Add files using upload-large-folder tool
Browse files- config.json +77 -0
- configuration_llada.py +463 -0
- generation_config.json +6 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors +3 -0
- model.safetensors.index.json +970 -0
- modeling_llada.py +1539 -0
- quant_log.csv +225 -0
- quantize_config.json +21 -0
- special_tokens_map.json +32 -0
- tokenizer.json +0 -0
- tokenizer_config.json +2183 -0
config.json
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/home/chentianqi/model/GSAI-ML/LLaDA-8B-Instruct",
|
| 3 |
+
"activation_type": "silu",
|
| 4 |
+
"alibi": false,
|
| 5 |
+
"alibi_bias_max": 8.0,
|
| 6 |
+
"architectures": [
|
| 7 |
+
"LLaDAModelLM"
|
| 8 |
+
],
|
| 9 |
+
"attention_dropout": 0.0,
|
| 10 |
+
"attention_layer_norm": false,
|
| 11 |
+
"attention_layer_norm_with_affine": true,
|
| 12 |
+
"auto_map": {
|
| 13 |
+
"AutoConfig": "configuration_llada.LLaDAConfig",
|
| 14 |
+
"AutoModel": "modeling_llada.LLaDAModelLM",
|
| 15 |
+
"AutoModelForCausalLM": "modeling_llada.LLaDAModelLM"
|
| 16 |
+
},
|
| 17 |
+
"bias_for_layer_norm": false,
|
| 18 |
+
"block_group_size": 1,
|
| 19 |
+
"block_type": "llama",
|
| 20 |
+
"d_model": 4096,
|
| 21 |
+
"embedding_dropout": 0.0,
|
| 22 |
+
"embedding_size": 126464,
|
| 23 |
+
"eos_token_id": 126081,
|
| 24 |
+
"flash_attention": false,
|
| 25 |
+
"include_bias": false,
|
| 26 |
+
"include_qkv_bias": false,
|
| 27 |
+
"init_cutoff_factor": null,
|
| 28 |
+
"init_device": "meta",
|
| 29 |
+
"init_fn": "mitchell",
|
| 30 |
+
"init_std": 0.02,
|
| 31 |
+
"input_emb_norm": false,
|
| 32 |
+
"layer_norm_type": "rms",
|
| 33 |
+
"layer_norm_with_affine": true,
|
| 34 |
+
"mask_token_id": 126336,
|
| 35 |
+
"max_sequence_length": 4096,
|
| 36 |
+
"mlp_hidden_size": 12288,
|
| 37 |
+
"mlp_ratio": 4,
|
| 38 |
+
"model_type": "llada",
|
| 39 |
+
"multi_query_attention": null,
|
| 40 |
+
"n_heads": 32,
|
| 41 |
+
"n_kv_heads": 32,
|
| 42 |
+
"n_layers": 32,
|
| 43 |
+
"pad_token_id": 126081,
|
| 44 |
+
"precision": "amp_bf16",
|
| 45 |
+
"quantization_config": {
|
| 46 |
+
"bits": 4,
|
| 47 |
+
"checkpoint_format": "gptq",
|
| 48 |
+
"desc_act": true,
|
| 49 |
+
"group_size": 128,
|
| 50 |
+
"lm_head": false,
|
| 51 |
+
"meta": {
|
| 52 |
+
"damp_auto_increment": 0.0025,
|
| 53 |
+
"damp_percent": 0.01,
|
| 54 |
+
"mse": 0.0,
|
| 55 |
+
"quantizer": [
|
| 56 |
+
"gptqmodel:2.0.0-dev"
|
| 57 |
+
],
|
| 58 |
+
"static_groups": false,
|
| 59 |
+
"true_sequential": true,
|
| 60 |
+
"uri": "https://github.com/modelcloud/gptqmodel"
|
| 61 |
+
},
|
| 62 |
+
"pack_dtype": "int32",
|
| 63 |
+
"quant_method": "gptq",
|
| 64 |
+
"sym": false
|
| 65 |
+
},
|
| 66 |
+
"residual_dropout": 0.0,
|
| 67 |
+
"rms_norm_eps": 1e-05,
|
| 68 |
+
"rope": true,
|
| 69 |
+
"rope_full_precision": true,
|
| 70 |
+
"rope_theta": 500000.0,
|
| 71 |
+
"scale_logits": false,
|
| 72 |
+
"torch_dtype": "bfloat16",
|
| 73 |
+
"transformers_version": "4.38.2",
|
| 74 |
+
"use_cache": false,
|
| 75 |
+
"vocab_size": 126464,
|
| 76 |
+
"weight_tying": false
|
| 77 |
+
}
|
configuration_llada.py
ADDED
|
@@ -0,0 +1,463 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
LLaDA configuration
|
| 3 |
+
"""
|
| 4 |
+
from transformers import AutoConfig, PretrainedConfig
|
| 5 |
+
|
| 6 |
+
from enum import Enum
|
| 7 |
+
from os import PathLike
|
| 8 |
+
from typing import Union
|
| 9 |
+
from dataclasses import asdict, dataclass, field
|
| 10 |
+
from glob import glob
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
from typing import (
|
| 13 |
+
Any,
|
| 14 |
+
Dict,
|
| 15 |
+
Iterable,
|
| 16 |
+
List,
|
| 17 |
+
Optional,
|
| 18 |
+
Tuple,
|
| 19 |
+
Type,
|
| 20 |
+
TypeVar,
|
| 21 |
+
Union,
|
| 22 |
+
cast,
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
__all__ = [
|
| 27 |
+
"ActivationType",
|
| 28 |
+
"ActivationCheckpointingStrategy",
|
| 29 |
+
"BlockType",
|
| 30 |
+
"LayerNormType",
|
| 31 |
+
"InitFnType",
|
| 32 |
+
"ModelConfig",
|
| 33 |
+
]
|
| 34 |
+
|
| 35 |
+
PathOrStr = Union[str, PathLike]
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class StrEnum(str, Enum):
|
| 39 |
+
"""
|
| 40 |
+
This is equivalent to Python's :class:`enum.StrEnum` since version 3.11.
|
| 41 |
+
We include this here for compatibility with older version of Python.
|
| 42 |
+
"""
|
| 43 |
+
|
| 44 |
+
def __str__(self) -> str:
|
| 45 |
+
return self.value
|
| 46 |
+
|
| 47 |
+
def __repr__(self) -> str:
|
| 48 |
+
return f"'{str(self)}'"
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class LayerNormType(StrEnum):
|
| 52 |
+
default = "default"
|
| 53 |
+
"""
|
| 54 |
+
The default LayerNorm implementation, equivalent to PyTorch's built-in version.
|
| 55 |
+
"""
|
| 56 |
+
|
| 57 |
+
low_precision = "low_precision"
|
| 58 |
+
"""
|
| 59 |
+
A low-precision version of the default LayerNorm.
|
| 60 |
+
"""
|
| 61 |
+
|
| 62 |
+
rms = "rms"
|
| 63 |
+
"""
|
| 64 |
+
An RMSNorm implementation. When using ``torch.compile`` this is
|
| 65 |
+
probably the fastest implementation.
|
| 66 |
+
"""
|
| 67 |
+
|
| 68 |
+
gemma_rms = "gemma_rms"
|
| 69 |
+
"""
|
| 70 |
+
An RMSNorm implementation by gemmma. When using ``torch.compile`` this is
|
| 71 |
+
probably the fastest implementation.
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
amd_compatible = "amd_compatible"
|
| 75 |
+
"""
|
| 76 |
+
LayerNorm implemented manually to work around an issue with ROCm.
|
| 77 |
+
"""
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
class ActivationType(StrEnum):
|
| 81 |
+
gelu = "gelu"
|
| 82 |
+
relu = "relu"
|
| 83 |
+
silu = "silu"
|
| 84 |
+
swiglu = "swiglu"
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
class BlockType(StrEnum):
|
| 88 |
+
sequential = "sequential"
|
| 89 |
+
parallel = "parallel"
|
| 90 |
+
|
| 91 |
+
llama = "llama"
|
| 92 |
+
"""
|
| 93 |
+
A block similar to the sequential block with slightly different
|
| 94 |
+
implementations of operations like attention to imitate the behavior of Llama.
|
| 95 |
+
"""
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class InitFnType(StrEnum):
|
| 99 |
+
mitchell = "mitchell"
|
| 100 |
+
"""
|
| 101 |
+
The strategy suggested to us by Mitchell Wortsman from UW.
|
| 102 |
+
This uses a truncated normal distribution with an adaptive standard deviation that depends
|
| 103 |
+
on the size of the weights as well as the depth of the layer.
|
| 104 |
+
"""
|
| 105 |
+
|
| 106 |
+
normal = "normal"
|
| 107 |
+
"""
|
| 108 |
+
All weights are initialized from the same normal distribution.
|
| 109 |
+
"""
|
| 110 |
+
|
| 111 |
+
kaiming_normal = "kaiming_normal"
|
| 112 |
+
"""
|
| 113 |
+
All weights are initialized with the Kaiming method from a normal distribution.
|
| 114 |
+
Note this currently won't work with FSDP.
|
| 115 |
+
"""
|
| 116 |
+
|
| 117 |
+
fan_in = "fan_in"
|
| 118 |
+
"""
|
| 119 |
+
"Fan-in variance scaling", i.e. normal with a standard deviation of ``1/sqrt(d_in)`` where ``d_in``
|
| 120 |
+
is the input dimensionality of the kernel.
|
| 121 |
+
"""
|
| 122 |
+
|
| 123 |
+
full_megatron = "full_megatron"
|
| 124 |
+
"""
|
| 125 |
+
This is what metaseq calls "full megatron init". It is the init used for Llama 2.
|
| 126 |
+
"""
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
@dataclass
|
| 130 |
+
class ModelConfig():
|
| 131 |
+
"""
|
| 132 |
+
LLaDA (model) configuration.
|
| 133 |
+
"""
|
| 134 |
+
|
| 135 |
+
# Note that the defaults for these attributes are equivalent to the base GPT2 model.
|
| 136 |
+
|
| 137 |
+
d_model: int = 768
|
| 138 |
+
"""
|
| 139 |
+
The hidden size of the model.
|
| 140 |
+
"""
|
| 141 |
+
|
| 142 |
+
n_heads: int = 12
|
| 143 |
+
"""
|
| 144 |
+
The number of self-attention heads.
|
| 145 |
+
"""
|
| 146 |
+
|
| 147 |
+
n_kv_heads: Optional[int] = None
|
| 148 |
+
"""
|
| 149 |
+
The number of heads to use for keys and values. Defaults to `n_heads`.
|
| 150 |
+
Set this to ``None`` or ``n_heads`` for normal multi-head attention.
|
| 151 |
+
Set this to 1 for multi-query attention.
|
| 152 |
+
Set it to some in-between value for Llama2-style grouped query attention.
|
| 153 |
+
"""
|
| 154 |
+
|
| 155 |
+
n_layers: int = 12
|
| 156 |
+
"""
|
| 157 |
+
The number of layers/blocks.
|
| 158 |
+
"""
|
| 159 |
+
|
| 160 |
+
mlp_ratio: int = 4
|
| 161 |
+
"""
|
| 162 |
+
The ratio of the inner MLP dimensionality to ``d_model``.
|
| 163 |
+
This is only used when ``mlp_hidden_size`` is not set.
|
| 164 |
+
"""
|
| 165 |
+
|
| 166 |
+
mlp_hidden_size: Optional[int] = None
|
| 167 |
+
"""
|
| 168 |
+
Set the exact hidden size for the MLP. Otherwise the inner MLP hidden size will be set to `mlp_ratio * d_model`.
|
| 169 |
+
"""
|
| 170 |
+
|
| 171 |
+
activation_type: ActivationType = ActivationType.swiglu
|
| 172 |
+
"""
|
| 173 |
+
The activation function to use within the MLP layers.
|
| 174 |
+
"""
|
| 175 |
+
|
| 176 |
+
block_type: BlockType = BlockType.sequential
|
| 177 |
+
"""
|
| 178 |
+
The transformer block implementation.
|
| 179 |
+
"""
|
| 180 |
+
|
| 181 |
+
block_group_size: int = 1
|
| 182 |
+
"""
|
| 183 |
+
The number of blocks to group together into a single parent block.
|
| 184 |
+
This has no affect on the number of parameters in the model and is only used to wrap groups
|
| 185 |
+
of blocks together with a single FSDP wrapper during training.
|
| 186 |
+
"""
|
| 187 |
+
|
| 188 |
+
alibi: bool = False
|
| 189 |
+
"""
|
| 190 |
+
If ``True``, use ALiBi embeddings. Mutually exclusive with ``rope``.
|
| 191 |
+
"""
|
| 192 |
+
|
| 193 |
+
alibi_bias_max: float = 8.0
|
| 194 |
+
"""
|
| 195 |
+
Maximum absolute value of ALiBi bias.
|
| 196 |
+
"""
|
| 197 |
+
|
| 198 |
+
rope: bool = False
|
| 199 |
+
"""
|
| 200 |
+
Use rotary positional embeddings (RoPE). Mutually exclusive with ``alibi``.
|
| 201 |
+
"""
|
| 202 |
+
|
| 203 |
+
rope_full_precision: bool = True
|
| 204 |
+
"""
|
| 205 |
+
If ``True``, apply RoPE embeddings at full precision regardless of the input type. Otherwise,
|
| 206 |
+
apply RoPE at the precision of the input.
|
| 207 |
+
"""
|
| 208 |
+
|
| 209 |
+
flash_attention: bool = False
|
| 210 |
+
"""
|
| 211 |
+
If ``True``, use ``FlashAttention``.
|
| 212 |
+
"""
|
| 213 |
+
|
| 214 |
+
attention_dropout: float = 0.1
|
| 215 |
+
"""
|
| 216 |
+
The dropout probability within the attention modules.
|
| 217 |
+
"""
|
| 218 |
+
|
| 219 |
+
multi_query_attention: Optional[bool] = None
|
| 220 |
+
"""
|
| 221 |
+
Use the Multi-Query formulation of attention used in PaLM. This reduces the number of parameters
|
| 222 |
+
and is more efficient during inference.
|
| 223 |
+
"""
|
| 224 |
+
|
| 225 |
+
attention_layer_norm: bool = False
|
| 226 |
+
"""
|
| 227 |
+
Apply layer norm to the keys and queries within the attention mechanism.
|
| 228 |
+
This can help stabilize training.
|
| 229 |
+
"""
|
| 230 |
+
|
| 231 |
+
residual_dropout: float = 0.1
|
| 232 |
+
"""
|
| 233 |
+
The dropout probability for the MLP and attention output within each block.
|
| 234 |
+
"""
|
| 235 |
+
|
| 236 |
+
embedding_dropout: float = 0.1
|
| 237 |
+
"""
|
| 238 |
+
The dropout probability for embeddings.
|
| 239 |
+
"""
|
| 240 |
+
|
| 241 |
+
input_emb_norm: bool = False
|
| 242 |
+
"""
|
| 243 |
+
An input hidden_states norm implementation by gemmma.
|
| 244 |
+
"""
|
| 245 |
+
|
| 246 |
+
layer_norm_type: LayerNormType = LayerNormType.default
|
| 247 |
+
"""
|
| 248 |
+
The layernorm implementation to use.
|
| 249 |
+
"""
|
| 250 |
+
|
| 251 |
+
layer_norm_with_affine: bool = True
|
| 252 |
+
"""
|
| 253 |
+
Whether to include bias and weight parameters for the layer norms.
|
| 254 |
+
This only affects layer norms that are immediately followed by a linear layer in the forward pass,
|
| 255 |
+
so everything except QK-norms. To turn off affines for QK norms as well, set :attr:`attention_layer_norm_with_affine`
|
| 256 |
+
to ``False``.
|
| 257 |
+
"""
|
| 258 |
+
|
| 259 |
+
rms_norm_eps: float = 1e-05
|
| 260 |
+
"""
|
| 261 |
+
The rms layernorm eps param.
|
| 262 |
+
"""
|
| 263 |
+
|
| 264 |
+
attention_layer_norm_with_affine: bool = True
|
| 265 |
+
"""
|
| 266 |
+
Toggle affine transform for the QK norms.
|
| 267 |
+
"""
|
| 268 |
+
|
| 269 |
+
max_sequence_length: int = 1024
|
| 270 |
+
"""
|
| 271 |
+
The maximum input sequence length supported by the model.
|
| 272 |
+
"""
|
| 273 |
+
|
| 274 |
+
rope_theta: float = 10000.0
|
| 275 |
+
"""
|
| 276 |
+
The rope base param.
|
| 277 |
+
"""
|
| 278 |
+
|
| 279 |
+
include_qkv_bias: Optional[bool] = False
|
| 280 |
+
"""
|
| 281 |
+
Whether or not to include bias parameters in qkv linear layers.
|
| 282 |
+
"""
|
| 283 |
+
|
| 284 |
+
include_bias: bool = False
|
| 285 |
+
"""
|
| 286 |
+
Whether or not to include bias parameters in linear layers.
|
| 287 |
+
In PaLM, they got rid of all bias terms because they found that large
|
| 288 |
+
models tend to have near 0 bias terms anyway.
|
| 289 |
+
"""
|
| 290 |
+
|
| 291 |
+
bias_for_layer_norm: Optional[bool] = None
|
| 292 |
+
"""
|
| 293 |
+
Whether or not to include bias parameters in layer norm.
|
| 294 |
+
This is separate from the include_bias parameter, because of a ROCm crash when biases are disabled in
|
| 295 |
+
layer norm.
|
| 296 |
+
When this is None (the default), it inherits the setting from include_bias.
|
| 297 |
+
"""
|
| 298 |
+
|
| 299 |
+
scale_logits: bool = False
|
| 300 |
+
"""
|
| 301 |
+
If ``True``, scale the output logits by ``1 / sqrt(d_model)``.
|
| 302 |
+
"""
|
| 303 |
+
|
| 304 |
+
vocab_size: int = 50257
|
| 305 |
+
"""
|
| 306 |
+
Vocabulary size of the model.
|
| 307 |
+
"""
|
| 308 |
+
|
| 309 |
+
embedding_size: Optional[int] = 50304
|
| 310 |
+
"""
|
| 311 |
+
The number of embeddings, i.e. the number of tokens. If set to ``None`` it will default
|
| 312 |
+
to ``vocab_size``. If ``vocab_size`` is not a multiple of 128, setting this to the
|
| 313 |
+
next multiple of 128 that's greater than ``vocab_size`` can improve throughput
|
| 314 |
+
substantially.
|
| 315 |
+
"""
|
| 316 |
+
|
| 317 |
+
weight_tying: bool = True
|
| 318 |
+
"""
|
| 319 |
+
Whether to tie output linear weights to the input embedding.
|
| 320 |
+
"""
|
| 321 |
+
|
| 322 |
+
eos_token_id: int = 50256
|
| 323 |
+
"""
|
| 324 |
+
The ID of the end-of-sentence special token.
