_231"), val = tensor<int32, []>(-1)];
215
- tensor<fp32, [?, 589, 7]> var_232_softmax = softmax(axis = var_231, x = input)[name = tensor<string, []>("op_232_softmax")];
 
216
  tensor<fp32, []> var_232_epsilon_0 = const()[name = tensor<string, []>("op_232_epsilon_0"), val = tensor<fp32, []>(0x1p-149)];
217
  tensor<fp32, [?, 589, 7]> log_probs = log(epsilon = var_232_epsilon_0, x = var_232_softmax)[name = tensor<string, []>("op_232")];
218
  } -> (log_probs);
 
2
  [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3500.14.1"}, {"coremlc-version", "3500.32.1"}, {"coremltools-component-torch", "2.8.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "9.0b1"}})]
3
  {
4
  func main<ios17>(tensor<fp32, [?, 1, 160000]> audio) [FlexibleShapeInformation = tuple<tuple<tensor<string, []>, dict<tensor<string, []>, tensor<int32, [?]>>>, tuple<tensor<string, []>, dict<tensor<string, []>, dict<tensor<string, []>, tensor<int32, [?]>>>>>((("DefaultShapes", {{"audio", [32, 1, 160000]}}), ("EnumeratedShapes", {{"audio_1_1_10_1_160000_", {{"audio", [10, 1, 160000]}}}, {"audio_1_1_11_1_160000_", {{"audio", [11, 1, 160000]}}}, {"audio_1_1_12_1_160000_", {{"audio", [12, 1, 160000]}}}, {"audio_1_1_13_1_160000_", {{"audio", [13, 1, 160000]}}}, {"audio_1_1_14_1_160000_", {{"audio", [14, 1, 160000]}}}, {"audio_1_1_15_1_160000_", {{"audio", [15, 1, 160000]}}}, {"audio_1_1_16_1_160000_", {{"audio", [16, 1, 160000]}}}, {"audio_1_1_17_1_160000_", {{"audio", [17, 1, 160000]}}}, {"audio_1_1_18_1_160000_", {{"audio", [18, 1, 160000]}}}, {"audio_1_1_19_1_160000_", {{"audio", [19, 1, 160000]}}}, {"audio_1_1_1_1_160000_", {{"audio", [1, 1, 160000]}}}, {"audio_1_1_20_1_160000_", {{"audio", [20, 1, 160000]}}}, {"audio_1_1_21_1_160000_", {{"audio", [21, 1, 160000]}}}, {"audio_1_1_22_1_160000_", {{"audio", [22, 1, 160000]}}}, {"audio_1_1_23_1_160000_", {{"audio", [23, 1, 160000]}}}, {"audio_1_1_24_1_160000_", {{"audio", [24, 1, 160000]}}}, {"audio_1_1_25_1_160000_", {{"audio", [25, 1, 160000]}}}, {"audio_1_1_26_1_160000_", {{"audio", [26, 1, 160000]}}}, {"audio_1_1_27_1_160000_", {{"audio", [27, 1, 160000]}}}, {"audio_1_1_28_1_160000_", {{"audio", [28, 1, 160000]}}}, {"audio_1_1_29_1_160000_", {{"audio", [29, 1, 160000]}}}, {"audio_1_1_2_1_160000_", {{"audio", [2, 1, 160000]}}}, {"audio_1_1_30_1_160000_", {{"audio", [30, 1, 160000]}}}, {"audio_1_1_31_1_160000_", {{"audio", [31, 1, 160000]}}}, {"audio_1_1_32_1_160000_", {{"audio", [32, 1, 160000]}}}, {"audio_1_1_3_1_160000_", {{"audio", [3, 1, 160000]}}}, {"audio_1_1_4_1_160000_", {{"audio", [4, 1, 160000]}}}, {"audio_1_1_5_1_160000_", {{"audio", [5, 1, 160000]}}}, {"audio_1_1_6_1_160000_", {{"audio", [6, 1, 160000]}}}, {"audio_1_1_7_1_160000_", {{"audio", [7, 1, 160000]}}}, {"audio_1_1_8_1_160000_", {{"audio", [8, 1, 160000]}}}, {"audio_1_1_9_1_160000_", {{"audio", [9, 1, 160000]}}}})))] {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  tensor<fp32, []> var_9 = const()[name = tensor<string, []>("op_9"), val = tensor<fp32, []>(0x1.47ae14p-7)];
6
+ tensor<string, []> audio_to_fp16_dtype_0 = const()[name = tensor<string, []>("audio_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
7
+ tensor<fp16, [1]> sincnet_wav_norm1d_weight_to_fp16 = const()[name = tensor<string, []>("sincnet_wav_norm1d_weight_to_fp16"), val = tensor<fp16, [1]>([0x1.44p-7])];
8
+ tensor<fp16, [1]> sincnet_wav_norm1d_bias_to_fp16 = const()[name = tensor<string, []>("sincnet_wav_norm1d_bias_to_fp16"), val = tensor<fp16, [1]>([0x1.734p-5])];
9
+ tensor<fp16, []> var_24_to_fp16 = const()[name = tensor<string, []>("op_24_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
10
+ tensor<fp16, [?, 1, 160000]> audio_to_fp16 = cast(dtype = audio_to_fp16_dtype_0, x = audio)[name = tensor<string, []>("cast_19")];
11
+ tensor<fp16, [?, 1, 160000]> waveform_cast_fp16 = instance_norm(beta = sincnet_wav_norm1d_bias_to_fp16, epsilon = var_24_to_fp16, gamma = sincnet_wav_norm1d_weight_to_fp16, x = audio_to_fp16)[name = tensor<string, []>("waveform_cast_fp16")];
12
  tensor<string, []> outputs_pad_type_0 = const()[name = tensor<string, []>("outputs_pad_type_0"), val = tensor<string, []>("valid")];
13
  tensor<int32, [1]> outputs_strides_0 = const()[name = tensor<string, []>("outputs_strides_0"), val = tensor<int32, [1]>([10])];
14
  tensor<int32, [2]> outputs_pad_0 = const()[name = tensor<string, []>("outputs_pad_0"), val = tensor<int32, [2]>([0, 0])];
15
  tensor<int32, [1]> outputs_dilations_0 = const()[name = tensor<string, []>("outputs_dilations_0"), val = tensor<int32, [1]>([1])];
16
  tensor<int32, []> outputs_groups_0 = const()[name = tensor<string, []>("outputs_groups_0"), val = tensor<int32, []>(1)];
17
+ tensor<fp16, [80, 1, 251]> filters_to_fp16 = const()[name = tensor<string, []>("filters_to_fp16"), val = tensor<fp16, [80, 1, 251]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
18
+ tensor<fp16, [?, 80, 15975]> outputs_cast_fp16 = conv(dilations = outputs_dilations_0, groups = outputs_groups_0, pad = outputs_pad_0, pad_type = outputs_pad_type_0, strides = outputs_strides_0, weight = filters_to_fp16, x = waveform_cast_fp16)[name = tensor<string, []>("outputs_cast_fp16")];
19
+ tensor<fp16, [?, 80, 15975]> input_1_cast_fp16 = abs(x = outputs_cast_fp16)[name = tensor<string, []>("input_1_cast_fp16")];
20
  tensor<int32, [1]> var_119 = const()[name = tensor<string, []>("op_119"), val = tensor<int32, [1]>([3])];
21
  tensor<int32, [1]> var_120 = const()[name = tensor<string, []>("op_120"), val = tensor<int32, [1]>([3])];
22
