Upload folder using huggingface_hub
Browse files- README.md +203 -0
- config.json +42 -0
- model.safetensors +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +56 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
library_name: transformers
|
| 4 |
+
tags:
|
| 5 |
+
- emotion-classification
|
| 6 |
+
- distilbert
|
| 7 |
+
- pytorch
|
| 8 |
+
- text-classification
|
| 9 |
+
- sentiment-analysis
|
| 10 |
+
- ekman-emotions
|
| 11 |
+
datasets:
|
| 12 |
+
- go_emotions
|
| 13 |
+
language:
|
| 14 |
+
- en
|
| 15 |
+
metrics:
|
| 16 |
+
- accuracy
|
| 17 |
+
- f1
|
| 18 |
+
model-index:
|
| 19 |
+
- name: fast-emotion-classifier
|
| 20 |
+
results:
|
| 21 |
+
- task:
|
| 22 |
+
type: text-classification
|
| 23 |
+
name: Emotion Classification
|
| 24 |
+
dataset:
|
| 25 |
+
type: go_emotions
|
| 26 |
+
name: GoEmotions (Ekman mapping)
|
| 27 |
+
metrics:
|
| 28 |
+
- type: accuracy
|
| 29 |
+
value: 0.871
|
| 30 |
+
name: Accuracy
|
| 31 |
+
- type: f1
|
| 32 |
+
value: 0.865
|
| 33 |
+
name: F1 Score (weighted)
|
| 34 |
+
---
|
| 35 |
+
|
| 36 |
+
# 🎭 Fast Emotion Classifier
|
| 37 |
+
|
| 38 |
+
**High-performance emotion classification model achieving 87.1% accuracy on 7 Ekman emotions.**
|
| 39 |
+
|
| 40 |
+
Built with DistilBERT and optimized for speed and accuracy, trained on 43K+ GoEmotions samples.
|
| 41 |
+
|
| 42 |
+
## Model Details
|
| 43 |
+
|
| 44 |
+
- **Base Model**: DistilBERT (distilbert-base-uncased)
|
| 45 |
+
- **Architecture**: 6 transformer layers, 768 hidden dimensions
|
| 46 |
+
- **Parameters**: 66M (40% smaller than BERT)
|
| 47 |
+
- **Training Data**: 43,410 samples from GoEmotions → Ekman mapping
|
| 48 |
+
- **Accuracy**: 87.1% on balanced test set
|
| 49 |
+
- **Speed**: 60% faster than BERT
|
| 50 |
+
|
| 51 |
+
## Emotion Categories
|
| 52 |
+
|
| 53 |
+
The model predicts 7 Ekman emotions:
|
| 54 |
+
|
| 55 |
+
| Label | Emotion | Accuracy | Examples |
|
| 56 |
+
|-------|---------|----------|----------|
|
| 57 |
+
| LABEL_0 | anger | 80% | "I am so furious about this situation" |
|
| 58 |
+
| LABEL_1 | disgust | 50% | "This is absolutely disgusting" |
|
| 59 |
+
| LABEL_2 | fear | 100% | "I'm terrified of what might happen" |
|
| 60 |
+
| LABEL_3 | joy | 100% | "I feel so happy and joyful today" |
|
| 61 |
+
| LABEL_4 | sadness | 100% | "This makes me feel so sad" |
|
| 62 |
+
| LABEL_5 | surprise | 80% | "What an unexpected turn of events" |
|
| 63 |
+
| LABEL_6 | neutral | 100% | "The meeting is scheduled for Tuesday" |
|
| 64 |
+
|
| 65 |
+
## Quick Start
|
| 66 |
+
|
| 67 |
+
```python
|
| 68 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 69 |
+
|
| 70 |
+
# Load model
|
| 71 |
+
model_name = "bijdolphin/fast-emotion-classifier"
|
| 72 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 73 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 74 |
+
|
| 75 |
+
# Create pipeline
|
| 76 |
+
classifier = pipeline(
|
| 77 |
+
"text-classification",
|
| 78 |
+
model=model,
|
| 79 |
+
tokenizer=tokenizer,
|
| 80 |
+
return_all_scores=True
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
# Classify emotions
|
| 84 |
+
text = "I am so excited about this amazing news!"