|
| 325 |
+
"""
|
| 326 |
+
|
| 327 |
+
pad_token_id: int = 50256
|
| 328 |
+
"""
|
| 329 |
+
The ID of the token to use for padding. Defaults to the ID of the EOS token.
|
| 330 |
+
"""
|
| 331 |
+
|
| 332 |
+
mask_token_id: Optional[int] = 50256
|
| 333 |
+
"""
|
| 334 |
+
The ID of the token to use for mask token. Defaults to the ID of the EOS token.
|
| 335 |
+
"""
|
| 336 |
+
|
| 337 |
+
init_device: Optional[str] = None
|
| 338 |
+
"""
|
| 339 |
+
The torch device to use when initializing the model parameters, e.g. "cpu", "cuda:0", "meta".
|
| 340 |
+
"""
|
| 341 |
+
|
| 342 |
+
init_fn: InitFnType = InitFnType.normal
|
| 343 |
+
"""
|
| 344 |
+
The weight initialization strategy.
|
| 345 |
+
"""
|
| 346 |
+
|
| 347 |
+
init_std: float = 0.02
|
| 348 |
+
"""
|
| 349 |
+
The standard deviation to use when initializing weights with a "fixed distribution" ``init_fn``, such
|
| 350 |
+
as "normal".
|
| 351 |
+
"""
|
| 352 |
+
|
| 353 |
+
init_cutoff_factor: Optional[float] = None
|
| 354 |
+
"""
|
| 355 |
+
A positive factor used to scale the cutoff values when initializing weights with a "fixed distribution" ``init_fn``, such
|
| 356 |
+
as "normal". Setting this to None means values are not cutoff.
|
| 357 |
+
"""
|
| 358 |
+
|
| 359 |
+
precision: Optional[str] = None
|
| 360 |
+
"""
|
| 361 |
+
Precision used to train/evaluate with. You shouldn't set this directly.
|
| 362 |
+
See :data:`TrainConfig.precision` instead.
|
| 363 |
+
"""
|
| 364 |
+
|
| 365 |
+
@property
|
| 366 |
+
def effective_n_kv_heads(self) -> int:
|
| 367 |
+
if self.n_kv_heads is None:
|
| 368 |
+
if self.multi_query_attention is True:
|
| 369 |
+
return 1
|
| 370 |
+
else:
|
| 371 |
+
return self.n_heads
|
| 372 |
+
else:
|
| 373 |
+
if self.multi_query_attention is None:
|
| 374 |
+
return self.n_kv_heads
|
| 375 |
+
if self.multi_query_attention:
|
| 376 |
+
n_kv_heads_should_be = 1
|
| 377 |
+
else:
|
| 378 |
+
n_kv_heads_should_be = self.n_heads
|
| 379 |
+
if self.n_kv_heads == n_kv_heads_should_be:
|
| 380 |
+
return n_kv_heads_should_be
|
| 381 |
+
else:
|
| 382 |
+
raise Exception(
|
| 383 |
+
"You can't set `multi_query_attention` and `n_kv_heads` at the same time."
|
| 384 |
+
)
|
| 385 |
+
|
| 386 |
+
class ActivationCheckpointingStrategy(StrEnum):
|
| 387 |
+
whole_layer = "whole_layer"
|
| 388 |
+
"""
|
| 389 |
+
Checkpoint every transformer layer.
|
| 390 |
+
"""
|
| 391 |
+
|
| 392 |
+
one_in_two = "one_in_two"
|
| 393 |
+
"""
|
| 394 |
+
Checkpoint one in two transformer layers.
|
| 395 |
+
"""
|
| 396 |
+
|
| 397 |
+
one_in_three = "one_in_three"
|
| 398 |
+
"""
|
| 399 |
+
Checkpoint one in three transformer layers.
|
| 400 |
+
"""
|
| 401 |
+
|
| 402 |
+
one_in_four = "one_in_four"
|
| 403 |
+
"""
|
| 404 |
+
Checkpoint one in four transformer layers.
|
| 405 |
+
"""
|
| 406 |
+
|
| 407 |
+
two_in_three = "two_in_three"
|
| 408 |
+
"""
|
| 409 |
+
Checkpoint two out of every three transformer layers.
|
| 410 |
+
"""
|
| 411 |
+
|
| 412 |
+
three_in_four = "three_in_four"
|
| 413 |
+
"""
|
| 414 |
+
Checkpoint three out of four of every transformer layers.
|
| 415 |
+
"""
|
| 416 |
+
|
| 417 |
+
four_in_five = "four_in_five"
|
| 418 |
+
"""
|
| 419 |
+
Checkpoint four out of five of every transformer layers.
|
| 420 |
+
"""
|
| 421 |
+
|
| 422 |
+
nine_in_ten = "nine_in_ten"
|
| 423 |
+
"""
|
| 424 |
+
Checkpoint nine out of ten of every transformer layers.
|
| 425 |
+
"""
|
| 426 |
+
|
| 427 |
+
fine_grained = "fine_grained"
|
| 428 |
+
"""
|
| 429 |
+
Focus checkpointing on where it is cheap to recompute and saves most memory.
|
| 430 |
+
"""
|
| 431 |
+
|
| 432 |
+
|
| 433 |
+
class LLaDAConfig(PretrainedConfig):
|
| 434 |
+
model_type = "llada"
|
| 435 |
+
keys_to_ignore_at_inference = ["past_key_values"] # TODO: confirm
|
| 436 |
+
|
| 437 |
+
def __init__(self, use_cache: bool = False, **kwargs):
|
| 438 |
+
model_config = ModelConfig()
|
| 439 |
+
all_kwargs = model_config.__dict__
|
| 440 |
+
all_kwargs.update(kwargs)
|
| 441 |
+
all_kwargs.update({"use_cache": use_cache})
|
| 442 |
+
all_kwargs.update(
|
| 443 |
+
{
|
| 444 |
+
"architectures": all_kwargs.get("architectures", ["LLaDAModelLM"])
|
| 445 |
+
}
|
| 446 |
+
)
|
| 447 |
+
super().__init__(**all_kwargs)
|
| 448 |
+
|
| 449 |
+
@property
|
| 450 |
+
def num_attention_heads(self):
|
| 451 |
+
return self.n_heads
|
| 452 |
+
|
| 453 |
+
@property
|
| 454 |
+
def num_hidden_layers(self):
|
| 455 |
+
return self.n_layers
|
| 456 |
+
|
| 457 |
+
@property
|
| 458 |
+
def hidden_size(self):
|
| 459 |
+
return self.d_model
|
| 460 |
+
|
| 461 |
+
|
| 462 |
+
# Register the config class so that it is available for transformer pipelines, auto-loading etc.
|
| 463 |
+
AutoConfig.register("llada", LLaDAConfig)
|
generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 126080,
|
| 4 |
+
"eos_token_id": 126081,
|
| 5 |
+
"transformers_version": "4.38.2"
|
| 6 |
+
}
|
model-00001-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6d7223eefdd3d5c4736aea0db6f4bc6fe1e1f47bc8761cabc9ed9f8db9762d1e
|
| 3 |
+
size 1996248120
|
model-00002-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c1b694a0eb78715ac2b644fc9f3dc860ccf73f0e72300799f01a17499200b490
|
| 3 |
+
size 1998941936
|
model-00003-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:abd3e1f8dbcbb301593bb352bb97e44ab46e568e1a2a6601e565cc2429c8f957
|
| 3 |
+
size 1708134360
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:60d95b10b6e140a9626a7058d5038528f2ff80148dc4569b881db56052046509
|
| 3 |
+
size 40
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,970 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 5703213056
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"model.transformer.blocks.0.attn_norm.weight": "model-00001-of-00003.safetensors",
|
| 7 |
+
"model.transformer.blocks.0.attn_out.g_idx": "model-00001-of-00003.safetensors",
|
| 8 |
+
"model.transformer.blocks.0.attn_out.qweight": "model-00001-of-00003.safetensors",
|
| 9 |
+
"model.transformer.blocks.0.attn_out.qzeros": "model-00001-of-00003.safetensors",
|
| 10 |
+
"model.transformer.blocks.0.attn_out.scales": "model-00001-of-00003.safetensors",
|
| 11 |
+
"model.transformer.blocks.0.ff_norm.weight": "model-00001-of-00003.safetensors",
|
| 12 |
+
"model.transformer.blocks.0.ff_out.g_idx": "model-00001-of-00003.safetensors",
|
| 13 |
+
"model.transformer.blocks.0.ff_out.qweight": "model-00001-of-00003.safetensors",
|
| 14 |
+
"model.transformer.blocks.0.ff_out.qzeros": "model-00001-of-00003.safetensors",
|
| 15 |
+
"model.transformer.blocks.0.ff_out.scales": "model-00001-of-00003.safetensors",
|
| 16 |
+
"model.transformer.blocks.0.ff_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 17 |
+
"model.transformer.blocks.0.ff_proj.qweight": "model-00001-of-00003.safetensors",
|
| 18 |
+
"model.transformer.blocks.0.ff_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 19 |
+
"model.transformer.blocks.0.ff_proj.scales": "model-00001-of-00003.safetensors",
|
| 20 |
+
"model.transformer.blocks.0.k_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 21 |
+
"model.transformer.blocks.0.k_proj.qweight": "model-00001-of-00003.safetensors",
|
| 22 |
+
"model.transformer.blocks.0.k_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 23 |
+
"model.transformer.blocks.0.k_proj.scales": "model-00001-of-00003.safetensors",
|
| 24 |
+
"model.transformer.blocks.0.q_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 25 |
+
"model.transformer.blocks.0.q_proj.qweight": "model-00001-of-00003.safetensors",
|
| 26 |
+
"model.transformer.blocks.0.q_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 27 |
+
"model.transformer.blocks.0.q_proj.scales": "model-00001-of-00003.safetensors",
|
| 28 |
+
"model.transformer.blocks.0.up_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 29 |
+
"model.transformer.blocks.0.up_proj.qweight": "model-00001-of-00003.safetensors",
|
| 30 |
+
"model.transformer.blocks.0.up_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 31 |
+
"model.transformer.blocks.0.up_proj.scales": "model-00001-of-00003.safetensors",
|
| 32 |
+
"model.transformer.blocks.0.v_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 33 |
+
"model.transformer.blocks.0.v_proj.qweight": "model-00001-of-00003.safetensors",
|
| 34 |
+
"model.transformer.blocks.0.v_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 35 |
+
"model.transformer.blocks.0.v_proj.scales": "model-00001-of-00003.safetensors",
|
| 36 |
+
"model.transformer.blocks.1.attn_norm.weight": "model-00001-of-00003.safetensors",
|
| 37 |
+
"model.transformer.blocks.1.attn_out.g_idx": "model-00001-of-00003.safetensors",
|
| 38 |
+
"model.transformer.blocks.1.attn_out.qweight": "model-00001-of-00003.safetensors",
|
| 39 |
+
"model.transformer.blocks.1.attn_out.qzeros": "model-00001-of-00003.safetensors",
|
| 40 |
+
"model.transformer.blocks.1.attn_out.scales": "model-00001-of-00003.safetensors",
|
| 41 |
+
"model.transformer.blocks.1.ff_norm.weight": "model-00001-of-00003.safetensors",
|
| 42 |
+
"model.transformer.blocks.1.ff_out.g_idx": "model-00001-of-00003.safetensors",
|
| 43 |
+
"model.transformer.blocks.1.ff_out.qweight": "model-00001-of-00003.safetensors",
|
| 44 |
+
"model.transformer.blocks.1.ff_out.qzeros": "model-00001-of-00003.safetensors",
|
| 45 |
+
"model.transformer.blocks.1.ff_out.scales": "model-00001-of-00003.safetensors",
|
| 46 |
+
"model.transformer.blocks.1.ff_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 47 |
+
"model.transformer.blocks.1.ff_proj.qweight": "model-00001-of-00003.safetensors",
|
| 48 |
+
"model.transformer.blocks.1.ff_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 49 |
+
"model.transformer.blocks.1.ff_proj.scales": "model-00001-of-00003.safetensors",
|
| 50 |
+
"model.transformer.blocks.1.k_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 51 |
+
"model.transformer.blocks.1.k_proj.qweight": "model-00001-of-00003.safetensors",
|
| 52 |
+
"model.transformer.blocks.1.k_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 53 |
+
"model.transformer.blocks.1.k_proj.scales": "model-00001-of-00003.safetensors",
|
| 54 |
+
"model.transformer.blocks.1.q_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 55 |
+
"model.transformer.blocks.1.q_proj.qweight": "model-00001-of-00003.safetensors",
|
| 56 |
+
"model.transformer.blocks.1.q_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 57 |
+
"model.transformer.blocks.1.q_proj.scales": "model-00001-of-00003.safetensors",
|
| 58 |
+
"model.transformer.blocks.1.up_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 59 |
+
"model.transformer.blocks.1.up_proj.qweight": "model-00001-of-00003.safetensors",
|
| 60 |
+
"model.transformer.blocks.1.up_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 61 |
+
"model.transformer.blocks.1.up_proj.scales": "model-00001-of-00003.safetensors",
|
| 62 |
+
"model.transformer.blocks.1.v_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 63 |
+
"model.transformer.blocks.1.v_proj.qweight": "model-00001-of-00003.safetensors",
|
| 64 |
+
"model.transformer.blocks.1.v_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 65 |
+
"model.transformer.blocks.1.v_proj.scales": "model-00001-of-00003.safetensors",
|
| 66 |
+
"model.transformer.blocks.10.attn_norm.weight": "model-00002-of-00003.safetensors",
|
| 67 |
+
"model.transformer.blocks.10.attn_out.g_idx": "model-00002-of-00003.safetensors",
|
| 68 |
+
"model.transformer.blocks.10.attn_out.qweight": "model-00002-of-00003.safetensors",
|
| 69 |
+
"model.transformer.blocks.10.attn_out.qzeros": "model-00002-of-00003.safetensors",
|
| 70 |
+
"model.transformer.blocks.10.attn_out.scales": "model-00002-of-00003.safetensors",
|
| 71 |
+
"model.transformer.blocks.10.ff_norm.weight": "model-00002-of-00003.safetensors",
|
| 72 |
+
"model.transformer.blocks.10.ff_out.g_idx": "model-00002-of-00003.safetensors",
|
| 73 |
+
"model.transformer.blocks.10.ff_out.qweight": "model-00002-of-00003.safetensors",
|
| 74 |
+
"model.transformer.blocks.10.ff_out.qzeros": "model-00002-of-00003.safetensors",
|
| 75 |
+
"model.transformer.blocks.10.ff_out.scales": "model-00002-of-00003.safetensors",
|
| 76 |
+
"model.transformer.blocks.10.ff_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 77 |
+
"model.transformer.blocks.10.ff_proj.qweight": "model-00002-of-00003.safetensors",
|
| 78 |
+
"model.transformer.blocks.10.ff_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 79 |
+
"model.transformer.blocks.10.ff_proj.scales": "model-00002-of-00003.safetensors",
|
| 80 |
+
"model.transformer.blocks.10.k_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 81 |
+
"model.transformer.blocks.10.k_proj.qweight": "model-00002-of-00003.safetensors",
|
| 82 |
+
"model.transformer.blocks.10.k_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 83 |
+
"model.transformer.blocks.10.k_proj.scales": "model-00002-of-00003.safetensors",
|
| 84 |
+
"model.transformer.blocks.10.q_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 85 |
+
"model.transformer.blocks.10.q_proj.qweight": "model-00002-of-00003.safetensors",
|
| 86 |
+
"model.transformer.blocks.10.q_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 87 |
+
"model.transformer.blocks.10.q_proj.scales": "model-00002-of-00003.safetensors",
|
| 88 |
+
"model.transformer.blocks.10.up_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 89 |
+
"model.transformer.blocks.10.up_proj.qweight": "model-00002-of-00003.safetensors",
|
| 90 |
+
"model.transformer.blocks.10.up_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 91 |
+
"model.transformer.blocks.10.up_proj.scales": "model-00002-of-00003.safetensors",
|
| 92 |
+
"model.transformer.blocks.10.v_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 93 |
+
"model.transformer.blocks.10.v_proj.qweight": "model-00002-of-00003.safetensors",
|
| 94 |
+
"model.transformer.blocks.10.v_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 95 |
+
"model.transformer.blocks.10.v_proj.scales": "model-00002-of-00003.safetensors",
|
| 96 |
+
"model.transformer.blocks.11.attn_norm.weight": "model-00002-of-00003.safetensors",
|
| 97 |
+
"model.transformer.blocks.11.attn_out.g_idx": "model-00002-of-00003.safetensors",
|
| 98 |
+
"model.transformer.blocks.11.attn_out.qweight": "model-00002-of-00003.safetensors",
|
| 99 |
+
"model.transformer.blocks.11.attn_out.qzeros": "model-00002-of-00003.safetensors",
|
| 100 |
+
"model.transformer.blocks.11.attn_out.scales": "model-00002-of-00003.safetensors",
|
| 101 |
+
"model.transformer.blocks.11.ff_norm.weight": "model-00002-of-00003.safetensors",
|
| 102 |
+
"model.transformer.blocks.11.ff_out.g_idx": "model-00002-of-00003.safetensors",
|
| 103 |
+
"model.transformer.blocks.11.ff_out.qweight": "model-00002-of-00003.safetensors",
|
| 104 |
+
"model.transformer.blocks.11.ff_out.qzeros": "model-00002-of-00003.safetensors",
|
| 105 |
+
"model.transformer.blocks.11.ff_out.scales": "model-00002-of-00003.safetensors",
|
| 106 |
+
"model.transformer.blocks.11.ff_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 107 |
+
"model.transformer.blocks.11.ff_proj.qweight": "model-00002-of-00003.safetensors",
|
| 108 |
+
"model.transformer.blocks.11.ff_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 109 |
+
"model.transformer.blocks.11.ff_proj.scales": "model-00002-of-00003.safetensors",
|
| 110 |
+
"model.transformer.blocks.11.k_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 111 |
+
"model.transformer.blocks.11.k_proj.qweight": "model-00002-of-00003.safetensors",
|
| 112 |
+
"model.transformer.blocks.11.k_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 113 |
+
"model.transformer.blocks.11.k_proj.scales": "model-00002-of-00003.safetensors",
|
| 114 |
+
"model.transformer.blocks.11.q_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 115 |
+
"model.transformer.blocks.11.q_proj.qweight": "model-00002-of-00003.safetensors",
|
| 116 |
+
"model.transformer.blocks.11.q_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 117 |
+
"model.transformer.blocks.11.q_proj.scales": "model-00002-of-00003.safetensors",
|
| 118 |
+
"model.transformer.blocks.11.up_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 119 |
+
"model.transformer.blocks.11.up_proj.qweight": "model-00002-of-00003.safetensors",
|
| 120 |
+
"model.transformer.blocks.11.up_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 121 |
+
"model.transformer.blocks.11.up_proj.scales": "model-00002-of-00003.safetensors",
|
| 122 |
+
"model.transformer.blocks.11.v_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 123 |
+
"model.transformer.blocks.11.v_proj.qweight": "model-00002-of-00003.safetensors",
|
| 124 |
+
"model.transformer.blocks.11.v_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 125 |
+
"model.transformer.blocks.11.v_proj.scales": "model-00002-of-00003.safetensors",
|
| 126 |
+
"model.transformer.blocks.12.attn_norm.weight": "model-00002-of-00003.safetensors",
|
| 127 |
+
"model.transformer.blocks.12.attn_out.g_idx": "model-00002-of-00003.safetensors",
|
| 128 |
+
"model.transformer.blocks.12.attn_out.qweight": "model-00002-of-00003.safetensors",
|
| 129 |
+
"model.transformer.blocks.12.attn_out.qzeros": "model-00002-of-00003.safetensors",
|
| 130 |
+
"model.transformer.blocks.12.attn_out.scales": "model-00002-of-00003.safetensors",