  tensor<string, []> input_3_pad_type_0 = const()[name = tensor<string, []>("input_3_pad_type_0"), val = tensor<string, []>("custom")];
23
  tensor<int32, [2]> input_3_pad_0 = const()[name = tensor<string, []>("input_3_pad_0"), val = tensor<int32, [2]>([0, 0])];
24
  tensor<bool, []> input_3_ceil_mode_0 = const()[name = tensor<string, []>("input_3_ceil_mode_0"), val = tensor<bool, []>(false)];
25
+ tensor<fp16, [?, 80, 5325]> input_3_cast_fp16 = max_pool(ceil_mode = input_3_ceil_mode_0, kernel_sizes = var_119, pad = input_3_pad_0, pad_type = input_3_pad_type_0, strides = var_120, x = input_1_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
26
+ tensor<fp16, [80]> sincnet_norm1d_0_weight_to_fp16 = const()[name = tensor<string, []>("sincnet_norm1d_0_weight_to_fp16"), val = tensor<fp16, [80]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(40320)))];
27
+ tensor<fp16, [80]> sincnet_norm1d_0_bias_to_fp16 = const()[name = tensor<string, []>("sincnet_norm1d_0_bias_to_fp16"), val = tensor<fp16, [80]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(40576)))];
28
+ tensor<fp16, [?, 80, 5325]> input_5_cast_fp16 = instance_norm(beta = sincnet_norm1d_0_bias_to_fp16, epsilon = var_24_to_fp16, gamma = sincnet_norm1d_0_weight_to_fp16, x = input_3_cast_fp16)[name = tensor<string, []>("input_5_cast_fp16")];
29
+ tensor<fp16, [?, 80, 5325]> input_7_cast_fp16 = leaky_relu(alpha = var_9, x = input_5_cast_fp16)[name = tensor<string, []>("input_7_cast_fp16")];
30
  tensor<string, []> input_9_pad_type_0 = const()[name = tensor<string, []>("input_9_pad_type_0"), val = tensor<string, []>("valid")];
31
  tensor<int32, [1]> input_9_strides_0 = const()[name = tensor<string, []>("input_9_strides_0"), val = tensor<int32, [1]>([1])];
32
  tensor<int32, [2]> input_9_pad_0 = const()[name = tensor<string, []>("input_9_pad_0"), val = tensor<int32, [2]>([0, 0])];
33
  tensor<int32, [1]> input_9_dilations_0 = const()[name = tensor<string, []>("input_9_dilations_0"), val = tensor<int32, [1]>([1])];
34
  tensor<int32, []> input_9_groups_0 = const()[name = tensor<string, []>("input_9_groups_0"), val = tensor<int32, []>(1)];
35
+ tensor<fp16, [60, 80, 5]> sincnet_conv1d_1_weight_to_fp16 = const()[name = tensor<string, []>("sincnet_conv1d_1_weight_to_fp16"), val = tensor<fp16, [60, 80, 5]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(40832)))];
36
+ tensor<fp16, [60]> sincnet_conv1d_1_bias_to_fp16 = const()[name = tensor<string, []>("sincnet_conv1d_1_bias_to_fp16"), val = tensor<fp16, [60]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(88896)))];
37
+ tensor<fp16, [?, 60, 5321]> input_9_cast_fp16 = conv(bias = sincnet_conv1d_1_bias_to_fp16, dilations = input_9_dilations_0, groups = input_9_groups_0, pad = input_9_pad_0, pad_type = input_9_pad_type_0, strides = input_9_strides_0, weight = sincnet_conv1d_1_weight_to_fp16, x = input_7_cast_fp16)[name = tensor<string, []>("input_9_cast_fp16")];
38
  tensor<int32, [1]> var_135 = const()[name = tensor<string, []>("op_135"), val = tensor<int32, [1]>([3])];
39
  tensor<int32, [1]> var_136 = const()[name = tensor<string, []>("op_136"), val = tensor<int32, [1]>([3])];
40
  tensor<string, []> input_11_pad_type_0 = const()[name = tensor<string, []>("input_11_pad_type_0"), val = tensor<string, []>("custom")];
41
  tensor<int32, [2]> input_11_pad_0 = const()[name = tensor<string, []>("input_11_pad_0"), val = tensor<int32, [2]>([0, 0])];
42
  tensor<bool, []> input_11_ceil_mode_0 = const()[name = tensor<string, []>("input_11_ceil_mode_0"), val = tensor<bool, []>(false)];
43
+ tensor<fp16, [?, 60, 1773]> input_11_cast_fp16 = max_pool(ceil_mode = input_11_ceil_mode_0, kernel_sizes = var_135, pad = input_11_pad_0, pad_type = input_11_pad_type_0, strides = var_136, x = input_9_cast_fp16)[name = tensor<string, []>("input_11_cast_fp16")];
44
+ tensor<fp16, [60]> sincnet_norm1d_1_weight_to_fp16 = const()[name = tensor<string, []>("sincnet_norm1d_1_weight_to_fp16"), val = tensor<fp16, [60]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(89088)))];
45
+ tensor<fp16, [60]> sincnet_norm1d_1_bias_to_fp16 = const()[name = tensor<string, []>("sincnet_norm1d_1_bias_to_fp16"), val = tensor<fp16, [60]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(89280)))];
46
+ tensor<fp16, [?, 60, 1773]> input_13_cast_fp16 = instance_norm(beta = sincnet_norm1d_1_bias_to_fp16, epsilon = var_24_to_fp16, gamma = sincnet_norm1d_1_weight_to_fp16, x = input_11_cast_fp16)[name = tensor<string, []>("input_13_cast_fp16")];
47
+ tensor<fp16, [?, 60, 1773]> input_15_cast_fp16 = leaky_relu(alpha = var_9, x = input_13_cast_fp16)[name = tensor<string, []>("input_15_cast_fp16")];
48
  tensor<string, []> input_17_pad_type_0 = const()[name = tensor<string, []>("input_17_pad_type_0"), val = tensor<string, []>("valid")];
49
  tensor<int32, [1]> input_17_strides_0 = const()[name = tensor<string, []>("input_17_strides_0"), val = tensor<int32, [1]>([1])];
50
  tensor<int32, [2]> input_17_pad_0 = const()[name = tensor<string, []>("input_17_pad_0"), val = tensor<int32, [2]>([0, 0])];
51
  tensor<int32, [1]> input_17_dilations_0 = const()[name = tensor<string, []>("input_17_dilations_0"), val = tensor<int32, [1]>([1])];
52
  tensor<int32, []> input_17_groups_0 = const()[name = tensor<string, []>("input_17_groups_0"), val = tensor<int32, []>(1)];
53
+ tensor<fp16, [60, 60, 5]> sincnet_conv1d_2_weight_to_fp16 = const()[name = tensor<string, []>("sincnet_conv1d_2_weight_to_fp16"), val = tensor<fp16, [60, 60, 5]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(89472)))];
54