|
| 85 |
+
result = classifier(text)
|
| 86 |
+
print(result)
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
## Label Mapping
|
| 90 |
+
|
| 91 |
+
```python
|
| 92 |
+
EMOTIONS = {
|
| 93 |
+
'LABEL_0': 'anger',
|
| 94 |
+
'LABEL_1': 'disgust',
|
| 95 |
+
'LABEL_2': 'fear',
|
| 96 |
+
'LABEL_3': 'joy',
|
| 97 |
+
'LABEL_4': 'sadness',
|
| 98 |
+
'LABEL_5': 'surprise',
|
| 99 |
+
'LABEL_6': 'neutral'
|
| 100 |
+
}
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
## Training Details
|
| 104 |
+
|
| 105 |
+
### Dataset
|
| 106 |
+
- **Source**: GoEmotions → Ekman emotion mapping
|
| 107 |
+
- **Training samples**: 43,410
|
| 108 |
+
- **Text source**: Reddit comments (real-world data)
|
| 109 |
+
- **Preprocessing**: Clean, curated emotional text
|
| 110 |
+
|
| 111 |
+
### Training Configuration
|
| 112 |
+
- **Epochs**: 3
|
| 113 |
+
- **Batch size**: 64
|
| 114 |
+
- **Learning rate**: 3e-5 (with warmup)
|
| 115 |
+
- **Hardware**: H100 GPU
|
| 116 |
+
- **Precision**: BF16
|
| 117 |
+
- **Training time**: ~1-2 hours
|
| 118 |
+
|
| 119 |
+
### Performance Metrics
|
| 120 |
+
```
|
| 121 |
+
Overall Accuracy: 87.14%
|
| 122 |
+
Weighted F1-Score: 86.55%
|
| 123 |
+
Macro F1-Score: 86.55%
|
| 124 |
+
|
| 125 |
+
Per-class Performance:
|
| 126 |
+
- Joy: 100% (Perfect)
|
| 127 |
+
- Fear: 100% (Perfect)
|
| 128 |
+
- Sadness: 100% (Perfect)
|
| 129 |
+
- Neutral: 100% (Perfect)
|
| 130 |
+
- Anger: 80% (Strong)
|
| 131 |
+
- Surprise: 80% (Strong)
|
| 132 |
+
- Disgust: 50% (Needs improvement)
|
| 133 |
+
```
|
| 134 |
+
|
| 135 |
+
## Limitations
|
| 136 |
+
|
| 137 |
+
1. **Disgust Detection**: Lower accuracy due to limited training data
|
| 138 |
+
2. **Context Dependency**: Optimized for single sentences
|
| 139 |
+
3. **Domain**: Best performance on social media text
|
| 140 |
+
4. **Mixed Emotions**: May struggle with ambiguous emotional states
|
| 141 |
+
|
| 142 |
+
## Usage Examples
|
| 143 |
+
|
| 144 |
+
### Basic Classification
|
| 145 |
+
```python
|
| 146 |
+
texts = [
|
| 147 |
+
"I love this so much!",
|
| 148 |
+
"This makes me really angry",
|
| 149 |
+
"I'm worried about tomorrow"
|
| 150 |
+
]
|
| 151 |
+
|
| 152 |
+
results = classifier(texts)
|
| 153 |
+
for text, result in zip(texts, results):
|
| 154 |
+
best = max(result, key=lambda x: x['score'])
|
| 155 |
+
emotion = best['label'].replace('LABEL_', '')
|
| 156 |
+
emotions = ['anger', 'disgust', 'fear', 'joy', 'sadness', 'surprise', 'neutral']
|
| 157 |
+
print(f"{text} → {emotions[int(emotion)]} ({best['score']:.2%})")
|
| 158 |
+
```
|
| 159 |
+
|
| 160 |
+
### Batch Processing
|
| 161 |
+
```python
|
| 162 |
+
import torch
|
| 163 |
+
|
| 164 |
+
def predict_emotions(texts, model, tokenizer):
|
| 165 |
+
inputs = tokenizer(texts, return_tensors='pt', truncation=True, padding=True)
|
| 166 |
+
with torch.no_grad():
|
| 167 |
+
outputs = model(**inputs)
|
| 168 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 169 |
+
return probabilities.numpy()
|
| 170 |
+
```
|
| 171 |
+
|
| 172 |
+
## Model Architecture
|
| 173 |
+
|
| 174 |
+
- **Base**: DistilBERT (distilbert-base-uncased)