|
| 131 |
+
"model.transformer.blocks.12.ff_norm.weight": "model-00002-of-00003.safetensors",
|
| 132 |
+
"model.transformer.blocks.12.ff_out.g_idx": "model-00002-of-00003.safetensors",
|
| 133 |
+
"model.transformer.blocks.12.ff_out.qweight": "model-00002-of-00003.safetensors",
|
| 134 |
+
"model.transformer.blocks.12.ff_out.qzeros": "model-00002-of-00003.safetensors",
|
| 135 |
+
"model.transformer.blocks.12.ff_out.scales": "model-00002-of-00003.safetensors",
|
| 136 |
+
"model.transformer.blocks.12.ff_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 137 |
+
"model.transformer.blocks.12.ff_proj.qweight": "model-00002-of-00003.safetensors",
|
| 138 |
+
"model.transformer.blocks.12.ff_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 139 |
+
"model.transformer.blocks.12.ff_proj.scales": "model-00002-of-00003.safetensors",
|
| 140 |
+
"model.transformer.blocks.12.k_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 141 |
+
"model.transformer.blocks.12.k_proj.qweight": "model-00002-of-00003.safetensors",
|
| 142 |
+
"model.transformer.blocks.12.k_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 143 |
+
"model.transformer.blocks.12.k_proj.scales": "model-00002-of-00003.safetensors",
|
| 144 |
+
"model.transformer.blocks.12.q_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 145 |
+
"model.transformer.blocks.12.q_proj.qweight": "model-00002-of-00003.safetensors",
|
| 146 |
+
"model.transformer.blocks.12.q_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 147 |
+
"model.transformer.blocks.12.q_proj.scales": "model-00002-of-00003.safetensors",
|
| 148 |
+
"model.transformer.blocks.12.up_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 149 |
+
"model.transformer.blocks.12.up_proj.qweight": "model-00002-of-00003.safetensors",
|
| 150 |
+
"model.transformer.blocks.12.up_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 151 |
+
"model.transformer.blocks.12.up_proj.scales": "model-00002-of-00003.safetensors",
|
| 152 |
+
"model.transformer.blocks.12.v_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 153 |
+
"model.transformer.blocks.12.v_proj.qweight": "model-00002-of-00003.safetensors",
|
| 154 |
+
"model.transformer.blocks.12.v_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 155 |
+
"model.transformer.blocks.12.v_proj.scales": "model-00002-of-00003.safetensors",
|
| 156 |
+
"model.transformer.blocks.13.attn_norm.weight": "model-00002-of-00003.safetensors",
|
| 157 |
+
"model.transformer.blocks.13.attn_out.g_idx": "model-00002-of-00003.safetensors",
|
| 158 |
+
"model.transformer.blocks.13.attn_out.qweight": "model-00002-of-00003.safetensors",
|
| 159 |
+
"model.transformer.blocks.13.attn_out.qzeros": "model-00002-of-00003.safetensors",
|
| 160 |
+
"model.transformer.blocks.13.attn_out.scales": "model-00002-of-00003.safetensors",
|
| 161 |
+
"model.transformer.blocks.13.ff_norm.weight": "model-00002-of-00003.safetensors",
|
| 162 |
+
"model.transformer.blocks.13.ff_out.g_idx": "model-00002-of-00003.safetensors",
|
| 163 |
+
"model.transformer.blocks.13.ff_out.qweight": "model-00002-of-00003.safetensors",
|
| 164 |
+
"model.transformer.blocks.13.ff_out.qzeros": "model-00002-of-00003.safetensors",
|
| 165 |
+
"model.transformer.blocks.13.ff_out.scales": "model-00002-of-00003.safetensors",
|
| 166 |
+
"model.transformer.blocks.13.ff_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 167 |
+
"model.transformer.blocks.13.ff_proj.qweight": "model-00002-of-00003.safetensors",
|
| 168 |
+
"model.transformer.blocks.13.ff_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 169 |
+
"model.transformer.blocks.13.ff_proj.scales": "model-00002-of-00003.safetensors",
|
| 170 |
+
"model.transformer.blocks.13.k_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 171 |
+
"model.transformer.blocks.13.k_proj.qweight": "model-00002-of-00003.safetensors",
|
| 172 |
+
"model.transformer.blocks.13.k_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 173 |
+
"model.transformer.blocks.13.k_proj.scales": "model-00002-of-00003.safetensors",
|
| 174 |
+
"model.transformer.blocks.13.q_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 175 |
+
"model.transformer.blocks.13.q_proj.qweight": "model-00002-of-00003.safetensors",
|
| 176 |
+
"model.transformer.blocks.13.q_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 177 |
+
"model.transformer.blocks.13.q_proj.scales": "model-00002-of-00003.safetensors",
|
| 178 |
+
"model.transformer.blocks.13.up_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 179 |
+
"model.transformer.blocks.13.up_proj.qweight": "model-00002-of-00003.safetensors",
|
| 180 |
+
"model.transformer.blocks.13.up_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 181 |
+
"model.transformer.blocks.13.up_proj.scales": "model-00002-of-00003.safetensors",
|
| 182 |
+
"model.transformer.blocks.13.v_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 183 |
+
"model.transformer.blocks.13.v_proj.qweight": "model-00002-of-00003.safetensors",
|
| 184 |
+
"model.transformer.blocks.13.v_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 185 |
+
"model.transformer.blocks.13.v_proj.scales": "model-00002-of-00003.safetensors",
|
| 186 |
+
"model.transformer.blocks.14.attn_norm.weight": "model-00002-of-00003.safetensors",
|
| 187 |
+
"model.transformer.blocks.14.attn_out.g_idx": "model-00002-of-00003.safetensors",
|
| 188 |
+
"model.transformer.blocks.14.attn_out.qweight": "model-00002-of-00003.safetensors",
|
| 189 |
+
"model.transformer.blocks.14.attn_out.qzeros": "model-00002-of-00003.safetensors",
|
| 190 |
+
"model.transformer.blocks.14.attn_out.scales": "model-00002-of-00003.safetensors",
|
| 191 |
+
"model.transformer.blocks.14.ff_norm.weight": "model-00002-of-00003.safetensors",
|
| 192 |
+
"model.transformer.blocks.14.ff_out.g_idx": "model-00002-of-00003.safetensors",
|
| 193 |
+
"model.transformer.blocks.14.ff_out.qweight": "model-00002-of-00003.safetensors",
|
| 194 |
+
"model.transformer.blocks.14.ff_out.qzeros": "model-00002-of-00003.safetensors",
|
| 195 |
+
"model.transformer.blocks.14.ff_out.scales": "model-00002-of-00003.safetensors",
|
| 196 |
+
"model.transformer.blocks.14.ff_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 197 |
+
"model.transformer.blocks.14.ff_proj.qweight": "model-00002-of-00003.safetensors",
|
| 198 |
+
"model.transformer.blocks.14.ff_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 199 |
+
"model.transformer.blocks.14.ff_proj.scales": "model-00002-of-00003.safetensors",
|
| 200 |
+
"model.transformer.blocks.14.k_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 201 |
+
"model.transformer.blocks.14.k_proj.qweight": "model-00002-of-00003.safetensors",
|
| 202 |
+
"model.transformer.blocks.14.k_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 203 |
+
"model.transformer.blocks.14.k_proj.scales": "model-00002-of-00003.safetensors",
|
| 204 |
+
"model.transformer.blocks.14.q_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 205 |
+
"model.transformer.blocks.14.q_proj.qweight": "model-00002-of-00003.safetensors",
|
| 206 |
+
"model.transformer.blocks.14.q_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 207 |
+
"model.transformer.blocks.14.q_proj.scales": "model-00002-of-00003.safetensors",
|
| 208 |
+
"model.transformer.blocks.14.up_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 209 |
+
"model.transformer.blocks.14.up_proj.qweight": "model-00002-of-00003.safetensors",
|
| 210 |
+
"model.transformer.blocks.14.up_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 211 |
+
"model.transformer.blocks.14.up_proj.scales": "model-00002-of-00003.safetensors",
|
| 212 |
+
"model.transformer.blocks.14.v_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 213 |
+
"model.transformer.blocks.14.v_proj.qweight": "model-00002-of-00003.safetensors",
|
| 214 |
+
"model.transformer.blocks.14.v_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 215 |
+
"model.transformer.blocks.14.v_proj.scales": "model-00002-of-00003.safetensors",
|
| 216 |
+
"model.transformer.blocks.15.attn_norm.weight": "model-00002-of-00003.safetensors",
|
| 217 |
+
"model.transformer.blocks.15.attn_out.g_idx": "model-00002-of-00003.safetensors",
|
| 218 |
+
"model.transformer.blocks.15.attn_out.qweight": "model-00002-of-00003.safetensors",
|
| 219 |
+
"model.transformer.blocks.15.attn_out.qzeros": "model-00002-of-00003.safetensors",
|
| 220 |
+
"model.transformer.blocks.15.attn_out.scales": "model-00002-of-00003.safetensors",
|
| 221 |
+
"model.transformer.blocks.15.ff_norm.weight": "model-00002-of-00003.safetensors",
|
| 222 |
+
"model.transformer.blocks.15.ff_out.g_idx": "model-00002-of-00003.safetensors",
|
| 223 |
+
"model.transformer.blocks.15.ff_out.qweight": "model-00002-of-00003.safetensors",
|
| 224 |
+
"model.transformer.blocks.15.ff_out.qzeros": "model-00002-of-00003.safetensors",
|
| 225 |
+
"model.transformer.blocks.15.ff_out.scales": "model-00002-of-00003.safetensors",
|
| 226 |
+
"model.transformer.blocks.15.ff_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 227 |
+
"model.transformer.blocks.15.ff_proj.qweight": "model-00002-of-00003.safetensors",
|
| 228 |
+
"model.transformer.blocks.15.ff_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 229 |
+
"model.transformer.blocks.15.ff_proj.scales": "model-00002-of-00003.safetensors",
|
| 230 |
+
"model.transformer.blocks.15.k_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 231 |
+
"model.transformer.blocks.15.k_proj.qweight": "model-00002-of-00003.safetensors",
|
| 232 |
+
"model.transformer.blocks.15.k_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 233 |
+
"model.transformer.blocks.15.k_proj.scales": "model-00002-of-00003.safetensors",
|
| 234 |
+
"model.transformer.blocks.15.q_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 235 |
+
"model.transformer.blocks.15.q_proj.qweight": "model-00002-of-00003.safetensors",
|
| 236 |
+
"model.transformer.blocks.15.q_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 237 |
+
"model.transformer.blocks.15.q_proj.scales": "model-00002-of-00003.safetensors",
|
| 238 |
+
"model.transformer.blocks.15.up_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 239 |
+
"model.transformer.blocks.15.up_proj.qweight": "model-00002-of-00003.safetensors",
|
| 240 |
+
"model.transformer.blocks.15.up_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 241 |
+
"model.transformer.blocks.15.up_proj.scales": "model-00002-of-00003.safetensors",
|
| 242 |
+
"model.transformer.blocks.15.v_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 243 |
+
"model.transformer.blocks.15.v_proj.qweight": "model-00002-of-00003.safetensors",
|
| 244 |
+
"model.transformer.blocks.15.v_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 245 |
+
"model.transformer.blocks.15.v_proj.scales": "model-00002-of-00003.safetensors",
|
| 246 |
+
"model.transformer.blocks.16.attn_norm.weight": "model-00002-of-00003.safetensors",
|
| 247 |
+
"model.transformer.blocks.16.attn_out.g_idx": "model-00002-of-00003.safetensors",
|
| 248 |
+
"model.transformer.blocks.16.attn_out.qweight": "model-00002-of-00003.safetensors",
|
| 249 |
+
"model.transformer.blocks.16.attn_out.qzeros": "model-00002-of-00003.safetensors",
|
| 250 |
+
"model.transformer.blocks.16.attn_out.scales": "model-00002-of-00003.safetensors",
|
| 251 |
+
"model.transformer.blocks.16.ff_norm.weight": "model-00002-of-00003.safetensors",
|
| 252 |
+
"model.transformer.blocks.16.ff_out.g_idx": "model-00002-of-00003.safetensors",
|
| 253 |
+
"model.transformer.blocks.16.ff_out.qweight": "model-00002-of-00003.safetensors",
|
| 254 |
+
"model.transformer.blocks.16.ff_out.qzeros": "model-00002-of-00003.safetensors",
|
| 255 |
+
"model.transformer.blocks.16.ff_out.scales": "model-00002-of-00003.safetensors",
|
| 256 |
+
"model.transformer.blocks.16.ff_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 257 |
+
"model.transformer.blocks.16.ff_proj.qweight": "model-00002-of-00003.safetensors",
|
| 258 |
+
"model.transformer.blocks.16.ff_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 259 |
+
"model.transformer.blocks.16.ff_proj.scales": "model-00002-of-00003.safetensors",
|
| 260 |
+
"model.transformer.blocks.16.k_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 261 |
+
"model.transformer.blocks.16.k_proj.qweight": "model-00002-of-00003.safetensors",
|
| 262 |
+
"model.transformer.blocks.16.k_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 263 |
+
"model.transformer.blocks.16.k_proj.scales": "model-00002-of-00003.safetensors",
|
| 264 |
+
"model.transformer.blocks.16.q_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 265 |
+
"model.transformer.blocks.16.q_proj.qweight": "model-00002-of-00003.safetensors",
|
| 266 |
+
"model.transformer.blocks.16.q_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 267 |
+
"model.transformer.blocks.16.q_proj.scales": "model-00002-of-00003.safetensors",
|
| 268 |
+
"model.transformer.blocks.16.up_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 269 |
+
"model.transformer.blocks.16.up_proj.qweight": "model-00002-of-00003.safetensors",
|
| 270 |
+
"model.transformer.blocks.16.up_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 271 |
+
"model.transformer.blocks.16.up_proj.scales": "model-00002-of-00003.safetensors",
|
| 272 |
+
"model.transformer.blocks.16.v_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 273 |
+
"model.transformer.blocks.16.v_proj.qweight": "model-00002-of-00003.safetensors",
|
| 274 |
+
"model.transformer.blocks.16.v_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 275 |
+
"model.transformer.blocks.16.v_proj.scales": "model-00002-of-00003.safetensors",
|
| 276 |
+
"model.transformer.blocks.17.attn_norm.weight": "model-00002-of-00003.safetensors",
|
| 277 |
+
"model.transformer.blocks.17.attn_out.g_idx": "model-00002-of-00003.safetensors",
|
| 278 |
+
"model.transformer.blocks.17.attn_out.qweight": "model-00002-of-00003.safetensors",
|
| 279 |
+
"model.transformer.blocks.17.attn_out.qzeros": "model-00002-of-00003.safetensors",
|
| 280 |
+
"model.transformer.blocks.17.attn_out.scales": "model-00002-of-00003.safetensors",
|
| 281 |
+
"model.transformer.blocks.17.ff_norm.weight": "model-00002-of-00003.safetensors",
|
| 282 |
+
"model.transformer.blocks.17.ff_out.g_idx": "model-00002-of-00003.safetensors",
|
| 283 |
+
"model.transformer.blocks.17.ff_out.qweight": "model-00002-of-00003.safetensors",
|
| 284 |
+
"model.transformer.blocks.17.ff_out.qzeros": "model-00002-of-00003.safetensors",
|
| 285 |
+
"model.transformer.blocks.17.ff_out.scales": "model-00002-of-00003.safetensors",
|
| 286 |
+
"model.transformer.blocks.17.ff_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 287 |
+
"model.transformer.blocks.17.ff_proj.qweight": "model-00002-of-00003.safetensors",
|
| 288 |
+
"model.transformer.blocks.17.ff_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 289 |
+
"model.transformer.blocks.17.ff_proj.scales": "model-00002-of-00003.safetensors",
|
| 290 |
+
"model.transformer.blocks.17.k_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 291 |
+
"model.transformer.blocks.17.k_proj.qweight": "model-00002-of-00003.safetensors",
|
| 292 |
+
"model.transformer.blocks.17.k_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 293 |
+
"model.transformer.blocks.17.k_proj.scales": "model-00002-of-00003.safetensors",
|
| 294 |
+
"model.transformer.blocks.17.q_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 295 |
+
"model.transformer.blocks.17.q_proj.qweight": "model-00002-of-00003.safetensors",
|
| 296 |
+
"model.transformer.blocks.17.q_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 297 |
+
"model.transformer.blocks.17.q_proj.scales": "model-00002-of-00003.safetensors",
|
| 298 |
+
"model.transformer.blocks.17.up_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 299 |
+
"model.transformer.blocks.17.up_proj.qweight": "model-00002-of-00003.safetensors",
|
| 300 |
+
"model.transformer.blocks.17.up_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 301 |
+
"model.transformer.blocks.17.up_proj.scales": "model-00002-of-00003.safetensors",
|
| 302 |
+
"model.transformer.blocks.17.v_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 303 |
+
"model.transformer.blocks.17.v_proj.qweight": "model-00002-of-00003.safetensors",
|
| 304 |
+
"model.transformer.blocks.17.v_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 305 |
+
"model.transformer.blocks.17.v_proj.scales": "model-00002-of-00003.safetensors",
|
| 306 |
+
"model.transformer.blocks.18.attn_norm.weight": "model-00002-of-00003.safetensors",
|
| 307 |
+
"model.transformer.blocks.18.attn_out.g_idx": "model-00002-of-00003.safetensors",
|
| 308 |
+
"model.transformer.blocks.18.attn_out.qweight": "model-00002-of-00003.safetensors",
|
| 309 |
+
"model.transformer.blocks.18.attn_out.qzeros": "model-00002-of-00003.safetensors",
|
| 310 |
+
"model.transformer.blocks.18.attn_out.scales": "model-00002-of-00003.safetensors",
|
| 311 |
+
"model.transformer.blocks.18.ff_norm.weight": "model-00002-of-00003.safetensors",
|
| 312 |
+
"model.transformer.blocks.18.ff_out.g_idx": "model-00002-of-00003.safetensors",
|
| 313 |
+
"model.transformer.blocks.18.ff_out.qweight": "model-00002-of-00003.safetensors",
|
| 314 |
+