+ tensor<fp16, [60]> sincnet_conv1d_2_bias_to_fp16 = const()[name = tensor<string, []>("sincnet_conv1d_2_bias_to_fp16"), val = tensor<fp16, [60]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(125568)))];
55
+ tensor<fp16, [?, 60, 1769]> input_17_cast_fp16 = conv(bias = sincnet_conv1d_2_bias_to_fp16, dilations = input_17_dilations_0, groups = input_17_groups_0, pad = input_17_pad_0, pad_type = input_17_pad_type_0, strides = input_17_strides_0, weight = sincnet_conv1d_2_weight_to_fp16, x = input_15_cast_fp16)[name = tensor<string, []>("input_17_cast_fp16")];
56
  tensor<int32, [1]> var_151 = const()[name = tensor<string, []>("op_151"), val = tensor<int32, [1]>([3])];
57
  tensor<int32, [1]> var_152 = const()[name = tensor<string, []>("op_152"), val = tensor<int32, [1]>([3])];
58
  tensor<string, []> input_19_pad_type_0 = const()[name = tensor<string, []>("input_19_pad_type_0"), val = tensor<string, []>("custom")];
59
  tensor<int32, [2]> input_19_pad_0 = const()[name = tensor<string, []>("input_19_pad_0"), val = tensor<int32, [2]>([0, 0])];
60
  tensor<bool, []> input_19_ceil_mode_0 = const()[name = tensor<string, []>("input_19_ceil_mode_0"), val = tensor<bool, []>(false)];
61
+ tensor<fp16, [?, 60, 589]> input_19_cast_fp16 = max_pool(ceil_mode = input_19_ceil_mode_0, kernel_sizes = var_151, pad = input_19_pad_0, pad_type = input_19_pad_type_0, strides = var_152, x = input_17_cast_fp16)[name = tensor<string, []>("input_19_cast_fp16")];
62
+ tensor<fp16, [60]> sincnet_norm1d_2_weight_to_fp16 = const()[name = tensor<string, []>("sincnet_norm1d_2_weight_to_fp16"), val = tensor<fp16, [60]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(125760)))];
63
+ tensor<fp16, [60]> sincnet_norm1d_2_bias_to_fp16 = const()[name = tensor<string, []>("sincnet_norm1d_2_bias_to_fp16"), val = tensor<fp16, [60]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(125952)))];
64
+ tensor<fp16, [?, 60, 589]> input_21_cast_fp16 = instance_norm(beta = sincnet_norm1d_2_bias_to_fp16, epsilon = var_24_to_fp16, gamma = sincnet_norm1d_2_weight_to_fp16, x = input_19_cast_fp16)[name = tensor<string, []>("input_21_cast_fp16")];
65
+ tensor<fp16, [?, 60, 589]> x_cast_fp16 = leaky_relu(alpha = var_9, x = input_21_cast_fp16)[name = tensor<string, []>("x_cast_fp16")];
66
  tensor<int32, [3]> var_163 = const()[name = tensor<string, []>("op_163"), val = tensor<int32, [3]>([0, 2, 1])];
67
  tensor<int32, []> var_172 = const()[name = tensor<string, []>("op_172"), val = tensor<int32, []>(128)];
68
  tensor<int32, []> var_173 = const()[name = tensor<string, []>("op_173"), val = tensor<int32, []>(8)];
69
+ tensor<fp16, [?, 589, 60]> input_23_cast_fp16 = transpose(perm = var_163, x = x_cast_fp16)[name = tensor<string, []>("transpose_6")];
70
+ tensor<int32, [3]> var_207_shape_cast_fp16 = shape(x = input_23_cast_fp16)[name = tensor<string, []>("op_207_shape_cast_fp16")];
71
+ tensor<int32, []> gather_0_axis_0 = const()[name = tensor<string, []>("gather_0_axis_0"), val = tensor<int32, []>(0)];
72
  tensor<int32, []> gather_0_batch_dims_0 = const()[name = tensor<string, []>("gather_0_batch_dims_0"), val = tensor<int32, []>(0)];
73
  tensor<bool, []> gather_0_validate_indices_0 = const()[name = tensor<string, []>("gather_0_validate_indices_0"), val = tensor<bool, []>(false)];
74
+ tensor<string, []> var_207_shape_cast_fp16_to_int16_dtype_0 = const()[name = tensor<string, []>("op_207_shape_cast_fp16_to_int16_dtype_0"), val = tensor<string, []>("int16")];
75
+ tensor<uint16, []> gather_0_indices_0_to_uint16 = const()[name = tensor<string, []>("gather_0_indices_0_to_uint16"), val = tensor<uint16, []>(0)];
76
+ tensor<int16, [3]> var_207_shape_cast_fp16_to_int16 = cast(dtype = var_207_shape_cast_fp16_to_int16_dtype_0, x = var_207_shape_cast_fp16)[name = tensor<string, []>("cast_18")];
77
+ tensor<int16, []> gather_0_cast_uint16 = gather(axis = gather_0_axis_0, batch_dims = gather_0_batch_dims_0, indices = gather_0_indices_0_to_uint16, validate_indices = gather_0_validate_indices_0, x = var_207_shape_cast_fp16_to_int16)[name = tensor<string, []>("gather_0_cast_uint16")];
78
+ tensor<string, []> gather_0_cast_uint16_to_int32_dtype_0 = const()[name = tensor<string, []>("gather_0_cast_uint16_to_int32_dtype_0"), val = tensor<string, []>("int32")];
79
  tensor<int32, []> concat_0_axis_0 = const()[name = tensor<string, []>("concat_0_axis_0"), val = tensor<int32, []>(0)];
80
  tensor<bool, []> concat_0_interleave_0 = const()[name = tensor<string, []>("concat_0_interleave_0"), val = tensor<bool, []>(false)];
81
+ tensor<int32, []> gather_0_cast_uint16_to_int32 = cast(dtype = gather_0_cast_uint16_to_int32_dtype_0, x = gather_0_cast_uint16)[name = tensor<string, []>("cast_17")];
82
+ tensor<int32, [3]> concat_0 = concat(axis = concat_0_axis_0, interleave = concat_0_interleave_0, values = (var_173, gather_0_cast_uint16_to_int32, var_172))[name = tensor<string, []>("concat_0")];
83
+ tensor<fp16, []> hx_1_value_0_to_fp16 = const()[name = tensor<string, []>("hx_1_value_0_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
84
+ tensor<fp16, [8, ?, 128]> hx_1_cast_fp16 = fill(shape = concat_0, value = hx_1_value_0_to_fp16)[name = tensor<string, []>("hx_1_cast_fp16")];
85
  tensor<int32, [3]> input_23_batch_first_transpose_perm_0 = const()[name = tensor<string, []>("input_23_batch_first_transpose_perm_0"), val = tensor<int32, [3]>([1, 0, 2])];
86
  tensor<int32, []> split_0_num_splits_0 = const()[name = tensor<string, []>("split_0_num_splits_0"), val = tensor<int32, []>(4)];
87
  tensor<int32, []> split_0_axis_0 = const()[name = tensor<string, []>("split_0_axis_0"), val = tensor<int32, []>(0)];
88