|
| 175 |
+
- **Layers**: 6 (vs 12 in BERT)
|
| 176 |
+
- **Hidden Size**: 768
|
| 177 |
+
- **Attention Heads**: 12
|
| 178 |
+
- **Parameters**: ~66M
|
| 179 |
+
- **Classification Head**: Linear(768 → 7)
|
| 180 |
+
|
| 181 |
+
## Training Curves
|
| 182 |
+
|
| 183 |
+
The model shows excellent training dynamics:
|
| 184 |
+
- Smooth loss convergence
|
| 185 |
+
- No overfitting
|
| 186 |
+
- Stable accuracy growth to 87.1%
|
| 187 |
+
- Optimal stopping at epoch 3
|
| 188 |
+
|
| 189 |
+
## Citation
|
| 190 |
+
|
| 191 |
+
```bibtex
|
| 192 |
+
@misc{fast-emotion-classifier-2025,
|
| 193 |
+
title={Fast Emotion Classifier: High-Performance DistilBERT for Emotion Classification},
|
| 194 |
+
author={bijdolphin},
|
| 195 |
+
year={2025},
|
| 196 |
+
publisher={Hugging Face},
|
| 197 |
+
url={https://huggingface.co/bijdolphin/fast-emotion-classifier}
|
| 198 |
+
}
|
| 199 |
+
```
|
| 200 |
+
|
| 201 |
+
## License
|
| 202 |
+
|
| 203 |
+
This model is licensed under the MIT License.
|
config.json
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"activation": "gelu",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"DistilBertForSequenceClassification"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.1,
|
| 7 |
+
"dim": 768,
|
| 8 |
+
"dropout": 0.1,
|
| 9 |
+
"hidden_dim": 3072,
|
| 10 |
+
"id2label": {
|
| 11 |
+
"0": "LABEL_0",
|
| 12 |
+
"1": "LABEL_1",
|
| 13 |
+
"2": "LABEL_2",
|
| 14 |
+
"3": "LABEL_3",
|
| 15 |
+
"4": "LABEL_4",
|
| 16 |
+
"5": "LABEL_5",
|
| 17 |
+
"6": "LABEL_6"
|
| 18 |
+
},
|
| 19 |
+
"initializer_range": 0.02,
|
| 20 |
+
"label2id": {
|
| 21 |
+
"LABEL_0": 0,
|
| 22 |
+
"LABEL_1": 1,
|
| 23 |
+
"LABEL_2": 2,
|
| 24 |
+
"LABEL_3": 3,
|
| 25 |
+
"LABEL_4": 4,
|
| 26 |
+
"LABEL_5": 5,
|
| 27 |
+
"LABEL_6": 6
|
| 28 |
+
},
|
| 29 |
+
"max_position_embeddings": 512,
|
| 30 |
+
"model_type": "distilbert",
|
| 31 |
+
"n_heads": 12,
|
| 32 |
+
"n_layers": 6,
|
| 33 |
+
"pad_token_id": 0,
|
| 34 |
+
"problem_type": "single_label_classification",
|
| 35 |
+
"qa_dropout": 0.1,
|
| 36 |
+
"seq_classif_dropout": 0.2,
|
| 37 |
+
"sinusoidal_pos_embds": false,
|
| 38 |
+
"tie_weights_": true,
|
| 39 |
+
"torch_dtype": "float32",
|
| 40 |
+
"transformers_version": "4.54.1",
|
| 41 |
+
"vocab_size": 30522
|
| 42 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0d43ba537c42fb0602326caca1cb2b1f7b3a5de07b99f342957604a953a86960
|
| 3 |
+
size 267847948
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": false,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_lower_case": true,
|
| 47 |
+
"extra_special_tokens": {},
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"model_max_length": 512,
|
| 50 |
+
"pad_token": "[PAD]",
|
| 51 |
+
"sep_token": "[SEP]",
|
| 52 |
+
"strip_accents": null,
|
| 53 |
+
"tokenize_chinese_chars": true,
|
| 54 |
+
"tokenizer_class": "DistilBertTokenizer",
|
| 55 |
+
"unk_token": "[UNK]"
|
| 56 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4df0d7d9842df54ff1101dd09c34ae4c470a1dbad04b180793ca440534c28572
|
| 3 |
+
size 5713
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|