"model.transformer.blocks.18.ff_out.qzeros": "model-00002-of-00003.safetensors",
|
| 315 |
+
"model.transformer.blocks.18.ff_out.scales": "model-00002-of-00003.safetensors",
|
| 316 |
+
"model.transformer.blocks.18.ff_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 317 |
+
"model.transformer.blocks.18.ff_proj.qweight": "model-00002-of-00003.safetensors",
|
| 318 |
+
"model.transformer.blocks.18.ff_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 319 |
+
"model.transformer.blocks.18.ff_proj.scales": "model-00002-of-00003.safetensors",
|
| 320 |
+
"model.transformer.blocks.18.k_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 321 |
+
"model.transformer.blocks.18.k_proj.qweight": "model-00002-of-00003.safetensors",
|
| 322 |
+
"model.transformer.blocks.18.k_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 323 |
+
"model.transformer.blocks.18.k_proj.scales": "model-00002-of-00003.safetensors",
|
| 324 |
+
"model.transformer.blocks.18.q_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 325 |
+
"model.transformer.blocks.18.q_proj.qweight": "model-00002-of-00003.safetensors",
|
| 326 |
+
"model.transformer.blocks.18.q_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 327 |
+
"model.transformer.blocks.18.q_proj.scales": "model-00002-of-00003.safetensors",
|
| 328 |
+
"model.transformer.blocks.18.up_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 329 |
+
"model.transformer.blocks.18.up_proj.qweight": "model-00002-of-00003.safetensors",
|
| 330 |
+
"model.transformer.blocks.18.up_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 331 |
+
"model.transformer.blocks.18.up_proj.scales": "model-00002-of-00003.safetensors",
|
| 332 |
+
"model.transformer.blocks.18.v_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 333 |
+
"model.transformer.blocks.18.v_proj.qweight": "model-00002-of-00003.safetensors",
|
| 334 |
+
"model.transformer.blocks.18.v_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 335 |
+
"model.transformer.blocks.18.v_proj.scales": "model-00002-of-00003.safetensors",
|
| 336 |
+
"model.transformer.blocks.19.attn_norm.weight": "model-00002-of-00003.safetensors",
|
| 337 |
+
"model.transformer.blocks.19.attn_out.g_idx": "model-00002-of-00003.safetensors",
|
| 338 |
+
"model.transformer.blocks.19.attn_out.qweight": "model-00002-of-00003.safetensors",
|
| 339 |
+
"model.transformer.blocks.19.attn_out.qzeros": "model-00002-of-00003.safetensors",
|
| 340 |
+
"model.transformer.blocks.19.attn_out.scales": "model-00002-of-00003.safetensors",
|
| 341 |
+
"model.transformer.blocks.19.ff_norm.weight": "model-00002-of-00003.safetensors",
|
| 342 |
+
"model.transformer.blocks.19.ff_out.g_idx": "model-00002-of-00003.safetensors",
|
| 343 |
+
"model.transformer.blocks.19.ff_out.qweight": "model-00002-of-00003.safetensors",
|
| 344 |
+
"model.transformer.blocks.19.ff_out.qzeros": "model-00002-of-00003.safetensors",
|
| 345 |
+
"model.transformer.blocks.19.ff_out.scales": "model-00002-of-00003.safetensors",
|
| 346 |
+
"model.transformer.blocks.19.ff_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 347 |
+
"model.transformer.blocks.19.ff_proj.qweight": "model-00002-of-00003.safetensors",
|
| 348 |
+
"model.transformer.blocks.19.ff_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 349 |
+
"model.transformer.blocks.19.ff_proj.scales": "model-00002-of-00003.safetensors",
|
| 350 |
+
"model.transformer.blocks.19.k_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 351 |
+
"model.transformer.blocks.19.k_proj.qweight": "model-00002-of-00003.safetensors",
|
| 352 |
+
"model.transformer.blocks.19.k_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 353 |
+
"model.transformer.blocks.19.k_proj.scales": "model-00002-of-00003.safetensors",
|
| 354 |
+
"model.transformer.blocks.19.q_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 355 |
+
"model.transformer.blocks.19.q_proj.qweight": "model-00002-of-00003.safetensors",
|
| 356 |
+
"model.transformer.blocks.19.q_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 357 |
+
"model.transformer.blocks.19.q_proj.scales": "model-00002-of-00003.safetensors",
|
| 358 |
+
"model.transformer.blocks.19.up_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 359 |
+
"model.transformer.blocks.19.up_proj.qweight": "model-00002-of-00003.safetensors",
|
| 360 |
+
"model.transformer.blocks.19.up_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 361 |
+
"model.transformer.blocks.19.up_proj.scales": "model-00002-of-00003.safetensors",
|
| 362 |
+
"model.transformer.blocks.19.v_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 363 |
+
"model.transformer.blocks.19.v_proj.qweight": "model-00002-of-00003.safetensors",
|
| 364 |
+
"model.transformer.blocks.19.v_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 365 |
+
"model.transformer.blocks.19.v_proj.scales": "model-00002-of-00003.safetensors",
|
| 366 |
+
"model.transformer.blocks.2.attn_norm.weight": "model-00001-of-00003.safetensors",
|
| 367 |
+
"model.transformer.blocks.2.attn_out.g_idx": "model-00001-of-00003.safetensors",
|
| 368 |
+
"model.transformer.blocks.2.attn_out.qweight": "model-00001-of-00003.safetensors",
|
| 369 |
+
"model.transformer.blocks.2.attn_out.qzeros": "model-00001-of-00003.safetensors",
|
| 370 |
+
"model.transformer.blocks.2.attn_out.scales": "model-00001-of-00003.safetensors",
|
| 371 |
+
"model.transformer.blocks.2.ff_norm.weight": "model-00001-of-00003.safetensors",
|
| 372 |
+
"model.transformer.blocks.2.ff_out.g_idx": "model-00001-of-00003.safetensors",
|
| 373 |
+
"model.transformer.blocks.2.ff_out.qweight": "model-00001-of-00003.safetensors",
|
| 374 |
+
"model.transformer.blocks.2.ff_out.qzeros": "model-00001-of-00003.safetensors",
|
| 375 |
+
"model.transformer.blocks.2.ff_out.scales": "model-00001-of-00003.safetensors",
|
| 376 |
+
"model.transformer.blocks.2.ff_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 377 |
+
"model.transformer.blocks.2.ff_proj.qweight": "model-00001-of-00003.safetensors",
|
| 378 |
+
"model.transformer.blocks.2.ff_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 379 |
+
"model.transformer.blocks.2.ff_proj.scales": "model-00001-of-00003.safetensors",
|
| 380 |
+
"model.transformer.blocks.2.k_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 381 |
+
"model.transformer.blocks.2.k_proj.qweight": "model-00001-of-00003.safetensors",
|
| 382 |
+
"model.transformer.blocks.2.k_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 383 |
+
"model.transformer.blocks.2.k_proj.scales": "model-00001-of-00003.safetensors",
|
| 384 |
+
"model.transformer.blocks.2.q_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 385 |
+
"model.transformer.blocks.2.q_proj.qweight": "model-00001-of-00003.safetensors",
|
| 386 |
+
"model.transformer.blocks.2.q_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 387 |
+
"model.transformer.blocks.2.q_proj.scales": "model-00001-of-00003.safetensors",
|
| 388 |
+
"model.transformer.blocks.2.up_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 389 |
+
"model.transformer.blocks.2.up_proj.qweight": "model-00001-of-00003.safetensors",
|
| 390 |
+
"model.transformer.blocks.2.up_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 391 |
+
"model.transformer.blocks.2.up_proj.scales": "model-00001-of-00003.safetensors",
|
| 392 |
+
"model.transformer.blocks.2.v_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 393 |
+
"model.transformer.blocks.2.v_proj.qweight": "model-00001-of-00003.safetensors",
|
| 394 |
+
"model.transformer.blocks.2.v_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 395 |
+
"model.transformer.blocks.2.v_proj.scales": "model-00001-of-00003.safetensors",
|
| 396 |
+
"model.transformer.blocks.20.attn_norm.weight": "model-00002-of-00003.safetensors",
|
| 397 |
+
"model.transformer.blocks.20.attn_out.g_idx": "model-00002-of-00003.safetensors",
|
| 398 |
+
"model.transformer.blocks.20.attn_out.qweight": "model-00002-of-00003.safetensors",
|
| 399 |
+
"model.transformer.blocks.20.attn_out.qzeros": "model-00002-of-00003.safetensors",
|
| 400 |
+
"model.transformer.blocks.20.attn_out.scales": "model-00002-of-00003.safetensors",
|
| 401 |
+
"model.transformer.blocks.20.ff_norm.weight": "model-00002-of-00003.safetensors",
|
| 402 |
+
"model.transformer.blocks.20.ff_out.g_idx": "model-00002-of-00003.safetensors",
|
| 403 |
+
"model.transformer.blocks.20.ff_out.qweight": "model-00002-of-00003.safetensors",
|
| 404 |
+
"model.transformer.blocks.20.ff_out.qzeros": "model-00002-of-00003.safetensors",
|
| 405 |
+
"model.transformer.blocks.20.ff_out.scales": "model-00002-of-00003.safetensors",
|
| 406 |
+
"model.transformer.blocks.20.ff_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 407 |
+
"model.transformer.blocks.20.ff_proj.qweight": "model-00002-of-00003.safetensors",
|
| 408 |
+
"model.transformer.blocks.20.ff_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 409 |
+
"model.transformer.blocks.20.ff_proj.scales": "model-00002-of-00003.safetensors",
|
| 410 |
+
"model.transformer.blocks.20.k_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 411 |
+
"model.transformer.blocks.20.k_proj.qweight": "model-00002-of-00003.safetensors",
|
| 412 |
+
"model.transformer.blocks.20.k_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 413 |
+
"model.transformer.blocks.20.k_proj.scales": "model-00002-of-00003.safetensors",
|
| 414 |
+
"model.transformer.blocks.20.q_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 415 |
+
"model.transformer.blocks.20.q_proj.qweight": "model-00002-of-00003.safetensors",
|
| 416 |
+
"model.transformer.blocks.20.q_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 417 |
+
"model.transformer.blocks.20.q_proj.scales": "model-00002-of-00003.safetensors",
|
| 418 |
+
"model.transformer.blocks.20.up_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 419 |
+
"model.transformer.blocks.20.up_proj.qweight": "model-00002-of-00003.safetensors",
|
| 420 |
+
"model.transformer.blocks.20.up_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 421 |
+
"model.transformer.blocks.20.up_proj.scales": "model-00002-of-00003.safetensors",
|
| 422 |
+
"model.transformer.blocks.20.v_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 423 |
+
"model.transformer.blocks.20.v_proj.qweight": "model-00002-of-00003.safetensors",
|
| 424 |
+
"model.transformer.blocks.20.v_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 425 |
+
"model.transformer.blocks.20.v_proj.scales": "model-00002-of-00003.safetensors",
|
| 426 |
+
"model.transformer.blocks.21.attn_norm.weight": "model-00002-of-00003.safetensors",
|
| 427 |
+
"model.transformer.blocks.21.attn_out.g_idx": "model-00002-of-00003.safetensors",
|
| 428 |
+
"model.transformer.blocks.21.attn_out.qweight": "model-00002-of-00003.safetensors",
|
| 429 |
+
"model.transformer.blocks.21.attn_out.qzeros": "model-00002-of-00003.safetensors",
|
| 430 |
+
"model.transformer.blocks.21.attn_out.scales": "model-00002-of-00003.safetensors",
|
| 431 |
+
"model.transformer.blocks.21.ff_norm.weight": "model-00002-of-00003.safetensors",
|
| 432 |
+
"model.transformer.blocks.21.ff_out.g_idx": "model-00002-of-00003.safetensors",
|
| 433 |
+
"model.transformer.blocks.21.ff_out.qweight": "model-00002-of-00003.safetensors",
|
| 434 |
+
"model.transformer.blocks.21.ff_out.qzeros": "model-00002-of-00003.safetensors",
|
| 435 |
+
"model.transformer.blocks.21.ff_out.scales": "model-00002-of-00003.safetensors",
|
| 436 |
+
"model.transformer.blocks.21.ff_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 437 |
+
"model.transformer.blocks.21.ff_proj.qweight": "model-00002-of-00003.safetensors",
|
| 438 |
+
"model.transformer.blocks.21.ff_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 439 |
+
"model.transformer.blocks.21.ff_proj.scales": "model-00002-of-00003.safetensors",
|
| 440 |
+
"model.transformer.blocks.21.k_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 441 |
+
"model.transformer.blocks.21.k_proj.qweight": "model-00002-of-00003.safetensors",
|
| 442 |
+
"model.transformer.blocks.21.k_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 443 |
+
"model.transformer.blocks.21.k_proj.scales": "model-00002-of-00003.safetensors",
|
| 444 |
+
"model.transformer.blocks.21.q_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 445 |
+
"model.transformer.blocks.21.q_proj.qweight": "model-00002-of-00003.safetensors",
|
| 446 |
+
"model.transformer.blocks.21.q_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 447 |
+
"model.transformer.blocks.21.q_proj.scales": "model-00002-of-00003.safetensors",
|
| 448 |
+
"model.transformer.blocks.21.up_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 449 |
+
"model.transformer.blocks.21.up_proj.qweight": "model-00002-of-00003.safetensors",
|
| 450 |
+
"model.transformer.blocks.21.up_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 451 |
+
"model.transformer.blocks.21.up_proj.scales": "model-00002-of-00003.safetensors",
|
| 452 |
+
"model.transformer.blocks.21.v_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 453 |
+
"model.transformer.blocks.21.v_proj.qweight": "model-00002-of-00003.safetensors",
|
| 454 |
+
"model.transformer.blocks.21.v_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 455 |
+
"model.transformer.blocks.21.v_proj.scales": "model-00002-of-00003.safetensors",
|
| 456 |
+
"model.transformer.blocks.22.attn_norm.weight": "model-00002-of-00003.safetensors",
|
| 457 |
+
"model.transformer.blocks.22.attn_out.g_idx": "model-00002-of-00003.safetensors",
|
| 458 |
+
"model.transformer.blocks.22.attn_out.qweight": "model-00002-of-00003.safetensors",
|
| 459 |
+
"model.transformer.blocks.22.attn_out.qzeros": "model-00002-of-00003.safetensors",
|
| 460 |
+
"model.transformer.blocks.22.attn_out.scales": "model-00002-of-00003.safetensors",
|
| 461 |
+
"model.transformer.blocks.22.ff_norm.weight": "model-00002-of-00003.safetensors",
|
| 462 |
+
"model.transformer.blocks.22.ff_out.g_idx": "model-00002-of-00003.safetensors",
|
| 463 |
+
"model.transformer.blocks.22.ff_out.qweight": "model-00002-of-00003.safetensors",
|
| 464 |
+
"model.transformer.blocks.22.ff_out.qzeros": "model-00002-of-00003.safetensors",
|
| 465 |
+
"model.transformer.blocks.22.ff_out.scales": "model-00002-of-00003.safetensors",
|
| 466 |
+
"model.transformer.blocks.22.ff_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 467 |
+
"model.transformer.blocks.22.ff_proj.qweight": "model-00002-of-00003.safetensors",
|
| 468 |
+
"model.transformer.blocks.22.ff_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 469 |
+
"model.transformer.blocks.22.ff_proj.scales": "model-00002-of-00003.safetensors",
|
| 470 |
+
"model.transformer.blocks.22.k_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 471 |
+
"model.transformer.blocks.22.k_proj.qweight": "model-00002-of-00003.safetensors",
|
| 472 |
+
"model.transformer.blocks.22.k_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 473 |
+
"model.transformer.blocks.22.k_proj.scales": "model-00002-of-00003.safetensors",
|
| 474 |
+
"model.transformer.blocks.22.q_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 475 |
+
"model.transformer.blocks.22.q_proj.qweight": "model-00002-of-00003.safetensors",
|
| 476 |
+
"model.transformer.blocks.22.q_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 477 |
+
"model.transformer.blocks.22.q_proj.scales": "model-00002-of-00003.safetensors",
|
| 478 |
+
"model.transformer.blocks.22.up_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 479 |
+
"model.transformer.blocks.22.up_proj.qweight": "model-00002-of-00003.safetensors",
|
| 480 |
+
"model.transformer.blocks.22.up_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 481 |
+
"model.transformer.blocks.22.up_proj.scales": "model-00002-of-00003.safetensors",
|
| 482 |
+
"model.transformer.blocks.22.v_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 483 |
+
"model.transformer.blocks.22.v_proj.qweight": "model-00002-of-00003.safetensors",
|
| 484 |
+
"model.transformer.blocks.22.v_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 485 |
+
"model.transformer.blocks.22.v_proj.scales": "model-00002-of-00003.safetensors",
|
| 486 |
+
"model.transformer.blocks.23.attn_norm.weight": "model-00002-of-00003.safetensors",
|
| 487 |
+
"model.transformer.blocks.23.attn_out.g_idx": "model-00002-of-00003.safetensors",
|
| 488 |
+
"model.transformer.blocks.23.attn_out.qweight": "model-00002-of-00003.safetensors",
|
| 489 |
+
"model.transformer.blocks.23.attn_out.qzeros": "model-00002-of-00003.safetensors",
|
| 490 |
+
"model.transformer.blocks.23.attn_out.scales": "model-00002-of-00003.safetensors",
|
| 491 |
+
"model.transformer.blocks.23.ff_norm.weight": "model-00002-of-00003.safetensors",
|
| 492 |
+
"model.transformer.blocks.23.ff_out.g_idx": "model-00002-of-00003.safetensors",
|
| 493 |
+
"model.transformer.blocks.23.ff_out.qweight": "model-00002-of-00003.safetensors",
|
| 494 |
+
"model.transformer.blocks.23.ff_out.qzeros": "model-00002-of-00003.safetensors",
|
| 495 |
+
"model.transformer.blocks.23.ff_out.scales": "model-00002-of-00003.safetensors",
|
| 496 |
+
"model.transformer.blocks.23.ff_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 497 |
+
"model.transformer.blocks.23.ff_proj.qweight": "model-00002-of-00003.safetensors",
|