+ tensor<fp16, [2, ?, 128]> split_0_cast_fp16_0, tensor<fp16, [2, ?, 128]> split_0_cast_fp16_1, tensor<fp16, [2, ?, 128]> split_0_cast_fp16_2, tensor<fp16, [2, ?, 128]> split_0_cast_fp16_3 = split(axis = split_0_axis_0, num_splits = split_0_num_splits_0, x = hx_1_cast_fp16)[name = tensor<string, []>("split_0_cast_fp16")];
89
  tensor<int32, []> split_1_num_splits_0 = const()[name = tensor<string, []>("split_1_num_splits_0"), val = tensor<int32, []>(4)];
90
  tensor<int32, []> split_1_axis_0 = const()[name = tensor<string, []>("split_1_axis_0"), val = tensor<int32, []>(0)];
91
+ tensor<fp16, [2, ?, 128]> split_1_cast_fp16_0, tensor<fp16, [2, ?, 128]> split_1_cast_fp16_1, tensor<fp16, [2, ?, 128]> split_1_cast_fp16_2, tensor<fp16, [2, ?, 128]> split_1_cast_fp16_3 = split(axis = split_1_axis_0, num_splits = split_1_num_splits_0, x = hx_1_cast_fp16)[name = tensor<string, []>("split_1_cast_fp16")];
 
 
 
 
 
 
92
  tensor<int32, [2]> split_10_split_sizes_0 = const()[name = tensor<string, []>("split_10_split_sizes_0"), val = tensor<int32, [2]>([1, 1])];
93
  tensor<int32, []> split_10_axis_0 = const()[name = tensor<string, []>("split_10_axis_0"), val = tensor<int32, []>(0)];
94
+ tensor<fp16, [1, ?, 128]> split_10_cast_fp16_0, tensor<fp16, [1, ?, 128]> split_10_cast_fp16_1 = split(axis = split_10_axis_0, split_sizes = split_10_split_sizes_0, x = split_0_cast_fp16_0)[name = tensor<string, []>("split_10_cast_fp16")];
95
  tensor<int32, []> concat_10_axis_0 = const()[name = tensor<string, []>("concat_10_axis_0"), val = tensor<int32, []>(2)];
96
  tensor<bool, []> concat_10_interleave_0 = const()[name = tensor<string, []>("concat_10_interleave_0"), val = tensor<bool, []>(false)];
97
+ tensor<fp16, [1, ?, 256]> concat_10_cast_fp16 = concat(axis = concat_10_axis_0, interleave = concat_10_interleave_0, values = (split_10_cast_fp16_0, split_10_cast_fp16_1))[name = tensor<string, []>("concat_10_cast_fp16")];
98
  tensor<int32, [1]> input_25_lstm_layer_0_lstm_h0_reshaped_axes_0 = const()[name = tensor<string, []>("input_25_lstm_layer_0_lstm_h0_reshaped_axes_0"), val = tensor<int32, [1]>([0])];
99
+ tensor<fp16, [?, 256]> input_25_lstm_layer_0_lstm_h0_reshaped_cast_fp16 = squeeze(axes = input_25_lstm_layer_0_lstm_h0_reshaped_axes_0, x = concat_10_cast_fp16)[name = tensor<string, []>("input_25_lstm_layer_0_lstm_h0_reshaped_cast_fp16")];
100
  tensor<int32, [2]> split_11_split_sizes_0 = const()[name = tensor<string, []>("split_11_split_sizes_0"), val = tensor<int32, [2]>([1, 1])];
101
  tensor<int32, []> split_11_axis_0 = const()[name = tensor<string, []>("split_11_axis_0"), val = tensor<int32, []>(0)];
102
+ tensor<fp16, [1, ?, 128]> split_11_cast_fp16_0, tensor<fp16, [1, ?, 128]> split_11_cast_fp16_1 = split(axis = split_11_axis_0, split_sizes = split_11_split_sizes_0, x = split_1_cast_fp16_0)[name = tensor<string, []>("split_11_cast_fp16")];
103
  tensor<int32, []> concat_11_axis_0 = const()[name = tensor<string, []>("concat_11_axis_0"), val = tensor<int32, []>(2)];
104
  tensor<bool, []> concat_11_interleave_0 = const()[name = tensor<string, []>("concat_11_interleave_0"), val = tensor<bool, []>(false)];
105
+ tensor<fp16, [1, ?, 256]> concat_11_cast_fp16 = concat(axis = concat_11_axis_0, interleave = concat_11_interleave_0, values = (split_11_cast_fp16_0, split_11_cast_fp16_1))[name = tensor<string, []>("concat_11_cast_fp16")];
106
  tensor<int32, [1]> input_25_lstm_layer_0_lstm_c0_reshaped_axes_0 = const()[name = tensor<string, []>("input_25_lstm_layer_0_lstm_c0_reshaped_axes_0"), val = tensor<int32, [1]>([0])];
107
+ tensor<fp16, [?, 256]> input_25_lstm_layer_0_lstm_c0_reshaped_cast_fp16 = squeeze(axes = input_25_lstm_layer_0_lstm_c0_reshaped_axes_0, x = concat_11_cast_fp16)[name = tensor<string, []>("input_25_lstm_layer_0_lstm_c0_reshaped_cast_fp16")];
108
  tensor<string, []> input_25_lstm_layer_0_direction_0 = const()[name = tensor<string, []>("input_25_lstm_layer_0_direction_0"), val = tensor<string, []>("bidirectional")];
109
  tensor<bool, []> input_25_lstm_layer_0_output_sequence_0 = const()[name = tensor<string, []>("input_25_lstm_layer_0_output_sequence_0"), val = tensor<bool, []>(true)];
110
  tensor<string, []> input_25_lstm_layer_0_recurrent_activation_0 = const()[name = tensor<string, []>("input_25_lstm_layer_0_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
111
  tensor<string, []> input_25_lstm_layer_0_cell_activation_0 = const()[name = tensor<string, []>("input_25_lstm_layer_0_cell_activation_0"), val = tensor<string, []>("tanh")];
112
  tensor<string, []> input_25_lstm_layer_0_activation_0 = const()[name = tensor<string, []>("input_25_lstm_layer_0_activation_0"), val = tensor<string, []>("tanh")];
113
+ tensor<fp16, [512, 60]> concat_6_to_fp16 = const()[name = tensor<string, []>("concat_6_to_fp16"), val = tensor<fp16, [512, 60]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(126144)))];
114
+ tensor<fp16, [512, 128]> concat_7_to_fp16 = const()[name = tensor<string, []>("concat_7_to_fp16"), val = tensor<fp16, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(187648)))];
115
+ tensor<fp16, [512]> add_0_to_fp16 = const()[name = tensor<string, []>("add_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(318784)))];
116
+ tensor<fp16, [512, 60]> concat_8_to_fp16 = const()[name = tensor<string, []>("concat_8_to_fp16"), val = tensor<fp16, [512, 60]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(319872)))];
117
+ tensor<fp16, [512, 128]> concat_9_to_fp16 = const()[name = tensor<string, []>("concat_9_to_fp16"), val = tensor<fp16, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(381376)))];
