program(1.0) [buildInfo = dict, tensor>({{"coremlc-component-MIL", "3402.3.2"}, {"coremlc-version", "3402.4.1"}, {"coremltools-component-torch", "2.6.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.3.0"}})] { func main(tensor audio) { tensor audio_to_fp16_dtype_0 = const()[name = tensor("audio_to_fp16_dtype_0"), val = tensor("fp16")]; tensor sincnet_wav_norm1d_weight_to_fp16 = const()[name = tensor("sincnet_wav_norm1d_weight_to_fp16"), val = tensor([0x1.44p-7])]; tensor sincnet_wav_norm1d_bias_to_fp16 = const()[name = tensor("sincnet_wav_norm1d_bias_to_fp16"), val = tensor([0x1.734p-5])]; tensor var_25_to_fp16 = const()[name = tensor("op_25_to_fp16"), val = tensor(0x1.5p-17)]; tensor audio_to_fp16 = cast(dtype = audio_to_fp16_dtype_0, x = audio)[name = tensor("cast_19")]; tensor var_41_cast_fp16 = instance_norm(beta = sincnet_wav_norm1d_bias_to_fp16, epsilon = var_25_to_fp16, gamma = sincnet_wav_norm1d_weight_to_fp16, x = audio_to_fp16)[name = tensor("op_41_cast_fp16")]; tensor outputs_pad_type_0 = const()[name = tensor("outputs_pad_type_0"), val = tensor("valid")]; tensor outputs_strides_0 = const()[name = tensor("outputs_strides_0"), val = tensor([10])]; tensor outputs_pad_0 = const()[name = tensor("outputs_pad_0"), val = tensor([0, 0])]; tensor outputs_dilations_0 = const()[name = tensor("outputs_dilations_0"), val = tensor([1])]; tensor outputs_groups_0 = const()[name = tensor("outputs_groups_0"), val = tensor(1)]; tensor var_113_to_fp16 = const()[name = tensor("op_113_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(64)))]; tensor outputs_cast_fp16 = conv(dilations = outputs_dilations_0, groups = outputs_groups_0, pad = outputs_pad_0, pad_type = outputs_pad_type_0, strides = outputs_strides_0, weight = var_113_to_fp16, x = var_41_cast_fp16)[name = tensor("outputs_cast_fp16")]; tensor input_1_cast_fp16 = abs(x = outputs_cast_fp16)[name = tensor("input_1_cast_fp16")]; tensor var_118 = const()[name = tensor("op_118"), val = tensor([3])]; tensor var_119 = const()[name = tensor("op_119"), val = tensor([3])]; tensor input_3_pad_type_0 = const()[name = tensor("input_3_pad_type_0"), val = tensor("custom")]; tensor input_3_pad_0 = const()[name = tensor("input_3_pad_0"), val = tensor([0, 0])]; tensor input_3_ceil_mode_0 = const()[name = tensor("input_3_ceil_mode_0"), val = tensor(false)]; tensor input_3_cast_fp16 = max_pool(ceil_mode = input_3_ceil_mode_0, kernel_sizes = var_118, pad = input_3_pad_0, pad_type = input_3_pad_type_0, strides = var_119, x = input_1_cast_fp16)[name = tensor("input_3_cast_fp16")]; tensor sincnet_norm1d_0_weight_to_fp16 = const()[name = tensor("sincnet_norm1d_0_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(40320)))]; tensor sincnet_norm1d_0_bias_to_fp16 = const()[name = tensor("sincnet_norm1d_0_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(40576)))]; tensor input_5_cast_fp16 = instance_norm(beta = sincnet_norm1d_0_bias_to_fp16, epsilon = var_25_to_fp16, gamma = sincnet_norm1d_0_weight_to_fp16, x = input_3_cast_fp16)[name = tensor("input_5_cast_fp16")]; tensor var_9_to_fp16 = const()[name = tensor("op_9_to_fp16"), val = tensor(0x1.47cp-7)]; tensor input_7_cast_fp16 = leaky_relu(alpha = var_9_to_fp16, x = input_5_cast_fp16)[name = tensor("input_7_cast_fp16")]; tensor input_9_pad_type_0 = const()[name = tensor("input_9_pad_type_0"), val = tensor("valid")]; tensor input_9_strides_0 = const()[name = tensor("input_9_strides_0"), val = tensor([1])]; tensor input_9_pad_0 = const()[name = tensor("input_9_pad_0"), val = tensor([0, 0])]; tensor input_9_dilations_0 = const()[name = tensor("input_9_dilations_0"), val = tensor([1])]; tensor input_9_groups_0 = const()[name = tensor("input_9_groups_0"), val = tensor(1)]; tensor sincnet_conv1d_1_weight_to_fp16 = const()[name = tensor("sincnet_conv1d_1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(40832)))]; tensor sincnet_conv1d_1_bias_to_fp16 = const()[name = tensor("sincnet_conv1d_1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(88896)))]; tensor