source /linzhihang/conda_env/init.sh conda activate s2s cd /linzhihang/zhangyuhao/ACLlama_s2s/scripts prefix=/linzhihang/zhangyuhao/ACLlama_s2s # NAME TASK=S2S stage=finetune # edit in config model_size=small # edit in config lr=3e-5 # subtag=shareEmbW_CR_0507_base_Echox_s2s_pretrained_0503 # subtag=FirstTurnS2T+aligner_0505 # subtag=QA_OneTurn+aligner_Lora_0510 # subtag=ASR_UnitLanguage_4gram_BPE+aligner_0513 # subtag=QA_OneTurn_ALL_Lora_0516 # subtag=QA_OneTurn_ALL_Lora_0517 #subtag=QA_OneTurn_ALL_Lora_0618_newGen_80k_spm_epoch10-embedcon-10epoch-large-adapter-add-prefix subtag=kd_offline_base_merge_0820_tune_bench # base_model=/mnt/speech/zhangyuhao/text_to_speech/ACLlama_t2u/Echox_s2s_0516 # unit #base_model=/linzhihang/zhangyuhao/ACLlama_s2s/Echox_s2s_unit_language_0529 # unit language #base_model=/linzhihang/zhangyuhao/ACLlama_s2s/Echox_s2s_unit_language_0625 # unit language #base_model=/linzhihang/zhangyuhao/ACLlama_s2s/Echox_s2s_KD_unit_langauge_0802_large_8B_check base_model=/linzhihang/zhangyuhao/ACLlama_s2s/output/S2S/S2S_finetune_small_lr1e-4_S2S-KD-unit-languge-new-0804-filter_kd_offline_base_merge_0808_20string_1e-4/checkpoint-16000 #base_model=/linzhihang/zhangyuhao/ACLlama_s2s/output/S2S/S2S_finetune_small_lr1e-4_S2S-KD-unit-new-0812-bench-filter-8B_kd_offline_base_merge_0814/checkpoint-12200 # DATA # data_json=/linzhihang/zhangyuhao/ACLlama_s2s/data/magpie_wer-filter-kd-40k-echo-ul-spm.json #data_json=/linzhihang/zhangyuhao/ACLlama_s2s/data/magpie-slice-unit-languge-new-0618.json #data_json=/linzhihang/zhangyuhao/ACLlama_s2s/data/magpie-slice-unit-languge-new-0629-filter.json #data_json=/linzhihang/zhangyuhao/ACLlama_s2s/data/magpie-slice-unit-languge-new-0706-filter.json #data_json=/linzhihang/zhangyuhao/ACLlama_s2s/data/magpie-slice-unit-languge-new-0717-filter.json #data_json=/linzhihang/zhangyuhao/ACLlama_s2s/data/S2S-KD-unit-languge-new-0804-filter.json data_json=/linzhihang/zhangyuhao/ACLlama_s2s/data/S2S-KD-unit-languge-new-0808-bench-filter-8B.json #data_json=/linzhihang/zhangyuhao/ACLlama_s2s/data/S2S-KD-unit-new-0812-bench-filter-8B.json training_set=${TASK}_${stage}_${model_size}_lr${lr} model_tag="${training_set}_$(basename "$data_json" .json)_${subtag}" checkpoint_dir=$prefix/output/$TASK/$model_tag echo $checkpoint_dir mkdir -p $checkpoint_dir cp $0 $checkpoint_dir/ # CMD NCCL_P2P_DISABLE=1 \ NCCL_IB_DISABLE=1 \ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \ torchrun \ --nproc_per_node 8 \ --nnodes 1 \ --node_rank 0 \ --master_addr localhost \ --master_port 7897 \ $prefix/finetune_acllama_s2s_zyh.py \ --audio_model_name_or_path "/linzhihang/LLMs/whisper-v3" \ --text_model_name_or_path $base_model \ --data_path "$data_json" \ --fp16 True \ --output_dir "$checkpoint_dir" \ --num_train_epochs 1 \ --per_device_train_batch_size 1 \ --per_device_eval_batch_size 1 \ --gradient_accumulation_steps 1 \ --evaluation_strategy "no" \ --save_strategy "steps" \ --save_steps 100 \ --save_total_limit 1 \ --learning_rate $lr \ --weight_decay 0.1 \ --adam_beta2 0.95 \ --warmup_ratio 0.01 \ --lr_scheduler_type "inverse_sqrt" \ --logging_steps 1 \ --report_to "none" \ --model_max_length 1024 \ --gradient_checkpointing True \ --lazy_preprocess True \ --deepspeed "$prefix/config/ds_config_zero2.json" #\ #--use_lora #> $checkpoint_dir/train.log # 2>&1 # --use_lora #--data_path "$prefix/data/libri_train_update.json" \ #--text_model_name_or_path "/mnt/user/zhangyuhao/LLM/llama3-instruct/llama3_1-8B/" \ #--data_path "../data/libri_train_other460.json" \ #--data_path "../data/train_mt_orgnize.json" \