118
+ tensor<fp16, [512]> add_1_to_fp16 = const()[name = tensor<string, []>("add_1_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(512512)))];
119
+ tensor<fp16, [589, ?, 60]> input_23_batch_first_transpose_cast_fp16 = transpose(perm = input_23_batch_first_transpose_perm_0, x = input_23_cast_fp16)[name = tensor<string, []>("transpose_5")];
120
+ tensor<fp16, [589, ?, 256]> input_25_lstm_layer_0_cast_fp16_0, tensor<fp16, [?, 256]> input_25_lstm_layer_0_cast_fp16_1, tensor<fp16, [?, 256]> input_25_lstm_layer_0_cast_fp16_2 = lstm(activation = input_25_lstm_layer_0_activation_0, bias = add_0_to_fp16, bias_back = add_1_to_fp16, cell_activation = input_25_lstm_layer_0_cell_activation_0, direction = input_25_lstm_layer_0_direction_0, initial_c = input_25_lstm_layer_0_lstm_c0_reshaped_cast_fp16, initial_h = input_25_lstm_layer_0_lstm_h0_reshaped_cast_fp16, output_sequence = input_25_lstm_layer_0_output_sequence_0, recurrent_activation = input_25_lstm_layer_0_recurrent_activation_0, weight_hh = concat_7_to_fp16, weight_hh_back = concat_9_to_fp16, weight_ih = concat_6_to_fp16, weight_ih_back = concat_8_to_fp16, x = input_23_batch_first_transpose_cast_fp16)[name = tensor<string, []>("input_25_lstm_layer_0_cast_fp16")];
121
  tensor<int32, [2]> split_20_split_sizes_0 = const()[name = tensor<string, []>("split_20_split_sizes_0"), val = tensor<int32, [2]>([1, 1])];
122
  tensor<int32, []> split_20_axis_0 = const()[name = tensor<string, []>("split_20_axis_0"), val = tensor<int32, []>(0)];
123
+ tensor<fp16, [1, ?, 128]> split_20_cast_fp16_0, tensor<fp16, [1, ?, 128]> split_20_cast_fp16_1 = split(axis = split_20_axis_0, split_sizes = split_20_split_sizes_0, x = split_0_cast_fp16_1)[name = tensor<string, []>("split_20_cast_fp16")];
124
  tensor<int32, []> concat_20_axis_0 = const()[name = tensor<string, []>("concat_20_axis_0"), val = tensor<int32, []>(2)];
125
  tensor<bool, []> concat_20_interleave_0 = const()[name = tensor<string, []>("concat_20_interleave_0"), val = tensor<bool, []>(false)];
126
+ tensor<fp16, [1, ?, 256]> concat_20_cast_fp16 = concat(axis = concat_20_axis_0, interleave = concat_20_interleave_0, values = (split_20_cast_fp16_0, split_20_cast_fp16_1))[name = tensor<string, []>("concat_20_cast_fp16")];
127
  tensor<int32, [1]> input_25_lstm_layer_1_lstm_h0_reshaped_axes_0 = const()[name = tensor<string, []>("input_25_lstm_layer_1_lstm_h0_reshaped_axes_0"), val = tensor<int32, [1]>([0])];
128
+ tensor<fp16, [?, 256]> input_25_lstm_layer_1_lstm_h0_reshaped_cast_fp16 = squeeze(axes = input_25_lstm_layer_1_lstm_h0_reshaped_axes_0, x = concat_20_cast_fp16)[name = tensor<string, []>("input_25_lstm_layer_1_lstm_h0_reshaped_cast_fp16")];
129
  tensor<int32, [2]> split_21_split_sizes_0 = const()[name = tensor<string, []>("split_21_split_sizes_0"), val = tensor<int32, [2]>([1, 1])];
130
  tensor<int32, []> split_21_axis_0 = const()[name = tensor<string, []>("split_21_axis_0"), val = tensor<int32, []>(0)];
131
+ tensor<fp16, [1, ?, 128]> split_21_cast_fp16_0, tensor<fp16, [1, ?, 128]> split_21_cast_fp16_1 = split(axis = split_21_axis_0, split_sizes = split_21_split_sizes_0, x = split_1_cast_fp16_1)[name = tensor<string, []>("split_21_cast_fp16")];
132
  tensor<int32, []> concat_21_axis_0 = const()[name = tensor<string, []>("concat_21_axis_0"), val = tensor<int32, []>(2)];
133
  tensor<bool, []> concat_21_interleave_0 = const()[name = tensor<string, []>("concat_21_interleave_0"), val = tensor<bool, []>(false)];
134
+ tensor<fp16, [1, ?, 256]> concat_21_cast_fp16 = concat(axis = concat_21_axis_0, interleave = concat_21_interleave_0, values = (split_21_cast_fp16_0, split_21_cast_fp16_1))[name = tensor<string, []>("concat_21_cast_fp16")];
135
  tensor<int32, [1]> input_25_lstm_layer_1_lstm_c0_reshaped_axes_0 = const()[name = tensor<string, []>("input_25_lstm_layer_1_lstm_c0_reshaped_axes_0"), val = tensor<int32, [1]>([0])];
136
+ tensor<fp16, [?, 256]> input_25_lstm_layer_1_lstm_c0_reshaped_cast_fp16 = squeeze(axes = input_25_lstm_layer_1_lstm_c0_reshaped_axes_0, x = concat_21_cast_fp16)[name = tensor<string, []>("input_25_lstm_layer_1_lstm_c0_reshaped_cast_fp16")];
137
  tensor<string, []> input_25_lstm_layer_1_direction_0 = const()[name = tensor<string, []>("input_25_lstm_layer_1_direction_0"), val = tensor<string, []>("bidirectional")];
138
  tensor<bool, []> input_25_lstm_layer_1_output_sequence_0 = const()[name = tensor<string, []>("input_25_lstm_layer_1_output_sequence_0"), val = tensor<bool, []>(true)];
139
  tensor<string, []> input_25_lstm_layer_1_recurrent_activation_0 = const()[name = tensor<string, []>("input_25_lstm_layer_1_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
140
  tensor<string, []> input_25_lstm_layer_1_cell_activation_0 = const()[name = tensor<string, []>("input_25_lstm_layer_1_cell_activation_0"), val = tensor<string, []>("tanh")];
141
  tensor<string, []> input_25_lstm_layer_1_activation_0 = const()[name = tensor<string, []>("input_25_lstm_layer_1_activation_0"), val = tensor<string, []>("tanh")];
142
+ tensor<fp16, [512, 256]> concat_16_to_fp16 = const()[name = tensor<string, []>("concat_16_to_fp16"), val = tensor<fp16, [512, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(513600)))];
143
+ tensor<fp16, [512, 128]> concat_17_to_fp16 = const()[name = tensor<string, []>("concat_17_to_fp16"), val = tensor<fp16, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(775808)))];
144
+ tensor<fp16, [512]> add_2_to_fp16 = const()[name = tensor<string, []>("add_2_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(906944)))];
145
