--- pipeline_tag: text-generation inference: false license: apache-2.0 library_name: transformers tags: - language - granite-3.3 - mlx - mlx-my-repo base_model: ibm-granite/granite-3.3-8b-instruct --- # Fmuaddib/granite-3.3-8b-instruct-mlx-fp16 The Model [Fmuaddib/granite-3.3-8b-instruct-mlx-fp16](https://huggingface.co/Fmuaddib/granite-3.3-8b-instruct-mlx-fp16) was converted to MLX format from [ibm-granite/granite-3.3-8b-instruct](https://huggingface.co/ibm-granite/granite-3.3-8b-instruct) using mlx-lm version **0.22.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("Fmuaddib/granite-3.3-8b-instruct-mlx-fp16") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```