| 498 |
+
"model.transformer.blocks.23.ff_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 499 |
+
"model.transformer.blocks.23.ff_proj.scales": "model-00002-of-00003.safetensors",
|
| 500 |
+
"model.transformer.blocks.23.k_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 501 |
+
"model.transformer.blocks.23.k_proj.qweight": "model-00002-of-00003.safetensors",
|
| 502 |
+
"model.transformer.blocks.23.k_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 503 |
+
"model.transformer.blocks.23.k_proj.scales": "model-00002-of-00003.safetensors",
|
| 504 |
+
"model.transformer.blocks.23.q_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 505 |
+
"model.transformer.blocks.23.q_proj.qweight": "model-00002-of-00003.safetensors",
|
| 506 |
+
"model.transformer.blocks.23.q_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 507 |
+
"model.transformer.blocks.23.q_proj.scales": "model-00002-of-00003.safetensors",
|
| 508 |
+
"model.transformer.blocks.23.up_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 509 |
+
"model.transformer.blocks.23.up_proj.qweight": "model-00002-of-00003.safetensors",
|
| 510 |
+
"model.transformer.blocks.23.up_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 511 |
+
"model.transformer.blocks.23.up_proj.scales": "model-00002-of-00003.safetensors",
|
| 512 |
+
"model.transformer.blocks.23.v_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 513 |
+
"model.transformer.blocks.23.v_proj.qweight": "model-00002-of-00003.safetensors",
|
| 514 |
+
"model.transformer.blocks.23.v_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 515 |
+
"model.transformer.blocks.23.v_proj.scales": "model-00002-of-00003.safetensors",
|
| 516 |
+
"model.transformer.blocks.24.attn_norm.weight": "model-00002-of-00003.safetensors",
|
| 517 |
+
"model.transformer.blocks.24.attn_out.g_idx": "model-00002-of-00003.safetensors",
|
| 518 |
+
"model.transformer.blocks.24.attn_out.qweight": "model-00002-of-00003.safetensors",
|
| 519 |
+
"model.transformer.blocks.24.attn_out.qzeros": "model-00002-of-00003.safetensors",
|
| 520 |
+
"model.transformer.blocks.24.attn_out.scales": "model-00002-of-00003.safetensors",
|
| 521 |
+
"model.transformer.blocks.24.ff_norm.weight": "model-00002-of-00003.safetensors",
|
| 522 |
+
"model.transformer.blocks.24.ff_out.g_idx": "model-00002-of-00003.safetensors",
|
| 523 |
+
"model.transformer.blocks.24.ff_out.qweight": "model-00002-of-00003.safetensors",
|
| 524 |
+
"model.transformer.blocks.24.ff_out.qzeros": "model-00002-of-00003.safetensors",
|
| 525 |
+
"model.transformer.blocks.24.ff_out.scales": "model-00002-of-00003.safetensors",
|
| 526 |
+
"model.transformer.blocks.24.ff_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 527 |
+
"model.transformer.blocks.24.ff_proj.qweight": "model-00002-of-00003.safetensors",
|
| 528 |
+
"model.transformer.blocks.24.ff_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 529 |
+
"model.transformer.blocks.24.ff_proj.scales": "model-00002-of-00003.safetensors",
|
| 530 |
+
"model.transformer.blocks.24.k_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 531 |
+
"model.transformer.blocks.24.k_proj.qweight": "model-00002-of-00003.safetensors",
|
| 532 |
+
"model.transformer.blocks.24.k_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 533 |
+
"model.transformer.blocks.24.k_proj.scales": "model-00002-of-00003.safetensors",
|
| 534 |
+
"model.transformer.blocks.24.q_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 535 |
+
"model.transformer.blocks.24.q_proj.qweight": "model-00002-of-00003.safetensors",
|
| 536 |
+
"model.transformer.blocks.24.q_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 537 |
+
"model.transformer.blocks.24.q_proj.scales": "model-00002-of-00003.safetensors",
|
| 538 |
+
"model.transformer.blocks.24.up_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 539 |
+
"model.transformer.blocks.24.up_proj.qweight": "model-00002-of-00003.safetensors",
|
| 540 |
+
"model.transformer.blocks.24.up_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 541 |
+
"model.transformer.blocks.24.up_proj.scales": "model-00002-of-00003.safetensors",
|
| 542 |
+
"model.transformer.blocks.24.v_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 543 |
+
"model.transformer.blocks.24.v_proj.qweight": "model-00002-of-00003.safetensors",
|
| 544 |
+
"model.transformer.blocks.24.v_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 545 |
+
"model.transformer.blocks.24.v_proj.scales": "model-00002-of-00003.safetensors",
|
| 546 |
+
"model.transformer.blocks.25.attn_norm.weight": "model-00002-of-00003.safetensors",
|
| 547 |
+
"model.transformer.blocks.25.attn_out.g_idx": "model-00002-of-00003.safetensors",
|
| 548 |
+
"model.transformer.blocks.25.attn_out.qweight": "model-00002-of-00003.safetensors",
|
| 549 |
+
"model.transformer.blocks.25.attn_out.qzeros": "model-00002-of-00003.safetensors",
|
| 550 |
+
"model.transformer.blocks.25.attn_out.scales": "model-00002-of-00003.safetensors",
|
| 551 |
+
"model.transformer.blocks.25.ff_norm.weight": "model-00002-of-00003.safetensors",
|
| 552 |
+
"model.transformer.blocks.25.ff_out.g_idx": "model-00002-of-00003.safetensors",
|
| 553 |
+
"model.transformer.blocks.25.ff_out.qweight": "model-00002-of-00003.safetensors",
|
| 554 |
+
"model.transformer.blocks.25.ff_out.qzeros": "model-00002-of-00003.safetensors",
|
| 555 |
+
"model.transformer.blocks.25.ff_out.scales": "model-00002-of-00003.safetensors",
|
| 556 |
+
"model.transformer.blocks.25.ff_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 557 |
+
"model.transformer.blocks.25.ff_proj.qweight": "model-00002-of-00003.safetensors",
|
| 558 |
+
"model.transformer.blocks.25.ff_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 559 |
+
"model.transformer.blocks.25.ff_proj.scales": "model-00002-of-00003.safetensors",
|
| 560 |
+
"model.transformer.blocks.25.k_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 561 |
+
"model.transformer.blocks.25.k_proj.qweight": "model-00002-of-00003.safetensors",
|
| 562 |
+
"model.transformer.blocks.25.k_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 563 |
+
"model.transformer.blocks.25.k_proj.scales": "model-00002-of-00003.safetensors",
|
| 564 |
+
"model.transformer.blocks.25.q_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 565 |
+
"model.transformer.blocks.25.q_proj.qweight": "model-00002-of-00003.safetensors",
|
| 566 |
+
"model.transformer.blocks.25.q_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 567 |
+
"model.transformer.blocks.25.q_proj.scales": "model-00002-of-00003.safetensors",
|
| 568 |
+
"model.transformer.blocks.25.up_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 569 |
+
"model.transformer.blocks.25.up_proj.qweight": "model-00002-of-00003.safetensors",
|
| 570 |
+
"model.transformer.blocks.25.up_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 571 |
+
"model.transformer.blocks.25.up_proj.scales": "model-00002-of-00003.safetensors",
|
| 572 |
+
"model.transformer.blocks.25.v_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 573 |
+
"model.transformer.blocks.25.v_proj.qweight": "model-00002-of-00003.safetensors",
|
| 574 |
+
"model.transformer.blocks.25.v_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 575 |
+
"model.transformer.blocks.25.v_proj.scales": "model-00002-of-00003.safetensors",
|
| 576 |
+
"model.transformer.blocks.26.attn_norm.weight": "model-00003-of-00003.safetensors",
|
| 577 |
+
"model.transformer.blocks.26.attn_out.g_idx": "model-00002-of-00003.safetensors",
|
| 578 |
+
"model.transformer.blocks.26.attn_out.qweight": "model-00002-of-00003.safetensors",
|
| 579 |
+
"model.transformer.blocks.26.attn_out.qzeros": "model-00002-of-00003.safetensors",
|
| 580 |
+
"model.transformer.blocks.26.attn_out.scales": "model-00002-of-00003.safetensors",
|
| 581 |
+
"model.transformer.blocks.26.ff_norm.weight": "model-00003-of-00003.safetensors",
|
| 582 |
+
"model.transformer.blocks.26.ff_out.g_idx": "model-00003-of-00003.safetensors",
|
| 583 |
+
"model.transformer.blocks.26.ff_out.qweight": "model-00003-of-00003.safetensors",
|
| 584 |
+
"model.transformer.blocks.26.ff_out.qzeros": "model-00003-of-00003.safetensors",
|
| 585 |
+
"model.transformer.blocks.26.ff_out.scales": "model-00003-of-00003.safetensors",
|
| 586 |
+
"model.transformer.blocks.26.ff_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 587 |
+
"model.transformer.blocks.26.ff_proj.qweight": "model-00003-of-00003.safetensors",
|
| 588 |
+
"model.transformer.blocks.26.ff_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 589 |
+
"model.transformer.blocks.26.ff_proj.scales": "model-00003-of-00003.safetensors",
|
| 590 |
+
"model.transformer.blocks.26.k_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 591 |
+
"model.transformer.blocks.26.k_proj.qweight": "model-00003-of-00003.safetensors",
|
| 592 |
+
"model.transformer.blocks.26.k_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 593 |
+
"model.transformer.blocks.26.k_proj.scales": "model-00003-of-00003.safetensors",
|
| 594 |
+
"model.transformer.blocks.26.q_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 595 |
+
"model.transformer.blocks.26.q_proj.qweight": "model-00003-of-00003.safetensors",
|
| 596 |
+
"model.transformer.blocks.26.q_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 597 |
+
"model.transformer.blocks.26.q_proj.scales": "model-00003-of-00003.safetensors",
|
| 598 |
+
"model.transformer.blocks.26.up_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 599 |
+
"model.transformer.blocks.26.up_proj.qweight": "model-00003-of-00003.safetensors",
|
| 600 |
+
"model.transformer.blocks.26.up_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 601 |
+
"model.transformer.blocks.26.up_proj.scales": "model-00003-of-00003.safetensors",
|
| 602 |
+
"model.transformer.blocks.26.v_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 603 |
+
"model.transformer.blocks.26.v_proj.qweight": "model-00003-of-00003.safetensors",
|
| 604 |
+
"model.transformer.blocks.26.v_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 605 |
+
"model.transformer.blocks.26.v_proj.scales": "model-00003-of-00003.safetensors",
|
| 606 |
+
"model.transformer.blocks.27.attn_norm.weight": "model-00003-of-00003.safetensors",
|
| 607 |
+
"model.transformer.blocks.27.attn_out.g_idx": "model-00003-of-00003.safetensors",
|
| 608 |
+
"model.transformer.blocks.27.attn_out.qweight": "model-00003-of-00003.safetensors",
|
| 609 |
+
"model.transformer.blocks.27.attn_out.qzeros": "model-00003-of-00003.safetensors",
|
| 610 |
+
"model.transformer.blocks.27.attn_out.scales": "model-00003-of-00003.safetensors",
|
| 611 |
+
"model.transformer.blocks.27.ff_norm.weight": "model-00003-of-00003.safetensors",
|
| 612 |
+
"model.transformer.blocks.27.ff_out.g_idx": "model-00003-of-00003.safetensors",
|
| 613 |
+
"model.transformer.blocks.27.ff_out.qweight": "model-00003-of-00003.safetensors",
|
| 614 |
+
"model.transformer.blocks.27.ff_out.qzeros": "model-00003-of-00003.safetensors",
|
| 615 |
+
"model.transformer.blocks.27.ff_out.scales": "model-00003-of-00003.safetensors",
|
| 616 |
+
"model.transformer.blocks.27.ff_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 617 |
+
"model.transformer.blocks.27.ff_proj.qweight": "model-00003-of-00003.safetensors",
|
| 618 |
+
"model.transformer.blocks.27.ff_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 619 |
+
"model.transformer.blocks.27.ff_proj.scales": "model-00003-of-00003.safetensors",
|
| 620 |
+
"model.transformer.blocks.27.k_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 621 |
+
"model.transformer.blocks.27.k_proj.qweight": "model-00003-of-00003.safetensors",
|
| 622 |
+
"model.transformer.blocks.27.k_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 623 |
+
"model.transformer.blocks.27.k_proj.scales": "model-00003-of-00003.safetensors",
|
| 624 |
+
"model.transformer.blocks.27.q_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 625 |
+
"model.transformer.blocks.27.q_proj.qweight": "model-00003-of-00003.safetensors",
|
| 626 |
+
"model.transformer.blocks.27.q_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 627 |
+
"model.transformer.blocks.27.q_proj.scales": "model-00003-of-00003.safetensors",
|
| 628 |
+
"model.transformer.blocks.27.up_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 629 |
+
"model.transformer.blocks.27.up_proj.qweight": "model-00003-of-00003.safetensors",
|
| 630 |
+
"model.transformer.blocks.27.up_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 631 |
+
"model.transformer.blocks.27.up_proj.scales": "model-00003-of-00003.safetensors",
|
| 632 |
+
"model.transformer.blocks.27.v_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 633 |
+
"model.transformer.blocks.27.v_proj.qweight": "model-00003-of-00003.safetensors",
|
| 634 |
+
"model.transformer.blocks.27.v_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 635 |
+
"model.transformer.blocks.27.v_proj.scales": "model-00003-of-00003.safetensors",
|
| 636 |
+
"model.transformer.blocks.28.attn_norm.weight": "model-00003-of-00003.safetensors",
|
| 637 |
+
"model.transformer.blocks.28.attn_out.g_idx": "model-00003-of-00003.safetensors",
|
| 638 |
+
"model.transformer.blocks.28.attn_out.qweight": "model-00003-of-00003.safetensors",
|
| 639 |
+
"model.transformer.blocks.28.attn_out.qzeros": "model-00003-of-00003.safetensors",
|
| 640 |
+
"model.transformer.blocks.28.attn_out.scales": "model-00003-of-00003.safetensors",
|
| 641 |
+
"model.transformer.blocks.28.ff_norm.weight": "model-00003-of-00003.safetensors",
|
| 642 |
+
"model.transformer.blocks.28.ff_out.g_idx": "model-00003-of-00003.safetensors",
|
| 643 |
+
"model.transformer.blocks.28.ff_out.qweight": "model-00003-of-00003.safetensors",
|
| 644 |
+
"model.transformer.blocks.28.ff_out.qzeros": "model-00003-of-00003.safetensors",
|
| 645 |
+
"model.transformer.blocks.28.ff_out.scales": "model-00003-of-00003.safetensors",
|
| 646 |
+
"model.transformer.blocks.28.ff_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 647 |
+
"model.transformer.blocks.28.ff_proj.qweight": "model-00003-of-00003.safetensors",
|
| 648 |
+
"model.transformer.blocks.28.ff_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 649 |
+
"model.transformer.blocks.28.ff_proj.scales": "model-00003-of-00003.safetensors",
|
| 650 |
+
"model.transformer.blocks.28.k_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 651 |
+
"model.transformer.blocks.28.k_proj.qweight": "model-00003-of-00003.safetensors",
|
| 652 |
+
"model.transformer.blocks.28.k_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 653 |
+
"model.transformer.blocks.28.k_proj.scales": "model-00003-of-00003.safetensors",
|
| 654 |
+
"model.transformer.blocks.28.q_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 655 |
+
"model.transformer.blocks.28.q_proj.qweight": "model-00003-of-00003.safetensors",
|
| 656 |
+
"model.transformer.blocks.28.q_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 657 |
+
"model.transformer.blocks.28.q_proj.scales": "model-00003-of-00003.safetensors",
|
| 658 |
+
"model.transformer.blocks.28.up_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 659 |
+
"model.transformer.blocks.28.up_proj.qweight": "model-00003-of-00003.safetensors",
|
| 660 |
+
"model.transformer.blocks.28.up_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 661 |
+
"model.transformer.blocks.28.up_proj.scales": "model-00003-of-00003.safetensors",
|
| 662 |
+
"model.transformer.blocks.28.v_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 663 |
+
"model.transformer.blocks.28.v_proj.qweight": "model-00003-of-00003.safetensors",
|
| 664 |
+
"model.transformer.blocks.28.v_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 665 |
+
"model.transformer.blocks.28.v_proj.scales": "model-00003-of-00003.safetensors",
|
| 666 |
+
"model.transformer.blocks.29.attn_norm.weight": "model-00003-of-00003.safetensors",
|
| 667 |
+
"model.transformer.blocks.29.attn_out.g_idx": "model-00003-of-00003.safetensors",
|
| 668 |
+
"model.transformer.blocks.29.attn_out.qweight": "model-00003-of-00003.safetensors",
|
| 669 |
+
"model.transformer.blocks.29.attn_out.qzeros": "model-00003-of-00003.safetensors",
|
| 670 |
+
"model.transformer.blocks.29.attn_out.scales": "model-00003-of-00003.safetensors",
|
| 671 |
+
"model.transformer.blocks.29.ff_norm.weight": "model-00003-of-00003.safetensors",
|
| 672 |
+
"model.transformer.blocks.29.ff_out.g_idx": "model-00003-of-00003.safetensors",
|
| 673 |
+
"model.transformer.blocks.29.ff_out.qweight": "model-00003-of-00003.safetensors",
|
| 674 |
+
"model.transformer.blocks.29.ff_out.qzeros": "model-00003-of-00003.safetensors",
|
| 675 |
+
"model.transformer.blocks.29.ff_out.scales": "model-00003-of-00003.safetensors",
|
| 676 |
+
"model.transformer.blocks.29.ff_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 677 |
+
"model.transformer.blocks.29.ff_proj.qweight": "model-00003-of-00003.safetensors",
|
| 678 |
+
"model.transformer.blocks.29.ff_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 679 |
+
"model.transformer.blocks.29.ff_proj.scales": "model-00003-of-00003.safetensors",
|
| 680 |
+
"model.transformer.blocks.29.k_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 681 |
+
"model.transformer.blocks.29.k_proj.qweight": "model-00003-of-00003.safetensors",