input_9_cast_fp16 = conv(bias = sincnet_conv1d_1_bias_to_fp16, dilations = input_9_dilations_0, groups = input_9_groups_0, pad = input_9_pad_0, pad_type = input_9_pad_type_0, strides = input_9_strides_0, weight = sincnet_conv1d_1_weight_to_fp16, x = input_7_cast_fp16)[name = tensor("input_9_cast_fp16")]; tensor var_134 = const()[name = tensor("op_134"), val = tensor([3])]; tensor var_135 = const()[name = tensor("op_135"), val = tensor([3])]; tensor input_11_pad_type_0 = const()[name = tensor("input_11_pad_type_0"), val = tensor("custom")]; tensor input_11_pad_0 = const()[name = tensor("input_11_pad_0"), val = tensor([0, 0])]; tensor input_11_ceil_mode_0 = const()[name = tensor("input_11_ceil_mode_0"), val = tensor(false)]; tensor input_11_cast_fp16 = max_pool(ceil_mode = input_11_ceil_mode_0, kernel_sizes = var_134, pad = input_11_pad_0, pad_type = input_11_pad_type_0, strides = var_135, x = input_9_cast_fp16)[name = tensor("input_11_cast_fp16")]; tensor sincnet_norm1d_1_weight_to_fp16 = const()[name = tensor("sincnet_norm1d_1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(89088)))]; tensor sincnet_norm1d_1_bias_to_fp16 = const()[name = tensor("sincnet_norm1d_1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(89280)))]; tensor input_13_cast_fp16 = instance_norm(beta = sincnet_norm1d_1_bias_to_fp16, epsilon = var_25_to_fp16, gamma = sincnet_norm1d_1_weight_to_fp16, x = input_11_cast_fp16)[name = tensor("input_13_cast_fp16")]; tensor input_15_cast_fp16 = leaky_relu(alpha = var_9_to_fp16, x = input_13_cast_fp16)[name = tensor("input_15_cast_fp16")]; tensor input_17_pad_type_0 = const()[name = tensor("input_17_pad_type_0"), val = tensor("valid")]; tensor input_17_strides_0 = const()[name = tensor("input_17_strides_0"), val = tensor([1])]; tensor input_17_pad_0 = const()[name = tensor("input_17_pad_0"), val = tensor([0, 0])]; tensor input_17_dilations_0 = const()[name = tensor("input_17_dilations_0"), val = tensor([1])]; tensor input_17_groups_0 = const()[name = tensor("input_17_groups_0"), val = tensor(1)]; tensor sincnet_conv1d_2_weight_to_fp16 = const()[name = tensor("sincnet_conv1d_2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(89472)))]; tensor sincnet_conv1d_2_bias_to_fp16 = const()[name = tensor("sincnet_conv1d_2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(125568)))]; tensor input_17_cast_fp16 = conv(bias = sincnet_conv1d_2_bias_to_fp16, dilations = input_17_dilations_0, groups = input_17_groups_0, pad = input_17_pad_0, pad_type = input_17_pad_type_0, strides = input_17_strides_0, weight = sincnet_conv1d_2_weight_to_fp16, x = input_15_cast_fp16)[name = tensor("input_17_cast_fp16")]; tensor var_150 = const()[name = tensor("op_150"), val = tensor([3])]; tensor var_151 = const()[name = tensor("op_151"), val = tensor([3])]; tensor input_19_pad_type_0 = const()[name = tensor("input_19_pad_type_0"), val = tensor("custom")]; tensor input_19_pad_0 = const()[name = tensor("input_19_pad_0"), val = tensor([0, 0])]; tensor input_19_ceil_mode_0 = const()[name = tensor("input_19_ceil_mode_0"), val = tensor(false)]; tensor input_19_cast_fp16 = max_pool(ceil_mode = input_19_ceil_mode_0, kernel_sizes = var_150, pad = input_19_pad_0, pad_type = input_19_pad_type_0, strides = var_151, x = input_17_cast_fp16)[name = tensor("input_19_cast_fp16")]; tensor sincnet_norm1d_2_weight_to_fp16 = const()[name = tensor("sincnet_norm1d_2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(125760)))]; tensor sincnet_norm1d_2_bias_to_fp16 = const()[name = tensor("sincnet_norm1d_2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(125952)))]; tensor input_21_cast_fp16 = instance_norm(beta = sincnet_norm1d_2_bias_to_fp16, epsilon = var_25_to_fp16, gamma = sincnet_norm1d_2_weight_to_fp16, x = input_19_cast_fp16)[name = tensor("input_21_cast_fp16")]; tensor x_cast_fp16 = leaky_relu(alpha = var_9_to_fp16, x = input_21_cast_fp16)[name = tensor("x_cast_fp16")]; tensor