+ tensor<fp16, [512, 256]> concat_18_to_fp16 = const()[name = tensor<string, []>("concat_18_to_fp16"), val = tensor<fp16, [512, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(908032)))];
146
+ tensor<fp16, [512, 128]> concat_19_to_fp16 = const()[name = tensor<string, []>("concat_19_to_fp16"), val = tensor<fp16, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1170240)))];
147
+ tensor<fp16, [512]> add_3_to_fp16 = const()[name = tensor<string, []>("add_3_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1301376)))];
148
+ tensor<fp16, [589, ?, 256]> input_25_lstm_layer_1_cast_fp16_0, tensor<fp16, [?, 256]> input_25_lstm_layer_1_cast_fp16_1, tensor<fp16, [?, 256]> input_25_lstm_layer_1_cast_fp16_2 = lstm(activation = input_25_lstm_layer_1_activation_0, bias = add_2_to_fp16, bias_back = add_3_to_fp16, cell_activation = input_25_lstm_layer_1_cell_activation_0, direction = input_25_lstm_layer_1_direction_0, initial_c = input_25_lstm_layer_1_lstm_c0_reshaped_cast_fp16, initial_h = input_25_lstm_layer_1_lstm_h0_reshaped_cast_fp16, output_sequence = input_25_lstm_layer_1_output_sequence_0, recurrent_activation = input_25_lstm_layer_1_recurrent_activation_0, weight_hh = concat_17_to_fp16, weight_hh_back = concat_19_to_fp16, weight_ih = concat_16_to_fp16, weight_ih_back = concat_18_to_fp16, x = input_25_lstm_layer_0_cast_fp16_0)[name = tensor<string, []>("input_25_lstm_layer_1_cast_fp16")];
149
  tensor<int32, [2]> split_30_split_sizes_0 = const()[name = tensor<string, []>("split_30_split_sizes_0"), val = tensor<int32, [2]>([1, 1])];
150
  tensor<int32, []> split_30_axis_0 = const()[name = tensor<string, []>("split_30_axis_0"), val = tensor<int32, []>(0)];
151
+ tensor<fp16, [1, ?, 128]> split_30_cast_fp16_0, tensor<fp16, [1, ?, 128]> split_30_cast_fp16_1 = split(axis = split_30_axis_0, split_sizes = split_30_split_sizes_0, x = split_0_cast_fp16_2)[name = tensor<string, []>("split_30_cast_fp16")];
152
  tensor<int32, []> concat_30_axis_0 = const()[name = tensor<string, []>("concat_30_axis_0"), val = tensor<int32, []>(2)];
153
  tensor<bool, []> concat_30_interleave_0 = const()[name = tensor<string, []>("concat_30_interleave_0"), val = tensor<bool, []>(false)];
154
+ tensor<fp16, [1, ?, 256]> concat_30_cast_fp16 = concat(axis = concat_30_axis_0, interleave = concat_30_interleave_0, values = (split_30_cast_fp16_0, split_30_cast_fp16_1))[name = tensor<string, []>("concat_30_cast_fp16")];
155
  tensor<int32, [1]> input_25_lstm_layer_2_lstm_h0_reshaped_axes_0 = const()[name = tensor<string, []>("input_25_lstm_layer_2_lstm_h0_reshaped_axes_0"), val = tensor<int32, [1]>([0])];
156
+ tensor<fp16, [?, 256]> input_25_lstm_layer_2_lstm_h0_reshaped_cast_fp16 = squeeze(axes = input_25_lstm_layer_2_lstm_h0_reshaped_axes_0, x = concat_30_cast_fp16)[name = tensor<string, []>("input_25_lstm_layer_2_lstm_h0_reshaped_cast_fp16")];
157
  tensor<int32, [2]> split_31_split_sizes_0 = const()[name = tensor<string, []>("split_31_split_sizes_0"), val = tensor<int32, [2]>([1, 1])];
158
  tensor<int32, []> split_31_axis_0 = const()[name = tensor<string, []>("split_31_axis_0"), val = tensor<int32, []>(0)];
159
+ tensor<fp16, [1, ?, 128]> split_31_cast_fp16_0, tensor<fp16, [1, ?, 128]> split_31_cast_fp16_1 = split(axis = split_31_axis_0, split_sizes = split_31_split_sizes_0, x = split_1_cast_fp16_2)[name = tensor<string, []>("split_31_cast_fp16")];
160
  tensor<int32, []> concat_31_axis_0 = const()[name = tensor<string, []>("concat_31_axis_0"), val = tensor<int32, []>(2)];
161
  tensor<bool, []> concat_31_interleave_0 = const()[name = tensor<string, []>("concat_31_interleave_0"), val = tensor<bool, []>(false)];
162
+ tensor<fp16, [1, ?, 256]> concat_31_cast_fp16 = concat(axis = concat_31_axis_0, interleave = concat_31_interleave_0, values = (split_31_cast_fp16_0, split_31_cast_fp16_1))[name = tensor<string, []>("concat_31_cast_fp16")];
163
  tensor<int32, [1]> input_25_lstm_layer_2_lstm_c0_reshaped_axes_0 = const()[name = tensor<string, []>("input_25_lstm_layer_2_lstm_c0_reshaped_axes_0"), val = tensor<int32, [1]>([0])];
164
+ tensor<fp16, [?, 256]> input_25_lstm_layer_2_lstm_c0_reshaped_cast_fp16 = squeeze(axes = input_25_lstm_layer_2_lstm_c0_reshaped_axes_0, x = concat_31_cast_fp16)[name = tensor<string, []>("input_25_lstm_layer_2_lstm_c0_reshaped_cast_fp16")];
165
  tensor<string, []> input_25_lstm_layer_2_direction_0 = const()[name = tensor<string, []>("input_25_lstm_layer_2_direction_0"), val = tensor<string, []>("bidirectional")];
166
  tensor<bool, []> input_25_lstm_layer_2_output_sequence_0 = const()[name = tensor<string, []>("input_25_lstm_layer_2_output_sequence_0"), val = tensor<bool, []>(true)];
167
  tensor<string, []> input_25_lstm_layer_2_recurrent_activation_0 = const()[name = tensor<string, []>("input_25_lstm_layer_2_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
168
  tensor<string, []> input_25_lstm_layer_2_cell_activation_0 = const()[name = tensor<string, []>("input_25_lstm_layer_2_cell_activation_0"), val = tensor<string, []>("tanh")];
169
  tensor<string, []> input_25_lstm_layer_2_activation_0 = const()[name = tensor<string, []>("input_25_lstm_layer_2_activation_0"), val = tensor<string, []>("tanh")];
170
+ tensor<fp16, [512, 256]> concat_26_to_fp16 = const()[name = tensor<string, []>("concat_26_to_fp16"), val = tensor<fp16, [512, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1302464)))];
171
+ tensor<fp16, [512, 128]> concat_27_to_fp16 = const()[name = tensor<string, []>("concat_27_to_fp16"), val = tensor<fp16, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1564672)))];
172
