Add text-to-image pipeline tag and improve model card title (#1)
Browse files- Add text-to-image pipeline tag and improve model card title (690969923843c4745535f1a16a15bf0820dcc876)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
@@ -1,30 +1,28 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
datasets:
|
5 |
- Franklin0/ReasonGen-R1-RL-Geneval-12k
|
6 |
- Franklin0/ReasonGen-R1-RL-DPG-5k
|
7 |
- Franklin0/ReasonGen-R1-RL-T2I-11k
|
8 |
-
|
9 |
-
|
|
|
10 |
---
|
11 |
|
12 |
-
# Model Card for
|
13 |
|
14 |
-
|
15 |
Official checkpoint for the paper "[ReasonGen-R1: Cot for Autoregressive Image generation models through SFT and RL](https://huggingface.co/papers/2505.24875)".
|
16 |
|
17 |
Website: https://aka.ms/reasongen
|
18 |
|
19 |
Code: https://github.com/Franklin-Zhang0/Image-RL
|
20 |
|
21 |
-
|
22 |
-
|
23 |
<!-- markdownlint-disable first-line-h1 -->
|
24 |
<!-- markdownlint-disable html -->
|
25 |
<!-- markdownlint-disable no-duplicate-header -->
|
26 |
|
27 |
-
|
28 |
<h1> 🚀 ReasonGen-R1: <br> Cot for Autoregressive Image generation models through SFT and RL</h1>
|
29 |
|
30 |
</div>
|
@@ -41,9 +39,6 @@ Code: https://github.com/Franklin-Zhang0/Image-RL
|
|
41 |
|
42 |
</div>
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
<p align="center">
|
48 |
<a href="#2-model-download"><b>📥 Model Download</b></a> |
|
49 |
<a href="#3-quick-start"><b>⚡ Quick Start</b></a> |
|
@@ -73,6 +68,9 @@ Evaluations on Geneval, DPG, and the T2I benchmark demonstrate that ReasonGen-R1
|
|
73 |
| ReasonGen-R1 | [🤗 Hugging Face](https://huggingface.co/Franklin0/ReasonGen-R1) |
|
74 |
| ReasonGen-R1-SFT-Only | [🤗 Hugging Face](https://huggingface.co/Franklin0/ReasonGen-R1-SFT) |
|
75 |
|
|
|
|
|
|
|
76 |
|
77 |
|
78 |
## 3. Quick Start
|
@@ -90,7 +88,7 @@ conda activate image_rl
|
|
90 |
pip3 install torch==2.6.0 torchvision --index-url https://download.pytorch.org/whl/cu124
|
91 |
pip3 install flash-attn --no-build-isolation
|
92 |
git clone https://github.com/Franklin-Zhang0/ReasonGen-R1.git
|
93 |
-
cd
|
94 |
pip install -r requirements.txt
|
95 |
pip install -e .
|
96 |
pip install -e ./Janus
|
@@ -134,7 +132,7 @@ cd ~
|
|
134 |
cd project
|
135 |
git clone https://github.com/TencentQQGYLab/ELLA.git
|
136 |
cd ELLA
|
137 |
-
cp ~/project/ReasonGen-R1/requirements-for-dpg_bench.txt .
|
138 |
conda deactivate
|
139 |
conda create -n dpg_test python=3.9 -y
|
140 |
conda activate dpg_test
|
@@ -152,19 +150,19 @@ bash -i benchmark/dpg_eval.sh
|
|
152 |
### Inference
|
153 |
To inference with the ReasonGen-R1 model, you can use the following command:
|
154 |
```shell
|
155 |
-
python
|
156 |
```
|
157 |
|
158 |
### SFT Training
|
159 |
To train the SFT model from Janus-Pro-7B model on the ReasonGen-R1-SFT-200k dataset, you can use the following command:
|
160 |
```shell
|
161 |
-
bash
|
162 |
```
|
163 |
|
164 |
### RL Training
|
165 |
To train the RL model from the ReasonGen-R1-SFT model, you can use the following command:
|
166 |
```shell
|
167 |
-
bash
|
168 |
```
|
169 |
|
170 |
|
@@ -183,4 +181,4 @@ We would like to thank <a href="https://github.com/volcengine/verl">Verl</a>, up
|
|
183 |
primaryClass={cs.CV},
|
184 |
url={https://arxiv.org/abs/2505.24875},
|
185 |
}
|
186 |
-
```
|
|
|
1 |
---
|
2 |
+
base_model:
|
3 |
+
- deepseek-ai/Janus-Pro-7B
|
4 |
datasets:
|
5 |
- Franklin0/ReasonGen-R1-RL-Geneval-12k
|
6 |
- Franklin0/ReasonGen-R1-RL-DPG-5k
|
7 |
- Franklin0/ReasonGen-R1-RL-T2I-11k
|
8 |
+
library_name: transformers
|
9 |
+
license: apache-2.0
|
10 |
+
pipeline_tag: text-to-image
|
11 |
---
|
12 |
|
13 |
+
# Model Card for ReasonGen-R1: Chain-of-Thought Reasoning for Autoregressive Image Generation
|
14 |
|
15 |
+
ReasonGen-R1 is an autoregressive image generation model incorporating chain-of-thought reasoning.