transpose_4_perm_0 = const()[name = tensor("transpose_4_perm_0"), val = tensor([2, 0, 1])]; tensor transpose_4_cast_fp16_to_fp32_dtype_0 = const()[name = tensor("transpose_4_cast_fp16_to_fp32_dtype_0"), val = tensor("fp32")]; tensor add_0 = const()[name = tensor("add_0"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(126144)))]; tensor add_1 = const()[name = tensor("add_1"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(128256)))]; tensor concat_4 = const()[name = tensor("concat_4"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(130368)))]; tensor concat_5 = const()[name = tensor("concat_5"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(253312)))]; tensor concat_6 = const()[name = tensor("concat_6"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(515520)))]; tensor concat_7 = const()[name = tensor("concat_7"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(638464)))]; tensor input_25_lstm_layer_0_lstm_h0_reshaped = const()[name = tensor("input_25_lstm_layer_0_lstm_h0_reshaped"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(900672)))]; tensor input_25_lstm_layer_0_direction_0 = const()[name = tensor("input_25_lstm_layer_0_direction_0"), val = tensor("bidirectional")]; tensor input_25_lstm_layer_0_output_sequence_0 = const()[name = tensor("input_25_lstm_layer_0_output_sequence_0"), val = tensor(true)]; tensor input_25_lstm_layer_0_recurrent_activation_0 = const()[name = tensor("input_25_lstm_layer_0_recurrent_activation_0"), val = tensor("sigmoid")]; tensor input_25_lstm_layer_0_cell_activation_0 = const()[name = tensor("input_25_lstm_layer_0_cell_activation_0"), val = tensor("tanh")]; tensor input_25_lstm_layer_0_activation_0 = const()[name = tensor("input_25_lstm_layer_0_activation_0"), val = tensor("tanh")]; tensor transpose_4_cast_fp16 = transpose(perm = transpose_4_perm_0, x = x_cast_fp16)[name = tensor("transpose_6")]; tensor transpose_4_cast_fp16_to_fp32 = cast(dtype = transpose_4_cast_fp16_to_fp32_dtype_0, x = transpose_4_cast_fp16)[name = tensor("cast_18")]; tensor input_25_lstm_layer_0_0, tensor input_25_lstm_layer_0_1, tensor input_25_lstm_layer_0_2 = lstm(activation = input_25_lstm_layer_0_activation_0, bias = add_0, bias_back = add_1, cell_activation = input_25_lstm_layer_0_cell_activation_0, direction = input_25_lstm_layer_0_direction_0, initial_c = input_25_lstm_layer_0_lstm_h0_reshaped, initial_h = input_25_lstm_layer_0_lstm_h0_reshaped, output_sequence = input_25_lstm_layer_0_output_sequence_0, recurrent_activation = input_25_lstm_layer_0_recurrent_activation_0, weight_hh = concat_5, weight_hh_back = concat_7, weight_ih = concat_4, weight_ih_back = concat_6, x = transpose_4_cast_fp16_to_fp32)[name = tensor("input_25_lstm_layer_0")]; tensor add_2 = const()[name = tensor("add_2"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(901760)))]; tensor add_3 = const()[name = tensor("add_3"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(903872)))]; tensor concat_14 = const()[name = tensor("concat_14"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(905984)))]; tensor concat_15 = const()[name = tensor("concat_15"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1430336)))]; tensor concat_16 = const()[name = tensor("concat_16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1692544)))]; tensor concat_17 = const()[name = tensor("concat_17"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(2216896)))]; tensor input_25_lstm_layer_1_direction_0 = const()[name = tensor("input_25_lstm_layer_1_direction_0"), val = tensor("bidirectional")]; tensor input_25_lstm_layer_1_output_sequence_0 = const()[name = tensor("input_25_lstm_layer_1_output_sequence_0"), val = tensor(true)]; tensor input_25_lstm_layer_1_recurrent_activation_0 = const()[name = tensor("input_25_lstm_layer_1_recurrent_activation_0"), val = tensor("sigmoid")]; tensor input_25_lstm_layer_1_cell_activation_0 = const()[name = tensor("input_25_lstm_layer_1_cell_activation_0"), val = tensor("tanh")]; tensor input_25_lstm_layer_1_activation_0 = const()[name = tensor("input_25_lstm_layer_1_activation_0"), val = tensor("tanh")]; tensor input_25_lstm_layer_1_0, tensor input_25_lstm_layer_1_1, tensor input_25_lstm_layer_1_2 = lstm(activation = input_25_lstm_layer_1_activation_0, bias = add_2, bias_back = add_3, cell_activation = input_25_lstm_layer_1_cell_activation_0, direction = input_25_lstm_layer_1_direction_0, initial_c = input_25_lstm_layer_0_lstm_h0_reshaped, initial_h = input_25_lstm_layer_0_lstm_h0_reshaped, output_sequence = input_25_lstm_layer_1_output_sequence_0, recurrent_activation = input_25_lstm_layer_1_recurrent_activation_0, weight_hh = concat_15, weight_hh_back = concat_17, weight_ih = concat_14, weight_ih_back = concat_16, x = input_25_lstm_layer_0_0)[name = tensor("input_25_lstm_layer_1")]; tensor add_4 = const()[name = tensor("add_4"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(2479104)))]; tensor add_5 = const()[name = tensor("add_5"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(2481216)))]; tensor concat_24 = const()[name = tensor("concat_24"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(2483328)))]; tensor concat_25 = const()[name = tensor("concat_25"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(3007680)))]; tensor concat_26 = const()[name = tensor("concat_26"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(3269888)))]; tensor concat_27 = const()[name = tensor("concat_27"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(3794240)))]; tensor input_25_lstm_layer_2_direction_0 = const()[name = tensor("input_25_lstm_layer_2_direction_0"), val = tensor("bidirectional")]; tensor input_25_lstm_layer_2_output_sequence_0 = const()[name = tensor("input_25_lstm_layer_2_output_sequence_0"), val = tensor(true)]; tensor input_25_lstm_layer_2_recurrent_activation_0 = const()[name = tensor("input_25_lstm_layer_2_recurrent_activation_0"), val = tensor("sigmoid")]; tensor input_25_lstm_layer_2_cell_activation_0 = const()[name = tensor("input_25_lstm_layer_2_cell_activation_0"), val = tensor("tanh")]; tensor input_25_lstm_layer_2_activation_0 = const()[name = tensor("input_25_lstm_layer_2_activation_0"), val = tensor("tanh")]; tensor input_25_lstm_layer_2_0, tensor input_25_lstm_layer_2_1, tensor input_25_lstm_layer_2_2 = lstm(activation = input_25_lstm_layer_2_activation_0, bias = add_4, bias_back = add_5, cell_activation = input_25_lstm_layer_2_cell_activation_0, direction = input_25_lstm_layer_2_direction_0, initial_c = input_25_lstm_layer_0_lstm_h0_reshaped, initial_h = input_25_lstm_layer_0_lstm_h0_reshaped, output_sequence = input_25_lstm_layer_2_output_sequence_0, recurrent_activation = input_25_lstm_layer_2_recurrent_activation_0, weight_hh = concat_25, weight_hh_back = concat_27, weight_ih = concat_24, weight_ih_back = concat_26, x = input_25_lstm_layer_1_0)[name = tensor("input_25_lstm_layer_2")]; tensor add_6 = const()[name = tensor("add_6"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4056448)))]; tensor add_7 = const()[name = tensor("add_7"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4058560)))]; tensor concat_34 = const()[name = tensor("concat_34"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4060672)))]; tensor concat_35 = const()[name = tensor("concat_35"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4585024)))]; tensor concat_36 = const()[name = tensor("concat_36"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4847232)))]; tensor concat_37 = const()[name = tensor("concat_37"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(5371584)))]; tensor input_25_batch_first_direction_0 = const()[name = tensor("input_25_batch_first_direction_0"), val = tensor("bidirectional")]; tensor input_25_batch_first_output_sequence_0 = const()[name = tensor("input_25_batch_first_output_sequence_0"), val = tensor(true)]; tensor input_25_batch_first_recurrent_activation_0 = const()[name = tensor("input_25_batch_first_recurrent_activation_0"), val = tensor("sigmoid")]; tensor input_25_batch_first_cell_activation_0 = const()[name = tensor("input_25_batch_first_cell_activation_0"), val = tensor("tanh")]; tensor input_25_batch_first_activation_0 = const()[name = tensor("input_25_batch_first_activation_0"), val = tensor("tanh")]; tensor input_25_batch_first_0, tensor input_25_batch_first_1, tensor input_25_batch_first_2 = lstm(activation = input_25_batch_first_activation_0, bias = add_6, bias_back = add_7, cell_activation = input_25_batch_first_cell_activation_0, direction = input_25_batch_first_direction_0, initial_c = input_25_lstm_layer_0_lstm_h0_reshaped, initial_h = input_25_lstm_layer_0_lstm_h0_reshaped, output_sequence = input_25_batch_first_output_sequence_0, recurrent_activation = input_25_batch_first_recurrent_activation_0, weight_hh = concat_35, weight_hh_back = concat_37, weight_ih = concat_34, weight_ih_back = concat_36, x = input_25_lstm_layer_2_0)[name = tensor("input_25_batch_first")]; tensor input_25_perm_0 = const()[name = tensor("input_25_perm_0"), val = tensor([1, 0, 2])]; tensor input_25_batch_first_0_to_fp16_dtype_0 = const()[name = tensor("input_25_batch_first_0_to_fp16_dtype_0"), val = tensor("fp16")]; tensor linear_0_weight_to_fp16 = const()[name = tensor("linear_0_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(5633792)))]; tensor linear_0_bias_to_fp16 = const()[name = tensor("linear_0_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(5699392)))]; tensor input_25_batch_first_0_to_fp16 = cast(dtype = input_25_batch_first_0_to_fp16_dtype_0, x = input_25_batch_first_0)[name = tensor("cast_17")]; tensor input_25_cast_fp16 = transpose(perm = input_25_perm_0, x = input_25_batch_first_0_to_fp16)[name = tensor("transpose_5")]; tensor linear_0_cast_fp16 = linear(bias = linear_0_bias_to_fp16, weight = linear_0_weight_to_fp16, x = input_25_cast_fp16)[name = tensor("linear_0_cast_fp16")]; tensor var_219_to_fp16 = const()[name = tensor("op_219_to_fp16"), val = tensor(0x1.47cp-7)]; tensor input_29_cast_fp16 = leaky_relu(alpha = var_219_to_fp16, x = linear_0_cast_fp16)[name = tensor("input_29_cast_fp16")]; tensor linear_1_weight_to_fp16 = const()[name = tensor("linear_1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(5699712)))]; tensor linear_1_bias_to_fp16 = const()[name = tensor("linear_1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(5732544)))]; tensor linear_1_cast_fp16 = linear(bias = linear_1_bias_to_fp16, weight = linear_1_weight_to_fp16, x = input_29_cast_fp16)[name = tensor("linear_1_cast_fp16")]; tensor var_224_to_fp16 = const()[name = tensor("op_224_to_fp16"), val = tensor(0x1.47cp-7)]; tensor input_33_cast_fp16 = leaky_relu(alpha = var_224_to_fp16, x = linear_1_cast_fp16)[name = tensor("input_33_cast_fp16")]; tensor classifier_weight_to_fp16 = const()[name = tensor("classifier_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(5732864)))]; tensor classifier_bias_to_fp16 = const()[name = tensor("classifier_bias_to_fp16"), val = tensor([-0x1.01p+0, 0x1.67cp-2, 0x1.3d8p-1, 0x1.c8cp-2, -0x1.444p-2, -0x1.59p-1, -0x1.8fcp-2])]; tensor linear_2_cast_fp16 = linear(bias = classifier_bias_to_fp16, weight = classifier_weight_to_fp16, x = input_33_cast_fp16)[name = tensor("linear_2_cast_fp16")]; tensor var_230 = const()[name = tensor("op_230"), val = tensor(-1)]; tensor var_231_softmax_cast_fp16 = softmax(axis = var_230, x = linear_2_cast_fp16)[name = tensor("op_231_softmax_cast_fp16")]; tensor var_231_epsilon_0_to_fp16 = const()[name = tensor("op_231_epsilon_0_to_fp16"), val = tensor(0x0p+0)]; tensor var_231_cast_fp16 = log(epsilon = var_231_epsilon_0_to_fp16, x = var_231_softmax_cast_fp16)[name = tensor("op_231_cast_fp16")]; tensor var_231_cast_fp16_to_fp32_dtype_0 = const()[name = tensor("op_231_cast_fp16_to_fp32_dtype_0"), val = tensor("fp32")]; tensor segments = cast(dtype = var_231_cast_fp16_to_fp32_dtype_0, x = var_231_cast_fp16)[name = tensor("cast_16")]; } -> (segments); }