|
| 682 |
+
"model.transformer.blocks.29.k_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 683 |
+
"model.transformer.blocks.29.k_proj.scales": "model-00003-of-00003.safetensors",
|
| 684 |
+
"model.transformer.blocks.29.q_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 685 |
+
"model.transformer.blocks.29.q_proj.qweight": "model-00003-of-00003.safetensors",
|
| 686 |
+
"model.transformer.blocks.29.q_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 687 |
+
"model.transformer.blocks.29.q_proj.scales": "model-00003-of-00003.safetensors",
|
| 688 |
+
"model.transformer.blocks.29.up_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 689 |
+
"model.transformer.blocks.29.up_proj.qweight": "model-00003-of-00003.safetensors",
|
| 690 |
+
"model.transformer.blocks.29.up_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 691 |
+
"model.transformer.blocks.29.up_proj.scales": "model-00003-of-00003.safetensors",
|
| 692 |
+
"model.transformer.blocks.29.v_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 693 |
+
"model.transformer.blocks.29.v_proj.qweight": "model-00003-of-00003.safetensors",
|
| 694 |
+
"model.transformer.blocks.29.v_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 695 |
+
"model.transformer.blocks.29.v_proj.scales": "model-00003-of-00003.safetensors",
|
| 696 |
+
"model.transformer.blocks.3.attn_norm.weight": "model-00001-of-00003.safetensors",
|
| 697 |
+
"model.transformer.blocks.3.attn_out.g_idx": "model-00001-of-00003.safetensors",
|
| 698 |
+
"model.transformer.blocks.3.attn_out.qweight": "model-00001-of-00003.safetensors",
|
| 699 |
+
"model.transformer.blocks.3.attn_out.qzeros": "model-00001-of-00003.safetensors",
|
| 700 |
+
"model.transformer.blocks.3.attn_out.scales": "model-00001-of-00003.safetensors",
|
| 701 |
+
"model.transformer.blocks.3.ff_norm.weight": "model-00001-of-00003.safetensors",
|
| 702 |
+
"model.transformer.blocks.3.ff_out.g_idx": "model-00001-of-00003.safetensors",
|
| 703 |
+
"model.transformer.blocks.3.ff_out.qweight": "model-00001-of-00003.safetensors",
|
| 704 |
+
"model.transformer.blocks.3.ff_out.qzeros": "model-00001-of-00003.safetensors",
|
| 705 |
+
"model.transformer.blocks.3.ff_out.scales": "model-00001-of-00003.safetensors",
|
| 706 |
+
"model.transformer.blocks.3.ff_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 707 |
+
"model.transformer.blocks.3.ff_proj.qweight": "model-00001-of-00003.safetensors",
|
| 708 |
+
"model.transformer.blocks.3.ff_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 709 |
+
"model.transformer.blocks.3.ff_proj.scales": "model-00001-of-00003.safetensors",
|
| 710 |
+
"model.transformer.blocks.3.k_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 711 |
+
"model.transformer.blocks.3.k_proj.qweight": "model-00001-of-00003.safetensors",
|
| 712 |
+
"model.transformer.blocks.3.k_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 713 |
+
"model.transformer.blocks.3.k_proj.scales": "model-00001-of-00003.safetensors",
|
| 714 |
+
"model.transformer.blocks.3.q_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 715 |
+
"model.transformer.blocks.3.q_proj.qweight": "model-00001-of-00003.safetensors",
|
| 716 |
+
"model.transformer.blocks.3.q_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 717 |
+
"model.transformer.blocks.3.q_proj.scales": "model-00001-of-00003.safetensors",
|
| 718 |
+
"model.transformer.blocks.3.up_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 719 |
+
"model.transformer.blocks.3.up_proj.qweight": "model-00001-of-00003.safetensors",
|
| 720 |
+
"model.transformer.blocks.3.up_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 721 |
+
"model.transformer.blocks.3.up_proj.scales": "model-00001-of-00003.safetensors",
|
| 722 |
+
"model.transformer.blocks.3.v_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 723 |
+
"model.transformer.blocks.3.v_proj.qweight": "model-00001-of-00003.safetensors",
|
| 724 |
+
"model.transformer.blocks.3.v_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 725 |
+
"model.transformer.blocks.3.v_proj.scales": "model-00001-of-00003.safetensors",
|
| 726 |
+
"model.transformer.blocks.30.attn_norm.weight": "model-00003-of-00003.safetensors",
|
| 727 |
+
"model.transformer.blocks.30.attn_out.g_idx": "model-00003-of-00003.safetensors",
|
| 728 |
+
"model.transformer.blocks.30.attn_out.qweight": "model-00003-of-00003.safetensors",
|
| 729 |
+
"model.transformer.blocks.30.attn_out.qzeros": "model-00003-of-00003.safetensors",
|
| 730 |
+
"model.transformer.blocks.30.attn_out.scales": "model-00003-of-00003.safetensors",
|
| 731 |
+
"model.transformer.blocks.30.ff_norm.weight": "model-00003-of-00003.safetensors",
|
| 732 |
+
"model.transformer.blocks.30.ff_out.g_idx": "model-00003-of-00003.safetensors",
|
| 733 |
+
"model.transformer.blocks.30.ff_out.qweight": "model-00003-of-00003.safetensors",
|
| 734 |
+
"model.transformer.blocks.30.ff_out.qzeros": "model-00003-of-00003.safetensors",
|
| 735 |
+
"model.transformer.blocks.30.ff_out.scales": "model-00003-of-00003.safetensors",
|
| 736 |
+
"model.transformer.blocks.30.ff_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 737 |
+
"model.transformer.blocks.30.ff_proj.qweight": "model-00003-of-00003.safetensors",
|
| 738 |
+
"model.transformer.blocks.30.ff_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 739 |
+
"model.transformer.blocks.30.ff_proj.scales": "model-00003-of-00003.safetensors",
|
| 740 |
+
"model.transformer.blocks.30.k_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 741 |
+
"model.transformer.blocks.30.k_proj.qweight": "model-00003-of-00003.safetensors",
|
| 742 |
+
"model.transformer.blocks.30.k_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 743 |
+
"model.transformer.blocks.30.k_proj.scales": "model-00003-of-00003.safetensors",
|
| 744 |
+
"model.transformer.blocks.30.q_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 745 |
+
"model.transformer.blocks.30.q_proj.qweight": "model-00003-of-00003.safetensors",
|
| 746 |
+
"model.transformer.blocks.30.q_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 747 |
+
"model.transformer.blocks.30.q_proj.scales": "model-00003-of-00003.safetensors",
|
| 748 |
+
"model.transformer.blocks.30.up_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 749 |
+
"model.transformer.blocks.30.up_proj.qweight": "model-00003-of-00003.safetensors",
|
| 750 |
+
"model.transformer.blocks.30.up_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 751 |
+
"model.transformer.blocks.30.up_proj.scales": "model-00003-of-00003.safetensors",
|
| 752 |
+
"model.transformer.blocks.30.v_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 753 |
+
"model.transformer.blocks.30.v_proj.qweight": "model-00003-of-00003.safetensors",
|
| 754 |
+
"model.transformer.blocks.30.v_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 755 |
+
"model.transformer.blocks.30.v_proj.scales": "model-00003-of-00003.safetensors",
|
| 756 |
+
"model.transformer.blocks.31.attn_norm.weight": "model-00003-of-00003.safetensors",
|
| 757 |
+
"model.transformer.blocks.31.attn_out.g_idx": "model-00003-of-00003.safetensors",
|
| 758 |
+
"model.transformer.blocks.31.attn_out.qweight": "model-00003-of-00003.safetensors",
|
| 759 |
+
"model.transformer.blocks.31.attn_out.qzeros": "model-00003-of-00003.safetensors",
|
| 760 |
+
"model.transformer.blocks.31.attn_out.scales": "model-00003-of-00003.safetensors",
|
| 761 |
+
"model.transformer.blocks.31.ff_norm.weight": "model-00003-of-00003.safetensors",
|
| 762 |
+
"model.transformer.blocks.31.ff_out.g_idx": "model-00003-of-00003.safetensors",
|
| 763 |
+
"model.transformer.blocks.31.ff_out.qweight": "model-00003-of-00003.safetensors",
|
| 764 |
+
"model.transformer.blocks.31.ff_out.qzeros": "model-00003-of-00003.safetensors",
|
| 765 |
+
"model.transformer.blocks.31.ff_out.scales": "model-00003-of-00003.safetensors",
|
| 766 |
+
"model.transformer.blocks.31.ff_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 767 |
+
"model.transformer.blocks.31.ff_proj.qweight": "model-00003-of-00003.safetensors",
|
| 768 |
+
"model.transformer.blocks.31.ff_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 769 |
+
"model.transformer.blocks.31.ff_proj.scales": "model-00003-of-00003.safetensors",
|
| 770 |
+
"model.transformer.blocks.31.k_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 771 |
+
"model.transformer.blocks.31.k_proj.qweight": "model-00003-of-00003.safetensors",
|
| 772 |
+
"model.transformer.blocks.31.k_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 773 |
+
"model.transformer.blocks.31.k_proj.scales": "model-00003-of-00003.safetensors",
|
| 774 |
+
"model.transformer.blocks.31.q_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 775 |
+
"model.transformer.blocks.31.q_proj.qweight": "model-00003-of-00003.safetensors",
|
| 776 |
+
"model.transformer.blocks.31.q_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 777 |
+
"model.transformer.blocks.31.q_proj.scales": "model-00003-of-00003.safetensors",
|
| 778 |
+
"model.transformer.blocks.31.up_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 779 |
+
"model.transformer.blocks.31.up_proj.qweight": "model-00003-of-00003.safetensors",
|
| 780 |
+
"model.transformer.blocks.31.up_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 781 |
+
"model.transformer.blocks.31.up_proj.scales": "model-00003-of-00003.safetensors",
|
| 782 |
+
"model.transformer.blocks.31.v_proj.g_idx": "model-00003-of-00003.safetensors",
|
| 783 |
+
"model.transformer.blocks.31.v_proj.qweight": "model-00003-of-00003.safetensors",
|
| 784 |
+
"model.transformer.blocks.31.v_proj.qzeros": "model-00003-of-00003.safetensors",
|
| 785 |
+
"model.transformer.blocks.31.v_proj.scales": "model-00003-of-00003.safetensors",
|
| 786 |
+
"model.transformer.blocks.4.attn_norm.weight": "model-00001-of-00003.safetensors",
|
| 787 |
+
"model.transformer.blocks.4.attn_out.g_idx": "model-00001-of-00003.safetensors",
|
| 788 |
+
"model.transformer.blocks.4.attn_out.qweight": "model-00001-of-00003.safetensors",
|
| 789 |
+
"model.transformer.blocks.4.attn_out.qzeros": "model-00001-of-00003.safetensors",
|
| 790 |
+
"model.transformer.blocks.4.attn_out.scales": "model-00001-of-00003.safetensors",
|
| 791 |
+
"model.transformer.blocks.4.ff_norm.weight": "model-00001-of-00003.safetensors",
|
| 792 |
+
"model.transformer.blocks.4.ff_out.g_idx": "model-00001-of-00003.safetensors",
|
| 793 |
+
"model.transformer.blocks.4.ff_out.qweight": "model-00001-of-00003.safetensors",
|
| 794 |
+
"model.transformer.blocks.4.ff_out.qzeros": "model-00001-of-00003.safetensors",
|
| 795 |
+
"model.transformer.blocks.4.ff_out.scales": "model-00001-of-00003.safetensors",
|
| 796 |
+
"model.transformer.blocks.4.ff_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 797 |
+
"model.transformer.blocks.4.ff_proj.qweight": "model-00001-of-00003.safetensors",
|
| 798 |
+
"model.transformer.blocks.4.ff_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 799 |
+
"model.transformer.blocks.4.ff_proj.scales": "model-00001-of-00003.safetensors",
|
| 800 |
+
"model.transformer.blocks.4.k_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 801 |
+
"model.transformer.blocks.4.k_proj.qweight": "model-00001-of-00003.safetensors",
|
| 802 |
+
"model.transformer.blocks.4.k_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 803 |
+
"model.transformer.blocks.4.k_proj.scales": "model-00001-of-00003.safetensors",
|
| 804 |
+
"model.transformer.blocks.4.q_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 805 |
+
"model.transformer.blocks.4.q_proj.qweight": "model-00001-of-00003.safetensors",
|
| 806 |
+
"model.transformer.blocks.4.q_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 807 |
+
"model.transformer.blocks.4.q_proj.scales": "model-00001-of-00003.safetensors",
|
| 808 |
+
"model.transformer.blocks.4.up_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 809 |
+
"model.transformer.blocks.4.up_proj.qweight": "model-00001-of-00003.safetensors",
|
| 810 |
+
"model.transformer.blocks.4.up_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 811 |
+
"model.transformer.blocks.4.up_proj.scales": "model-00001-of-00003.safetensors",
|
| 812 |
+
"model.transformer.blocks.4.v_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 813 |
+
"model.transformer.blocks.4.v_proj.qweight": "model-00001-of-00003.safetensors",
|
| 814 |
+
"model.transformer.blocks.4.v_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 815 |
+
"model.transformer.blocks.4.v_proj.scales": "model-00001-of-00003.safetensors",
|
| 816 |
+
"model.transformer.blocks.5.attn_norm.weight": "model-00001-of-00003.safetensors",
|
| 817 |
+
"model.transformer.blocks.5.attn_out.g_idx": "model-00001-of-00003.safetensors",
|
| 818 |
+
"model.transformer.blocks.5.attn_out.qweight": "model-00001-of-00003.safetensors",
|
| 819 |
+
"model.transformer.blocks.5.attn_out.qzeros": "model-00001-of-00003.safetensors",
|
| 820 |
+
"model.transformer.blocks.5.attn_out.scales": "model-00001-of-00003.safetensors",
|
| 821 |
+
"model.transformer.blocks.5.ff_norm.weight": "model-00001-of-00003.safetensors",
|
| 822 |
+
"model.transformer.blocks.5.ff_out.g_idx": "model-00001-of-00003.safetensors",
|
| 823 |
+
"model.transformer.blocks.5.ff_out.qweight": "model-00001-of-00003.safetensors",
|
| 824 |
+
"model.transformer.blocks.5.ff_out.qzeros": "model-00001-of-00003.safetensors",
|
| 825 |
+
"model.transformer.blocks.5.ff_out.scales": "model-00001-of-00003.safetensors",
|
| 826 |
+
"model.transformer.blocks.5.ff_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 827 |
+
"model.transformer.blocks.5.ff_proj.qweight": "model-00001-of-00003.safetensors",
|
| 828 |
+
"model.transformer.blocks.5.ff_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 829 |
+
"model.transformer.blocks.5.ff_proj.scales": "model-00001-of-00003.safetensors",
|
| 830 |
+
"model.transformer.blocks.5.k_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 831 |
+
"model.transformer.blocks.5.k_proj.qweight": "model-00001-of-00003.safetensors",
|
| 832 |
+
"model.transformer.blocks.5.k_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 833 |
+
"model.transformer.blocks.5.k_proj.scales": "model-00001-of-00003.safetensors",
|
| 834 |
+
"model.transformer.blocks.5.q_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 835 |
+
"model.transformer.blocks.5.q_proj.qweight": "model-00001-of-00003.safetensors",
|
| 836 |
+
"model.transformer.blocks.5.q_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 837 |
+
"model.transformer.blocks.5.q_proj.scales": "model-00001-of-00003.safetensors",
|
| 838 |
+
"model.transformer.blocks.5.up_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 839 |
+
"model.transformer.blocks.5.up_proj.qweight": "model-00001-of-00003.safetensors",
|
| 840 |
+
"model.transformer.blocks.5.up_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 841 |
+
"model.transformer.blocks.5.up_proj.scales": "model-00001-of-00003.safetensors",
|
| 842 |
+
"model.transformer.blocks.5.v_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 843 |
+
"model.transformer.blocks.5.v_proj.qweight": "model-00001-of-00003.safetensors",
|
| 844 |
+
"model.transformer.blocks.5.v_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 845 |
+
"model.transformer.blocks.5.v_proj.scales": "model-00001-of-00003.safetensors",
|
| 846 |
+
"model.transformer.blocks.6.attn_norm.weight": "model-00001-of-00003.safetensors",
|
| 847 |
+
"model.transformer.blocks.6.attn_out.g_idx": "model-00001-of-00003.safetensors",
|
| 848 |
+
"model.transformer.blocks.6.attn_out.qweight": "model-00001-of-00003.safetensors",
|
| 849 |
+
"model.transformer.blocks.6.attn_out.qzeros": "model-00001-of-00003.safetensors",
|
| 850 |
+
"model.transformer.blocks.6.attn_out.scales": "model-00001-of-00003.safetensors",
|
| 851 |
+
"model.transformer.blocks.6.ff_norm.weight": "model-00001-of-00003.safetensors",
|
| 852 |
+
"model.transformer.blocks.6.ff_out.g_idx": "model-00001-of-00003.safetensors",
|
| 853 |
+
"model.transformer.blocks.6.ff_out.qweight": "model-00001-of-00003.safetensors",
|
| 854 |
+
"model.transformer.blocks.6.ff_out.qzeros": "model-00001-of-00003.safetensors",
|
| 855 |
+
"model.transformer.blocks.6.ff_out.scales": "model-00001-of-00003.safetensors",
|
| 856 |
+
"model.transformer.blocks.6.ff_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 857 |
+
"model.transformer.blocks.6.ff_proj.qweight": "model-00001-of-00003.safetensors",
|
| 858 |
+
"model.transformer.blocks.6.ff_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 859 |
+
"model.transformer.blocks.6.ff_proj.scales": "model-00001-of-00003.safetensors",
|
| 860 |
+
"model.transformer.blocks.6.k_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 861 |
+
"model.transformer.blocks.6.k_proj.qweight": "model-00001-of-00003.safetensors",
|
| 862 |
+
"model.transformer.blocks.6.k_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 863 |
+
"model.transformer.blocks.6.k_proj.scales": "model-00001-of-00003.safetensors",
|
| 864 |
+
"model.transformer.blocks.6.q_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 865 |
+
"model.transformer.blocks.6.q_proj.qweight": "model-00001-of-00003.safetensors",
|
| 866 |
+