+ tensor<fp16, [512]> add_4_to_fp16 = const()[name = tensor<string, []>("add_4_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1695808)))];
173
+ tensor<fp16, [512, 256]> concat_28_to_fp16 = const()[name = tensor<string, []>("concat_28_to_fp16"), val = tensor<fp16, [512, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1696896)))];
174
+ tensor<fp16, [512, 128]> concat_29_to_fp16 = const()[name = tensor<string, []>("concat_29_to_fp16"), val = tensor<fp16, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1959104)))];
175
+ tensor<fp16, [512]> add_5_to_fp16 = const()[name = tensor<string, []>("add_5_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2090240)))];
176
+ tensor<fp16, [589, ?, 256]> input_25_lstm_layer_2_cast_fp16_0, tensor<fp16, [?, 256]> input_25_lstm_layer_2_cast_fp16_1, tensor<fp16, [?, 256]> input_25_lstm_layer_2_cast_fp16_2 = lstm(activation = input_25_lstm_layer_2_activation_0, bias = add_4_to_fp16, bias_back = add_5_to_fp16, cell_activation = input_25_lstm_layer_2_cell_activation_0, direction = input_25_lstm_layer_2_direction_0, initial_c = input_25_lstm_layer_2_lstm_c0_reshaped_cast_fp16, initial_h = input_25_lstm_layer_2_lstm_h0_reshaped_cast_fp16, output_sequence = input_25_lstm_layer_2_output_sequence_0, recurrent_activation = input_25_lstm_layer_2_recurrent_activation_0, weight_hh = concat_27_to_fp16, weight_hh_back = concat_29_to_fp16, weight_ih = concat_26_to_fp16, weight_ih_back = concat_28_to_fp16, x = input_25_lstm_layer_1_cast_fp16_0)[name = tensor<string, []>("input_25_lstm_layer_2_cast_fp16")];
177
  tensor<int32, [2]> split_40_split_sizes_0 = const()[name = tensor<string, []>("split_40_split_sizes_0"), val = tensor<int32, [2]>([1, 1])];
178
  tensor<int32, []> split_40_axis_0 = const()[name = tensor<string, []>("split_40_axis_0"), val = tensor<int32, []>(0)];
179
+ tensor<fp16, [1, ?, 128]> split_40_cast_fp16_0, tensor<fp16, [1, ?, 128]> split_40_cast_fp16_1 = split(axis = split_40_axis_0, split_sizes = split_40_split_sizes_0, x = split_0_cast_fp16_3)[name = tensor<string, []>("split_40_cast_fp16")];
180
  tensor<int32, []> concat_40_axis_0 = const()[name = tensor<string, []>("concat_40_axis_0"), val = tensor<int32, []>(2)];
181
  tensor<bool, []> concat_40_interleave_0 = const()[name = tensor<string, []>("concat_40_interleave_0"), val = tensor<bool, []>(false)];
182
+ tensor<fp16, [1, ?, 256]> concat_40_cast_fp16 = concat(axis = concat_40_axis_0, interleave = concat_40_interleave_0, values = (split_40_cast_fp16_0, split_40_cast_fp16_1))[name = tensor<string, []>("concat_40_cast_fp16")];
183
  tensor<int32, [1]> input_25_batch_first_lstm_h0_reshaped_axes_0 = const()[name = tensor<string, []>("input_25_batch_first_lstm_h0_reshaped_axes_0"), val = tensor<int32, [1]>([0])];
184
+ tensor<fp16, [?, 256]> input_25_batch_first_lstm_h0_reshaped_cast_fp16 = squeeze(axes = input_25_batch_first_lstm_h0_reshaped_axes_0, x = concat_40_cast_fp16)[name = tensor<string, []>("input_25_batch_first_lstm_h0_reshaped_cast_fp16")];
185
  tensor<int32, [2]> split_41_split_sizes_0 = const()[name = tensor<string, []>("split_41_split_sizes_0"), val = tensor<int32, [2]>([1, 1])];
186
  tensor<int32, []> split_41_axis_0 = const()[name = tensor<string, []>("split_41_axis_0"), val = tensor<int32, []>(0)];
187
+ tensor<fp16, [1, ?, 128]> split_41_cast_fp16_0, tensor<fp16, [1, ?, 128]> split_41_cast_fp16_1 = split(axis = split_41_axis_0, split_sizes = split_41_split_sizes_0, x = split_1_cast_fp16_3)[name = tensor<string, []>("split_41_cast_fp16")];
188
  tensor<int32, []> concat_41_axis_0 = const()[name = tensor<string, []>("concat_41_axis_0"), val = tensor<int32, []>(2)];
189
  tensor<bool, []> concat_41_interleave_0 = const()[name = tensor<string, []>("concat_41_interleave_0"), val = tensor<bool, []>(false)];
190
+ tensor<fp16, [1, ?, 256]> concat_41_cast_fp16 = concat(axis = concat_41_axis_0, interleave = concat_41_interleave_0, values = (split_41_cast_fp16_0, split_41_cast_fp16_1))[name = tensor<string, []>("concat_41_cast_fp16")];
191
  tensor<int32, [1]> input_25_batch_first_lstm_c0_reshaped_axes_0 = const()[name = tensor<string, []>("input_25_batch_first_lstm_c0_reshaped_axes_0"), val = tensor<int32, [1]>([0])];
192
+ tensor<fp16, [?, 256]> input_25_batch_first_lstm_c0_reshaped_cast_fp16 = squeeze(axes = input_25_batch_first_lstm_c0_reshaped_axes_0, x = concat_41_cast_fp16)[name = tensor<string, []>("input_25_batch_first_lstm_c0_reshaped_cast_fp16")];
193
  tensor<string, []> input_25_batch_first_direction_0 = const()[name = tensor<string, []>("input_25_batch_first_direction_0"), val = tensor<string, []>("bidirectional")];
194
  tensor<bool, []> input_25_batch_first_output_sequence_0 = const()[name = tensor<string, []>("input_25_batch_first_output_sequence_0"), val = tensor<bool, []>(true)];
195
  tensor<string, []> input_25_batch_first_recurrent_activation_0 = const()[name = tensor<string, []>("input_25_batch_first_recurrent_activation_0"), val = tensor<string, []>("sigmoid")];
196
  tensor<string, []> input_25_batch_first_cell_activation_0 = const()[name = tensor<string, []>("input_25_batch_first_cell_activation_0"), val = tensor<string, []>("tanh")];
197
  tensor<string, []> input_25_batch_first_activation_0 = const()[name = tensor<string, []>("input_25_batch_first_activation_0"), val = tensor<string, []>("tanh")];
198
+ tensor<fp16, [512, 256]> concat_36_to_fp16 = const()[name = tensor<string, []>("concat_36_to_fp16"), val = tensor<fp16, [512, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2091328)))];
199