|
16 |
Official checkpoint for the paper "[ReasonGen-R1: Cot for Autoregressive Image generation models through SFT and RL](https://huggingface.co/papers/2505.24875)".
|
17 |
|
18 |
Website: https://aka.ms/reasongen
|
19 |
|
20 |
Code: https://github.com/Franklin-Zhang0/Image-RL
|
21 |
|
|
|
|
|
22 |
<!-- markdownlint-disable first-line-h1 -->
|
23 |
<!-- markdownlint-disable html -->
|
24 |
<!-- markdownlint-disable no-duplicate-header -->
|
25 |
|
|
|
26 |
<h1> 🚀 ReasonGen-R1: <br> Cot for Autoregressive Image generation models through SFT and RL</h1>
|
27 |
|
28 |
</div>
|
|
|
39 |
|
40 |
</div>
|
41 |
|
|
|
|
|
|
|
42 |
<p align="center">
|
43 |
<a href="#2-model-download"><b>📥 Model Download</b></a> |
|
44 |
<a href="#3-quick-start"><b>⚡ Quick Start</b></a> |
|
|
|
68 |
| ReasonGen-R1 | [🤗 Hugging Face](https://huggingface.co/Franklin0/ReasonGen-R1) |
|
69 |
| ReasonGen-R1-SFT-Only | [🤗 Hugging Face](https://huggingface.co/Franklin0/ReasonGen-R1-SFT) |
|
70 |
|
71 |
+
| Dataset | Download |
|
72 |
+
|-----------------------|-----------------------------------------------------------------------------|
|
73 |
+
| ReasonGen-R1-Datasets | [🤗 Hugging Face](https://huggingface.co/collections/Franklin0/reasongen-r1-6836ed61fc4f6db543c0d368) |
|
74 |
|
75 |
|
76 |
## 3. Quick Start
|
|
|
88 |
pip3 install torch==2.6.0 torchvision --index-url https://download.pytorch.org/whl/cu124
|
89 |
pip3 install flash-attn --no-build-isolation
|
90 |
git clone https://github.com/Franklin-Zhang0/ReasonGen-R1.git
|
91 |
+
cd ReasonGen-R1
|
92 |
pip install -r requirements.txt
|
93 |
pip install -e .
|
94 |
pip install -e ./Janus
|
|
|
132 |
cd project
|
133 |
git clone https://github.com/TencentQQGYLab/ELLA.git
|
134 |
cd ELLA
|
135 |
+
cp ~/project/ReasonGen-R1/benchmark/requirements-for-dpg_bench.txt .
|
136 |
conda deactivate
|
137 |
conda create -n dpg_test python=3.9 -y
|
138 |
conda activate dpg_test
|
|
|
150 |
### Inference
|
151 |
To inference with the ReasonGen-R1 model, you can use the following command:
|
152 |
```shell
|
153 |
+
python ReasonGen-R1/Janus/cot_generate_inference.py
|
154 |
```
|
155 |
|
156 |
### SFT Training
|
157 |
To train the SFT model from Janus-Pro-7B model on the ReasonGen-R1-SFT-200k dataset, you can use the following command:
|
158 |
```shell
|
159 |
+
bash ReasonGen-R1/examples/janus_sft.sh
|
160 |
```
|
161 |
|
162 |
### RL Training
|
163 |
To train the RL model from the ReasonGen-R1-SFT model, you can use the following command:
|
164 |
```shell
|
165 |
+
bash ReasonGen-R1/Janus/janus_rl.py
|
166 |
```
|
167 |
|
168 |
|
|
|
181 |
primaryClass={cs.CV},
|
182 |
url={https://arxiv.org/abs/2505.24875},
|
183 |
}
|
184 |
+
```
|