"model.transformer.blocks.6.q_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 867 |
+
"model.transformer.blocks.6.q_proj.scales": "model-00001-of-00003.safetensors",
|
| 868 |
+
"model.transformer.blocks.6.up_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 869 |
+
"model.transformer.blocks.6.up_proj.qweight": "model-00001-of-00003.safetensors",
|
| 870 |
+
"model.transformer.blocks.6.up_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 871 |
+
"model.transformer.blocks.6.up_proj.scales": "model-00001-of-00003.safetensors",
|
| 872 |
+
"model.transformer.blocks.6.v_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 873 |
+
"model.transformer.blocks.6.v_proj.qweight": "model-00001-of-00003.safetensors",
|
| 874 |
+
"model.transformer.blocks.6.v_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 875 |
+
"model.transformer.blocks.6.v_proj.scales": "model-00001-of-00003.safetensors",
|
| 876 |
+
"model.transformer.blocks.7.attn_norm.weight": "model-00001-of-00003.safetensors",
|
| 877 |
+
"model.transformer.blocks.7.attn_out.g_idx": "model-00001-of-00003.safetensors",
|
| 878 |
+
"model.transformer.blocks.7.attn_out.qweight": "model-00001-of-00003.safetensors",
|
| 879 |
+
"model.transformer.blocks.7.attn_out.qzeros": "model-00001-of-00003.safetensors",
|
| 880 |
+
"model.transformer.blocks.7.attn_out.scales": "model-00001-of-00003.safetensors",
|
| 881 |
+
"model.transformer.blocks.7.ff_norm.weight": "model-00001-of-00003.safetensors",
|
| 882 |
+
"model.transformer.blocks.7.ff_out.g_idx": "model-00001-of-00003.safetensors",
|
| 883 |
+
"model.transformer.blocks.7.ff_out.qweight": "model-00001-of-00003.safetensors",
|
| 884 |
+
"model.transformer.blocks.7.ff_out.qzeros": "model-00001-of-00003.safetensors",
|
| 885 |
+
"model.transformer.blocks.7.ff_out.scales": "model-00001-of-00003.safetensors",
|
| 886 |
+
"model.transformer.blocks.7.ff_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 887 |
+
"model.transformer.blocks.7.ff_proj.qweight": "model-00001-of-00003.safetensors",
|
| 888 |
+
"model.transformer.blocks.7.ff_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 889 |
+
"model.transformer.blocks.7.ff_proj.scales": "model-00001-of-00003.safetensors",
|
| 890 |
+
"model.transformer.blocks.7.k_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 891 |
+
"model.transformer.blocks.7.k_proj.qweight": "model-00001-of-00003.safetensors",
|
| 892 |
+
"model.transformer.blocks.7.k_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 893 |
+
"model.transformer.blocks.7.k_proj.scales": "model-00001-of-00003.safetensors",
|
| 894 |
+
"model.transformer.blocks.7.q_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 895 |
+
"model.transformer.blocks.7.q_proj.qweight": "model-00001-of-00003.safetensors",
|
| 896 |
+
"model.transformer.blocks.7.q_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 897 |
+
"model.transformer.blocks.7.q_proj.scales": "model-00001-of-00003.safetensors",
|
| 898 |
+
"model.transformer.blocks.7.up_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 899 |
+
"model.transformer.blocks.7.up_proj.qweight": "model-00001-of-00003.safetensors",
|
| 900 |
+
"model.transformer.blocks.7.up_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 901 |
+
"model.transformer.blocks.7.up_proj.scales": "model-00001-of-00003.safetensors",
|
| 902 |
+
"model.transformer.blocks.7.v_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 903 |
+
"model.transformer.blocks.7.v_proj.qweight": "model-00001-of-00003.safetensors",
|
| 904 |
+
"model.transformer.blocks.7.v_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 905 |
+
"model.transformer.blocks.7.v_proj.scales": "model-00001-of-00003.safetensors",
|
| 906 |
+
"model.transformer.blocks.8.attn_norm.weight": "model-00001-of-00003.safetensors",
|
| 907 |
+
"model.transformer.blocks.8.attn_out.g_idx": "model-00001-of-00003.safetensors",
|
| 908 |
+
"model.transformer.blocks.8.attn_out.qweight": "model-00001-of-00003.safetensors",
|
| 909 |
+
"model.transformer.blocks.8.attn_out.qzeros": "model-00001-of-00003.safetensors",
|
| 910 |
+
"model.transformer.blocks.8.attn_out.scales": "model-00001-of-00003.safetensors",
|
| 911 |
+
"model.transformer.blocks.8.ff_norm.weight": "model-00001-of-00003.safetensors",
|
| 912 |
+
"model.transformer.blocks.8.ff_out.g_idx": "model-00001-of-00003.safetensors",
|
| 913 |
+
"model.transformer.blocks.8.ff_out.qweight": "model-00001-of-00003.safetensors",
|
| 914 |
+
"model.transformer.blocks.8.ff_out.qzeros": "model-00001-of-00003.safetensors",
|
| 915 |
+
"model.transformer.blocks.8.ff_out.scales": "model-00001-of-00003.safetensors",
|
| 916 |
+
"model.transformer.blocks.8.ff_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 917 |
+
"model.transformer.blocks.8.ff_proj.qweight": "model-00002-of-00003.safetensors",
|
| 918 |
+
"model.transformer.blocks.8.ff_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 919 |
+
"model.transformer.blocks.8.ff_proj.scales": "model-00002-of-00003.safetensors",
|
| 920 |
+
"model.transformer.blocks.8.k_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 921 |
+
"model.transformer.blocks.8.k_proj.qweight": "model-00001-of-00003.safetensors",
|
| 922 |
+
"model.transformer.blocks.8.k_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 923 |
+
"model.transformer.blocks.8.k_proj.scales": "model-00001-of-00003.safetensors",
|
| 924 |
+
"model.transformer.blocks.8.q_proj.g_idx": "model-00001-of-00003.safetensors",
|
| 925 |
+
"model.transformer.blocks.8.q_proj.qweight": "model-00001-of-00003.safetensors",
|
| 926 |
+
"model.transformer.blocks.8.q_proj.qzeros": "model-00001-of-00003.safetensors",
|
| 927 |
+
"model.transformer.blocks.8.q_proj.scales": "model-00001-of-00003.safetensors",
|
| 928 |
+
"model.transformer.blocks.8.up_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 929 |
+
"model.transformer.blocks.8.up_proj.qweight": "model-00002-of-00003.safetensors",
|
| 930 |
+
"model.transformer.blocks.8.up_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 931 |
+
"model.transformer.blocks.8.up_proj.scales": "model-00002-of-00003.safetensors",
|
| 932 |
+
"model.transformer.blocks.8.v_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 933 |
+
"model.transformer.blocks.8.v_proj.qweight": "model-00002-of-00003.safetensors",
|
| 934 |
+
"model.transformer.blocks.8.v_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 935 |
+
"model.transformer.blocks.8.v_proj.scales": "model-00002-of-00003.safetensors",
|
| 936 |
+
"model.transformer.blocks.9.attn_norm.weight": "model-00002-of-00003.safetensors",
|
| 937 |
+
"model.transformer.blocks.9.attn_out.g_idx": "model-00002-of-00003.safetensors",
|
| 938 |
+
"model.transformer.blocks.9.attn_out.qweight": "model-00002-of-00003.safetensors",
|
| 939 |
+
"model.transformer.blocks.9.attn_out.qzeros": "model-00002-of-00003.safetensors",
|
| 940 |
+
"model.transformer.blocks.9.attn_out.scales": "model-00002-of-00003.safetensors",
|
| 941 |
+
"model.transformer.blocks.9.ff_norm.weight": "model-00002-of-00003.safetensors",
|
| 942 |
+
"model.transformer.blocks.9.ff_out.g_idx": "model-00002-of-00003.safetensors",
|
| 943 |
+
"model.transformer.blocks.9.ff_out.qweight": "model-00002-of-00003.safetensors",
|
| 944 |
+
"model.transformer.blocks.9.ff_out.qzeros": "model-00002-of-00003.safetensors",
|
| 945 |
+
"model.transformer.blocks.9.ff_out.scales": "model-00002-of-00003.safetensors",
|
| 946 |
+
"model.transformer.blocks.9.ff_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 947 |
+
"model.transformer.blocks.9.ff_proj.qweight": "model-00002-of-00003.safetensors",
|
| 948 |
+
"model.transformer.blocks.9.ff_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 949 |
+
"model.transformer.blocks.9.ff_proj.scales": "model-00002-of-00003.safetensors",
|
| 950 |
+
"model.transformer.blocks.9.k_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 951 |
+
"model.transformer.blocks.9.k_proj.qweight": "model-00002-of-00003.safetensors",
|
| 952 |
+
"model.transformer.blocks.9.k_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 953 |
+
"model.transformer.blocks.9.k_proj.scales": "model-00002-of-00003.safetensors",
|
| 954 |
+
"model.transformer.blocks.9.q_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 955 |
+
"model.transformer.blocks.9.q_proj.qweight": "model-00002-of-00003.safetensors",
|
| 956 |
+
"model.transformer.blocks.9.q_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 957 |
+
"model.transformer.blocks.9.q_proj.scales": "model-00002-of-00003.safetensors",
|
| 958 |
+
"model.transformer.blocks.9.up_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 959 |
+
"model.transformer.blocks.9.up_proj.qweight": "model-00002-of-00003.safetensors",
|
| 960 |
+
"model.transformer.blocks.9.up_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 961 |
+
"model.transformer.blocks.9.up_proj.scales": "model-00002-of-00003.safetensors",
|
| 962 |
+
"model.transformer.blocks.9.v_proj.g_idx": "model-00002-of-00003.safetensors",
|
| 963 |
+
"model.transformer.blocks.9.v_proj.qweight": "model-00002-of-00003.safetensors",
|
| 964 |
+
"model.transformer.blocks.9.v_proj.qzeros": "model-00002-of-00003.safetensors",
|
| 965 |
+
"model.transformer.blocks.9.v_proj.scales": "model-00002-of-00003.safetensors",
|
| 966 |
+
"model.transformer.ff_out.weight": "model-00003-of-00003.safetensors",
|
| 967 |
+
"model.transformer.ln_f.weight": "model-00001-of-00003.safetensors",
|
| 968 |
+
"model.transformer.wte.weight": "model-00001-of-00003.safetensors"
|
| 969 |
+
}
|
| 970 |
+
}
|
modeling_llada.py
ADDED
|
@@ -0,0 +1,1539 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import logging
|
| 4 |
+
import math
|
| 5 |
+
import sys
|
| 6 |
+
from abc import abstractmethod
|
| 7 |
+
from collections import defaultdict
|
| 8 |
+
from functools import partial
|
| 9 |
+
from typing import (
|
| 10 |
+
Callable,
|
| 11 |
+
Dict,
|
| 12 |
+
Iterable,
|
| 13 |
+
List,
|
| 14 |
+
NamedTuple,
|
| 15 |
+
Optional,
|
| 16 |
+
Sequence,
|
| 17 |
+
Set,
|
| 18 |
+
Tuple,
|
| 19 |
+
cast,
|
| 20 |
+
)
|
| 21 |
+
from dataclasses import fields
|
| 22 |
+
from typing import List, Optional, Tuple, Union
|
| 23 |
+
|
| 24 |
+
import torch
|
| 25 |
+
import torch.backends.cuda
|
| 26 |
+
import torch.nn as nn
|
| 27 |
+
import torch.nn.functional as F
|
| 28 |
+
from torch import einsum
|
| 29 |
+
from transformers import PreTrainedModel
|
| 30 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 31 |
+
from transformers.models.auto import AutoModel
|
| 32 |
+
from transformers.cache_utils import Cache
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
from .configuration_llada import (
|
| 36 |
+
LLaDAConfig,
|
| 37 |
+
StrEnum,
|
| 38 |
+
InitFnType,
|
| 39 |
+
ActivationType,
|
| 40 |
+
BlockType,
|
| 41 |
+
LayerNormType,
|
| 42 |
+
ModelConfig,
|
| 43 |
+
ActivationCheckpointingStrategy,
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
if sys.version_info.minor > 8:
|
| 47 |
+
from collections.abc import MutableMapping
|
| 48 |
+
elif sys.version_info.minor == 8:
|
| 49 |
+
from typing import MutableMapping
|
| 50 |
+
else:
|
| 51 |
+
raise SystemExit("This script supports Python 3.8 or higher")
|
| 52 |
+
|
| 53 |
+
__all__ = [
|
| 54 |
+
"LayerNormBase",
|
| 55 |
+
"LayerNorm",
|
| 56 |
+
"RMSLayerNorm",
|
| 57 |
+
"GemmaRMSLayerNorm",
|
| 58 |
+
"RotaryEmbedding",
|
| 59 |
+
"Activation",
|
| 60 |
+
"GELU",
|
| 61 |
+
"ReLU",
|
| 62 |
+
"SwiGLU",
|
| 63 |
+
"LLaDABlock",
|
| 64 |
+
"LLaDASequentialBlock",
|
| 65 |
+
"LLaDAModel",
|
| 66 |
+
"LLaDAOutput",
|
| 67 |
+
"LLaDAGenerateOutput",
|
| 68 |
+
]
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
log = logging.getLogger(__name__)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
class ModuleType(StrEnum):
|
| 75 |
+
in_module = "in"
|
| 76 |
+
out_module = "out"
|
| 77 |
+
emb = "emb"
|
| 78 |
+
final_out = "final_out"
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def init_weights(
|
| 82 |
+
config: ModelConfig,
|
| 83 |
+
module: Union[nn.Linear, nn.Embedding],
|
| 84 |
+
d: Optional[int] = None,
|
| 85 |
+
layer_id: Optional[int] = None,
|
| 86 |
+
std_factor: float = 1.0,
|
| 87 |
+
type_of_module: Optional[ModuleType] = None,
|
| 88 |
+
) -> None:
|
| 89 |
+
"""
|
| 90 |
+
Initialize weights of a linear or embedding module.
|
| 91 |
+
|
| 92 |
+
:param config: The model config.
|
| 93 |
+
:param module: The linear or embedding submodule to initialize.
|
| 94 |
+
:param d: The effective input dimensionality of the weights. This could be smaller than the actual dimensions
|
| 95 |
+
for fused layers.
|
| 96 |
+
:param layer_id: When set, the standard deviation for the "mitchell" method will be adjusted by
|
| 97 |
+
``1 / sqrt(2 * (layer_id + 1))``.
|
| 98 |
+
"""
|
| 99 |
+
d = d if d is not None else config.d_model
|
| 100 |
+
if config.init_fn == InitFnType.normal:
|
| 101 |
+
std = config.init_std * std_factor
|
| 102 |
+
if config.init_cutoff_factor is not None:
|
| 103 |
+
cutoff_value = config.init_cutoff_factor * std
|
| 104 |
+
nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-cutoff_value, b=cutoff_value)
|
| 105 |
+
else:
|
| 106 |
+
nn.init.normal_(module.weight, mean=0.0, std=std)
|
| 107 |
+
elif config.init_fn == InitFnType.mitchell:
|
| 108 |
+
std = std_factor / math.sqrt(d)
|
| 109 |
+
if layer_id is not None:
|
| 110 |
+
std = std / math.sqrt(2 * (layer_id + 1))
|
| 111 |
+
nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-3 * std, b=3 * std)
|
| 112 |
+
elif config.init_fn == InitFnType.kaiming_normal:
|
| 113 |
+
nn.init.kaiming_normal_(module.weight, nonlinearity="relu")
|
| 114 |
+
elif config.init_fn == InitFnType.fan_in:
|
| 115 |
+
std = std_factor / math.sqrt(d)
|
| 116 |
+
nn.init.normal_(module.weight, mean=0.0, std=std)
|
| 117 |
+
elif config.init_fn == InitFnType.full_megatron:
|
| 118 |
+
if type_of_module is None:
|
| 119 |
+
raise RuntimeError(f"When using the {InitFnType.full_megatron} init, every module must have a type.")
|
| 120 |
+
|
| 121 |
+
cutoff_factor = config.init_cutoff_factor
|
| 122 |
+
if cutoff_factor is None:
|
| 123 |
+
cutoff_factor = 3
|
| 124 |
+
|
| 125 |
+
if type_of_module == ModuleType.in_module:
|
| 126 |
+
# for att_proj (same as QKV), ff_proj
|
| 127 |
+
std = config.init_std
|
| 128 |
+
elif type_of_module == ModuleType.out_module:
|
| 129 |
+
# for attn_out, ff_out
|
| 130 |
+
std = config.init_std / math.sqrt(2.0 * config.n_layers)
|
| 131 |
+
elif type_of_module == ModuleType.emb:
|
| 132 |
+
# positional embeddings (wpe)
|
| 133 |
+
# token embeddings (wte)
|
| 134 |
+
std = config.init_std
|
| 135 |
+
elif type_of_module == ModuleType.final_out:
|
| 136 |
+
# final output (ff_out)
|
| 137 |
+
std = config.d_model**-0.5
|
| 138 |
+
else:
|
| 139 |
+
raise RuntimeError(f"Unknown module type '{type_of_module}'")
|
| 140 |
+
nn.init.trunc_normal_(
|
| 141 |
+
module.weight,
|
| 142 |
+
mean=0.0,
|
| 143 |
+
std=std,
|
| 144 |
+
a=-cutoff_factor * std,
|
| 145 |
+
b=cutoff_factor * std,
|
| 146 |
+
)
|
| 147 |
+
else:
|
| 148 |
+
raise NotImplementedError(config.init_fn)
|
| 149 |
+
|
| 150 |
+
if isinstance(module, nn.Linear):
|
| 151 |
+
if module.bias is not None:
|
| 152 |
+
nn.init.zeros_(module.bias)
|
| 153 |
+
|
| 154 |
+
if config.init_fn == InitFnType.normal and getattr(module, "_is_residual", False):
|
| 155 |
+
with torch.no_grad():
|
| 156 |
+
module.weight.div_(math.sqrt(2 * config.n_layers))
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def ensure_finite_(x: torch.Tensor, check_neg_inf: bool = True, check_pos_inf: bool = False):
|
| 160 |
+
"""
|
| 161 |
+
Modify ``x`` in place to replace ``float("-inf")`` with the minimum value of the dtype when ``check_neg_inf``
|
| 162 |
+
is ``True`` and to replace ``float("inf")`` with the maximum value of the dtype when ``check_pos_inf`` is ``True``.
|
| 163 |
+
"""
|
| 164 |
+
if check_neg_inf:
|
| 165 |
+
x.masked_fill_(x == float("-inf"), torch.finfo(x.dtype).min)
|
| 166 |
+
if check_pos_inf:
|
| 167 |
+
x.masked_fill_(x == float("inf"), torch.finfo(x.dtype).max)
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
def activation_checkpoint_function(cfg: ModelConfig):
|
| 171 |
+
preserve_rng_state = (
|
| 172 |
+
(cfg.attention_dropout == 0.0) and (cfg.embedding_dropout == 0.0) and (cfg.residual_dropout == 0.0)
|
| 173 |
+
)
|
| 174 |
+
from torch.utils.checkpoint import checkpoint
|
| 175 |
+
|
| 176 |
+
return partial(
|
| 177 |
+
checkpoint,
|
| 178 |
+
preserve_rng_state=preserve_rng_state,
|
| 179 |
+
use_reentrant=False,
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
class BufferCache(dict, MutableMapping[str, torch.Tensor]):
|
| 184 |
+
"""
|
| 185 |
+
Cache for attention biases and other things that would normally be stored as buffers.
|
| 186 |
+
We avoid using buffers because we've run into various issues doing so with FSDP.
|
| 187 |
+
In general it appears the way FSDP handles buffers is not well-defined.
|
| 188 |
+
It doesn't shard them but apparently it does synchronize them across processes, which we want to avoid
|
| 189 |
+
since (A) it isn't necessary, and (B) we sometimes have `-inf` in these biases which might get turned into
|
| 190 |
+
NaNs when they're synchronized due to casting or some other issue.