+ tensor<fp16, [512, 128]> concat_37_to_fp16 = const()[name = tensor<string, []>("concat_37_to_fp16"), val = tensor<fp16, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2353536)))];
200
+ tensor<fp16, [512]> add_6_to_fp16 = const()[name = tensor<string, []>("add_6_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2484672)))];
201
+ tensor<fp16, [512, 256]> concat_38_to_fp16 = const()[name = tensor<string, []>("concat_38_to_fp16"), val = tensor<fp16, [512, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2485760)))];
202
+ tensor<fp16, [512, 128]> concat_39_to_fp16 = const()[name = tensor<string, []>("concat_39_to_fp16"), val = tensor<fp16, [512, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2747968)))];
203
+ tensor<fp16, [512]> add_7_to_fp16 = const()[name = tensor<string, []>("add_7_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2879104)))];
204
+ tensor<fp16, [589, ?, 256]> input_25_batch_first_cast_fp16_0, tensor<fp16, [?, 256]> input_25_batch_first_cast_fp16_1, tensor<fp16, [?, 256]> input_25_batch_first_cast_fp16_2 = lstm(activation = input_25_batch_first_activation_0, bias = add_6_to_fp16, bias_back = add_7_to_fp16, cell_activation = input_25_batch_first_cell_activation_0, direction = input_25_batch_first_direction_0, initial_c = input_25_batch_first_lstm_c0_reshaped_cast_fp16, initial_h = input_25_batch_first_lstm_h0_reshaped_cast_fp16, output_sequence = input_25_batch_first_output_sequence_0, recurrent_activation = input_25_batch_first_recurrent_activation_0, weight_hh = concat_37_to_fp16, weight_hh_back = concat_39_to_fp16, weight_ih = concat_36_to_fp16, weight_ih_back = concat_38_to_fp16, x = input_25_lstm_layer_2_cast_fp16_0)[name = tensor<string, []>("input_25_batch_first_cast_fp16")];
205
  tensor<int32, [3]> input_25_perm_0 = const()[name = tensor<string, []>("input_25_perm_0"), val = tensor<int32, [3]>([1, 0, 2])];
206
+ tensor<fp16, [128, 256]> linear_0_weight_to_fp16 = const()[name = tensor<string, []>("linear_0_weight_to_fp16"), val = tensor<fp16, [128, 256]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2880192)))];
207
+ tensor<fp16, [128]> linear_0_bias_to_fp16 = const()[name = tensor<string, []>("linear_0_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2945792)))];
208
+ tensor<fp16, [?, 589, 256]> input_25_cast_fp16 = transpose(perm = input_25_perm_0, x = input_25_batch_first_cast_fp16_0)[name = tensor<string, []>("transpose_4")];
209
+ tensor<fp16, [?, 589, 128]> linear_0_cast_fp16 = linear(bias = linear_0_bias_to_fp16, weight = linear_0_weight_to_fp16, x = input_25_cast_fp16)[name = tensor<string, []>("linear_0_cast_fp16")];
210
  tensor<fp32, []> var_220 = const()[name = tensor<string, []>("op_220"), val = tensor<fp32, []>(0x1.47ae14p-7)];
211
+ tensor<fp16, [?, 589, 128]> input_29_cast_fp16 = leaky_relu(alpha = var_220, x = linear_0_cast_fp16)[name = tensor<string, []>("input_29_cast_fp16")];
212
+ tensor<fp16, [128, 128]> linear_1_weight_to_fp16 = const()[name = tensor<string, []>("linear_1_weight_to_fp16"), val = tensor<fp16, [128, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2946112)))];
213
+ tensor<fp16, [128]> linear_1_bias_to_fp16 = const()[name = tensor<string, []>("linear_1_bias_to_fp16"), val = tensor<fp16, [128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2978944)))];
214
+ tensor<fp16, [?, 589, 128]> linear_1_cast_fp16 = linear(bias = linear_1_bias_to_fp16, weight = linear_1_weight_to_fp16, x = input_29_cast_fp16)[name = tensor<string, []>("linear_1_cast_fp16")];
215
  tensor<fp32, []> var_225 = const()[name = tensor<string, []>("op_225"), val = tensor<fp32, []>(0x1.47ae14p-7)];
216
+ tensor<fp16, [?, 589, 128]> input_33_cast_fp16 = leaky_relu(alpha = var_225, x = linear_1_cast_fp16)[name = tensor<string, []>("input_33_cast_fp16")];
217
+ tensor<fp16, [7, 128]> classifier_weight_to_fp16 = const()[name = tensor<string, []>("classifier_weight_to_fp16"), val = tensor<fp16, [7, 128]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(2979264)))];
218
+ tensor<fp16, [7]> classifier_bias_to_fp16 = const()[name = tensor<string, []>("classifier_bias_to_fp16"), val = tensor<fp16, [7]>([-0x1.01p+0, 0x1.67cp-2, 0x1.3d8p-1, 0x1.c8cp-2, -0x1.444p-2, -0x1.59p-1, -0x1.8fcp-2])];
219
+ tensor<fp16, [?, 589, 7]> linear_2_cast_fp16 = linear(bias = classifier_bias_to_fp16, weight = classifier_weight_to_fp16, x = input_33_cast_fp16)[name = tensor<string, []>("linear_2_cast_fp16")];
220
+ tensor<string, []> linear_2_cast_fp16_to_fp32_dtype_0 = const()[name = tensor<string, []>("linear_2_cast_fp16_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
221
  tensor<int32, []> var_231 = const()[name = tensor<string, []>("op_231"), val = tensor<int32, []>(-1)];
222
+ tensor<fp32, [?, 589, 7]> linear_2_cast_fp16_to_fp32 = cast(dtype = linear_2_cast_fp16_to_fp32_dtype_0, x = linear_2_cast_fp16)[name = tensor<string, []>("cast_16")];
223
+ tensor<fp32, [?, 589, 7]> var_232_softmax = softmax(axis = var_231, x = linear_2_cast_fp16_to_fp32)[name = tensor<string, []>("op_232_softmax")];
224
  tensor<fp32, []> var_232_epsilon_0 = const()[name = tensor<string, []>("op_232_epsilon_0"), val = tensor<fp32, []>(0x1p-149)];
225
  tensor<fp32, [?, 589, 7]> log_probs = log(epsilon = var_232_epsilon_0, x = var_232_softmax)[name = tensor<string, []>("op_232")];
226
  } -> (log_probs);
Segmentation.mlmodelc/weights/weight.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c3189a64946c75bc24fcb98afe89ad78c52bdbadfdf65e857fb1b81e2cc9fbb2
3
- size 5959360
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0026d3483c74bc989fdd1649c5765ca5395235a6d140a698a2d87b95cddf56ae
3
+ size 2981120