|
| 191 |
+
"""
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def _non_meta_init_device(config: ModelConfig) -> torch.device:
|
| 195 |
+
if config.init_device is not None and config.init_device != "meta":
|
| 196 |
+
return torch.device(config.init_device)
|
| 197 |
+
else:
|
| 198 |
+
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
class Dropout(nn.Dropout):
|
| 202 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
| 203 |
+
if self.p == 0.0:
|
| 204 |
+
return input
|
| 205 |
+
else:
|
| 206 |
+
return F.dropout(input, self.p, self.training, self.inplace)
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
class LayerNormBase(nn.Module):
|
| 210 |
+
def __init__(
|
| 211 |
+
self,
|
| 212 |
+
config: ModelConfig,
|
| 213 |
+
*,
|
| 214 |
+
size: Optional[int] = None,
|
| 215 |
+
elementwise_affine: Optional[bool] = True,
|
| 216 |
+
eps: float = 1e-05,
|
| 217 |
+
):
|
| 218 |
+
super().__init__()
|
| 219 |
+
self.config = config
|
| 220 |
+
self.eps = eps
|
| 221 |
+
self.normalized_shape = (size or config.d_model,)
|
| 222 |
+
if elementwise_affine or (elementwise_affine is None and self.config.layer_norm_with_affine):
|
| 223 |
+
self.weight = nn.Parameter(torch.ones(self.normalized_shape, device=config.init_device))
|
| 224 |
+
use_bias = self.config.bias_for_layer_norm
|
| 225 |
+
if use_bias is None:
|
| 226 |
+
use_bias = self.config.include_bias
|
| 227 |
+
if use_bias:
|
| 228 |
+
self.bias = nn.Parameter(torch.zeros(self.normalized_shape, device=config.init_device))
|
| 229 |
+
else:
|
| 230 |
+
self.register_parameter("bias", None)
|
| 231 |
+
else:
|
| 232 |
+
self.register_parameter("bias", None)
|
| 233 |
+
self.register_parameter("weight", None)
|
| 234 |
+
|
| 235 |
+
@abstractmethod
|
| 236 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 237 |
+
raise NotImplementedError
|
| 238 |
+
|
| 239 |
+
@classmethod
|
| 240 |
+
def build(cls, config: ModelConfig, size: Optional[int] = None, **kwargs) -> LayerNormBase:
|
| 241 |
+
if config.layer_norm_type == LayerNormType.default:
|
| 242 |
+
return LayerNorm(config, size=size, low_precision=False, **kwargs)
|
| 243 |
+
elif config.layer_norm_type == LayerNormType.low_precision:
|
| 244 |
+
return LayerNorm(config, size=size, low_precision=True, **kwargs)
|
| 245 |
+
elif config.layer_norm_type == LayerNormType.rms:
|
| 246 |
+
return RMSLayerNorm(config, size=size, **kwargs)
|
| 247 |
+
elif config.layer_norm_type == LayerNormType.gemma_rms:
|
| 248 |
+
return GemmaRMSLayerNorm(config, size=size, **kwargs)
|
| 249 |
+
else:
|
| 250 |
+
raise NotImplementedError(f"Unknown LayerNorm type: '{config.layer_norm_type}'")
|
| 251 |
+
|
| 252 |
+
def _cast_if_autocast_enabled(self, tensor: torch.Tensor, dtype: Optional[torch.dtype] = None) -> torch.Tensor:
|
| 253 |
+
# NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function
|
| 254 |
+
# `is_autocast_cpu_enabled()` for CPU autocast.
|
| 255 |
+
# See https://github.com/pytorch/pytorch/issues/110966.
|
| 256 |
+
if tensor.device.type == "cuda" and torch.is_autocast_enabled():
|
| 257 |
+
return tensor.to(dtype=dtype if dtype is not None else torch.get_autocast_gpu_dtype())
|
| 258 |
+
elif tensor.device.type == "cpu" and torch.is_autocast_cpu_enabled():
|
| 259 |
+
return tensor.to(dtype=dtype if dtype is not None else torch.get_autocast_cpu_dtype())
|
| 260 |
+
else:
|
| 261 |
+
return tensor
|
| 262 |
+
|
| 263 |
+
def reset_parameters(self):
|
| 264 |
+
if self.weight is not None:
|
| 265 |
+
torch.nn.init.ones_(self.weight) # type: ignore
|
| 266 |
+
if self.bias is not None:
|
| 267 |
+
torch.nn.init.zeros_(self.bias) # type: ignore
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
class LayerNorm(LayerNormBase):
|
| 271 |
+
"""
|
| 272 |
+
The default :class:`LayerNorm` implementation which can optionally run in low precision.
|
| 273 |
+
"""
|
| 274 |
+
|
| 275 |
+
def __init__(
|
| 276 |
+
self,
|
| 277 |
+
config: ModelConfig,
|
| 278 |
+
size: Optional[int] = None,
|
| 279 |
+
low_precision: bool = False,
|
| 280 |
+
elementwise_affine: Optional[bool] = None,
|
| 281 |
+
eps: float = 1e-05,
|
| 282 |
+
):
|
| 283 |
+
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)
|
| 284 |
+
self.low_precision = low_precision
|
| 285 |
+
|
| 286 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 287 |
+
if self.low_precision:
|
| 288 |
+
module_device = x.device
|
| 289 |
+
downcast_x = self._cast_if_autocast_enabled(x)
|
| 290 |
+
downcast_weight = (
|
| 291 |
+
self._cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
|
| 292 |
+
)
|
| 293 |
+
downcast_bias = self._cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias
|
| 294 |
+
with torch.autocast(enabled=False, device_type=module_device.type):
|
| 295 |
+
return F.layer_norm(
|
| 296 |
+
downcast_x, self.normalized_shape, weight=downcast_weight, bias=downcast_bias, eps=self.eps
|
| 297 |
+
)
|
| 298 |
+
else:
|
| 299 |
+
return F.layer_norm(x, self.normalized_shape, weight=self.weight, bias=self.bias, eps=self.eps)
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
class RMSLayerNorm(LayerNormBase):
|
| 303 |
+
"""
|
| 304 |
+
RMS layer norm, a simplified :class:`LayerNorm` implementation
|
| 305 |
+
"""
|
| 306 |
+
|
| 307 |
+
def __init__(
|
| 308 |
+
self,
|
| 309 |
+
config: ModelConfig,
|
| 310 |
+
size: Optional[int] = None,
|
| 311 |
+
elementwise_affine: Optional[bool] = None,
|
| 312 |
+
eps: float = 1e-5,
|
| 313 |
+
):
|
| 314 |
+
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=config.rms_norm_eps)
|
| 315 |
+
|
| 316 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 317 |
+
with torch.autocast(enabled=False, device_type=x.device.type):
|
| 318 |
+
og_dtype = x.dtype
|
| 319 |
+
x = x.to(torch.float32)
|
| 320 |
+
variance = x.pow(2).mean(-1, keepdim=True)
|
| 321 |
+
x = x * torch.rsqrt(variance + self.eps)
|
| 322 |
+
x = x.to(og_dtype)
|
| 323 |
+
|
| 324 |
+
if self.weight is not None:
|
| 325 |
+
if self.bias is not None:
|
| 326 |
+
return self.weight * x + self.bias
|
| 327 |
+
else:
|
| 328 |
+
return self.weight * x
|
| 329 |
+
else:
|
| 330 |
+
return x
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
class GemmaRMSLayerNorm(LayerNormBase):
|
| 334 |
+
"""
|
| 335 |
+
Gemma RMS layer norm, a simplified :class:`LayerNorm` implementation
|
| 336 |
+
"""
|
| 337 |
+
|
| 338 |
+
def __init__(
|
| 339 |
+
self,
|
| 340 |
+
config: ModelConfig,
|
| 341 |
+
size: Optional[int] = None,
|
| 342 |
+
elementwise_affine: Optional[bool] = None,
|
| 343 |
+
eps: float = 1e-5,
|
| 344 |
+
):
|
| 345 |
+
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=config.rms_norm_eps)
|
| 346 |
+
|
| 347 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 348 |
+
with torch.autocast(enabled=False, device_type=x.device.type):
|
| 349 |
+
og_dtype = x.dtype
|
| 350 |
+
x = x.to(torch.float32)
|
| 351 |
+
variance = x.pow(2).mean(-1, keepdim=True)
|
| 352 |
+
x = x * torch.rsqrt(variance + self.eps)
|
| 353 |
+
x = x.to(og_dtype)
|
| 354 |
+
|
| 355 |
+
if self.weight is not None:
|
| 356 |
+
if self.bias is not None:
|
| 357 |
+
return x * (1 + self.weight) + self.bias
|
| 358 |
+
else:
|
| 359 |
+
return x * (1 + self.weight)
|
| 360 |
+
else:
|
| 361 |
+
return x
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
class RotaryEmbedding(nn.Module):
|
| 365 |
+
"""
|
| 366 |
+
[Rotary positional embeddings (RoPE)](https://arxiv.org/abs/2104.09864).
|
| 367 |
+
"""
|
| 368 |
+
|
| 369 |
+
def __init__(self, config: ModelConfig, cache: BufferCache):
|
| 370 |
+
super().__init__()
|
| 371 |
+
self.config = config
|
| 372 |
+
self.__cache = cache
|
| 373 |
+
# Warm up cache.
|
| 374 |
+
self.rope_theta = config.rope_theta
|
| 375 |
+
self.get_rotary_embedding(config.max_sequence_length, _non_meta_init_device(config))
|
| 376 |
+
|
| 377 |
+
def get_rotary_embedding(self, seq_len: int, device: torch.device) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 378 |
+
if (
|
| 379 |
+
(pos_sin := self.__cache.get("rope_pos_sin")) is not None
|
| 380 |
+
and (pos_cos := self.__cache.get("rope_pos_cos")) is not None
|
| 381 |
+
and pos_sin.shape[-2] >= seq_len
|
| 382 |
+
and pos_cos.shape[-2] >= seq_len
|
| 383 |
+
):
|
| 384 |
+
if pos_sin.device != device:
|
| 385 |
+
pos_sin = pos_sin.to(device)
|
| 386 |
+
self.__cache["rope_pos_sin"] = pos_sin
|
| 387 |
+
if pos_cos.device != device:
|
| 388 |
+
pos_cos = pos_cos.to(device)
|
| 389 |
+
self.__cache["rope_pos_cos"] = pos_cos
|
| 390 |
+
return pos_sin[:, :, :seq_len, :], pos_cos[:, :, :seq_len, :]
|
| 391 |
+
|
| 392 |
+
with torch.autocast(device.type, enabled=False):
|
| 393 |
+
dim = self.config.d_model // self.config.n_heads
|
| 394 |
+
inv_freq = 1.0 / (self.rope_theta ** (torch.arange(0, dim, 2, device=device, dtype=torch.float) / dim))
|
| 395 |
+
seq = torch.arange(seq_len, device=device, dtype=torch.float)
|
| 396 |
+
freqs = einsum("i , j -> i j", seq, inv_freq)
|
| 397 |
+
positions = torch.cat((freqs, freqs), dim=-1)
|
| 398 |
+
pos_sin, pos_cos = positions.sin()[None, None, :, :], positions.cos()[None, None, :, :]
|
| 399 |
+
self.__cache["rope_pos_sin"] = pos_sin
|
| 400 |
+
self.__cache["rope_pos_cos"] = pos_cos
|
| 401 |
+
return pos_sin, pos_cos
|
| 402 |
+
|
| 403 |
+
def rotate_half(self, x: torch.Tensor) -> torch.Tensor:
|
| 404 |
+
B, nh, T, hs = x.size()
|
| 405 |
+
x = x.view(B, nh, T, 2, hs // 2)
|
| 406 |
+
x1, x2 = x.unbind(dim=-2)
|
| 407 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 408 |
+
|
| 409 |
+
def apply_rotary_pos_emb(self, pos_sin: torch.Tensor, pos_cos: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
|
| 410 |
+
return ((t * pos_cos) + (self.rotate_half(t) * pos_sin)).to(t.dtype)
|
| 411 |
+
|
| 412 |
+
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 413 |
+
if self.config.rope_full_precision:
|
| 414 |
+
q_, k_ = q.float(), k.float()
|
| 415 |
+
else:
|
| 416 |
+
q_, k_ = q, k
|
| 417 |
+
|
| 418 |
+
with torch.autocast(q.device.type, enabled=False):
|
| 419 |
+
query_len, key_len = q_.shape[-2], k_.shape[-2] # could be different if layer_past not None
|
| 420 |
+
pos_sin, pos_cos = self.get_rotary_embedding(key_len, q_.device)
|
| 421 |
+
pos_sin = pos_sin.type_as(q_)
|
| 422 |
+
pos_cos = pos_cos.type_as(q_)
|
| 423 |
+
q_ = self.apply_rotary_pos_emb(
|
| 424 |
+
pos_sin[:, :, key_len - query_len : key_len, :],
|
| 425 |
+
pos_cos[:, :, key_len - query_len : key_len, :],
|
| 426 |
+
q_,
|
| 427 |
+
)
|
| 428 |
+
k_ = self.apply_rotary_pos_emb(pos_sin, pos_cos, k_)
|
| 429 |
+
return q_.type_as(q), k_.type_as(k)
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
class Activation(nn.Module):
|
| 433 |
+
def __init__(self, config: ModelConfig):
|
| 434 |
+
super().__init__()
|
| 435 |
+
self.config = config
|
| 436 |
+
|
| 437 |
+
@abstractmethod
|
| 438 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 439 |
+
raise NotImplementedError
|
| 440 |
+
|
| 441 |
+
@property
|
| 442 |
+
@abstractmethod
|
| 443 |
+
def output_multiplier(self) -> float:
|
| 444 |
+
raise NotImplementedError
|
| 445 |
+
|
| 446 |
+
@classmethod
|
| 447 |
+
def build(cls, config: ModelConfig) -> Activation:
|
| 448 |
+
if config.activation_type == ActivationType.gelu:
|
| 449 |
+
return cast(Activation, GELU(approximate="none"))
|
| 450 |
+
elif config.activation_type == ActivationType.relu:
|
| 451 |
+
return cast(Activation, ReLU(inplace=False))
|
| 452 |
+
elif config.activation_type == ActivationType.silu:
|
| 453 |
+
return cast(Activation, SiLU(inplace=False))
|
| 454 |
+
elif config.activation_type == ActivationType.swiglu:
|
| 455 |
+
return SwiGLU(config)
|
| 456 |
+
else:
|
| 457 |
+
raise NotImplementedError(f"Unknown activation: '{config.activation_type}'")
|
| 458 |
+
|
| 459 |
+
|
| 460 |
+
class GELU(nn.GELU):
|
| 461 |
+
@property
|
| 462 |
+
def output_multiplier(self) -> float:
|
| 463 |
+
return 1.0
|
| 464 |
+
|
| 465 |
+
|
| 466 |
+
class ReLU(nn.ReLU):
|
| 467 |
+
@property
|
| 468 |
+
def output_multiplier(self) -> float:
|
| 469 |
+
return 1.0
|
| 470 |
+
|
| 471 |
+
class SiLU(nn.SiLU):
|
| 472 |
+
@property
|
| 473 |
+
def output_multiplier(self) -> float:
|
| 474 |
+
return 1.0
|
| 475 |
+
|
| 476 |
+
class SwiGLU(Activation):
|
| 477 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 478 |
+
x, gate = x.chunk(2, dim=-1)
|
| 479 |
+
return F.silu(gate) * x
|
| 480 |
+
|
| 481 |
+
@property
|
| 482 |
+
def output_multiplier(self) -> float:
|
| 483 |
+
return 0.5
|
| 484 |
+
|
| 485 |
+
|
| 486 |
+
def causal_attention_bias(seq_len: int, device: torch.device) -> torch.FloatTensor:
|
| 487 |
+
att_bias = torch.triu(
|
| 488 |
+
torch.ones(seq_len, seq_len, device=device, dtype=torch.float),
|
| 489 |
+
diagonal=1,
|
| 490 |
+
)
|
| 491 |
+
att_bias.masked_fill_(att_bias == 1, torch.finfo(att_bias.dtype).min)
|
| 492 |
+
return att_bias.view(1, 1, seq_len, seq_len) # type: ignore
|
| 493 |
+
|
| 494 |
+
|
| 495 |
+
def get_causal_attention_bias(cache: BufferCache, seq_len: int, device: torch.device) -> torch.Tensor:
|
| 496 |
+
if (causal_bias := cache.get("causal_attention_bias")) is not None and causal_bias.shape[-1] >= seq_len:
|
| 497 |
+
if causal_bias.device != device:
|
| 498 |
+
causal_bias = causal_bias.to(device)
|
| 499 |
+
cache["causal_attention_bias"] = causal_bias
|
| 500 |
+
return causal_bias
|
| 501 |
+
with torch.autocast(device.type, enabled=False):
|
| 502 |
+
causal_bias = causal_attention_bias(seq_len, device)
|
| 503 |
+
cache["causal_attention_bias"] = causal_bias
|
| 504 |
+
return causal_bias
|
| 505 |
+
|
| 506 |
+
|
| 507 |
+
def alibi_attention_bias(seq_len: int, config: ModelConfig, device: torch.device) -> torch.FloatTensor:
|
| 508 |
+
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.float, device=device).view(1, 1, 1, seq_len)
|
| 509 |
+
|
| 510 |
+
# shape: (1, 1, seq_len, seq_len)
|
| 511 |
+
alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.float, device=device).view(1, 1, seq_len, 1)
|
| 512 |
+
alibi_bias.abs_().mul_(-1)
|
| 513 |
+
|
| 514 |
+
# shape: (n_heads,)
|
| 515 |
+
m = torch.arange(1, config.n_heads + 1, dtype=torch.float, device=device)
|
| 516 |
+
m.mul_(config.alibi_bias_max / config.n_heads)
|
| 517 |
+
|
| 518 |
+
# shape: (1, n_heads, seq_len, seq_len)
|
| 519 |
+
return alibi_bias * (1.0 / (2 ** m.view(1, config.n_heads, 1, 1))) # type: ignore
|
| 520 |
+
|
| 521 |
+
|
| 522 |
+
class LLaDABlock(nn.Module):
|
| 523 |
+
"""
|
| 524 |
+
A base class for transformer block implementations.
|
| 525 |
+
"""
|
| 526 |
+
|
| 527 |
+
def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache):
|
| 528 |
+
super().__init__()
|
| 529 |
+
self.layer_id = layer_id
|
| 530 |
+
self.config = config
|
| 531 |
+
self.hidden_size = (
|
| 532 |
+
config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model
|
| 533 |
+
)
|
| 534 |
+
self.__cache = cache
|
| 535 |
+
assert config.d_model % config.n_heads == 0
|
| 536 |
+
|
| 537 |
+
self._activation_checkpoint_fn = None
|
| 538 |
+
|
| 539 |
+
# Dropout.
|
| 540 |
+
self.dropout = Dropout(config.residual_dropout)
|
| 541 |
+
|
| 542 |
+
# Layer norms.
|
| 543 |
+
self.k_norm: Optional[LayerNormBase] = None
|
| 544 |
+
self.q_norm: Optional[LayerNormBase] = None
|
| 545 |
+
if config.attention_layer_norm:
|
| 546 |
+
self.k_norm = LayerNormBase.build(
|
| 547 |
+
config,
|
| 548 |
+
size=(config.d_model // config.n_heads) * config.effective_n_kv_heads,
|
| 549 |
+
elementwise_affine=config.attention_layer_norm_with_affine,
|
| 550 |
+
)
|
| 551 |
+
self.q_norm = LayerNormBase.build(config, elementwise_affine=config.attention_layer_norm_with_affine)
|
| 552 |
+
|
| 553 |
+
# Activation function.
|
| 554 |
+
self.act = Activation.build(config)
|
| 555 |
+
assert (self.act.output_multiplier * self.hidden_size) % 1 == 0
|
| 556 |
+
|
| 557 |
+
# Attention output projection.
|
| 558 |
+
self.attn_out = nn.Linear(
|
| 559 |
+
config.d_model, config.d_model, bias=config.include_bias, device=config.init_device
|
| 560 |
+
)
|
| 561 |
+
|
| 562 |
+
# Feed-forward output projection.
|
| 563 |
+
self.ff_out = nn.Linear(
|
| 564 |
+
int(self.act.output_multiplier * self.hidden_size),
|
| 565 |
+
config.d_model,
|
| 566 |
+
bias=config.include_bias,
|
| 567 |
+
device=config.init_device,
|
| 568 |
+
)
|
| 569 |
+
self.ff_out._is_residual = True # type: ignore
|
| 570 |
+
|
| 571 |
+
# Rotary embeddings.
|
| 572 |
+
if self.config.rope:
|
| 573 |
+
self.rotary_emb = RotaryEmbedding(config, self.__cache)
|
| 574 |
+
|
| 575 |
+
self.flash_attn_func = None
|
| 576 |
+
if config.flash_attention:
|
| 577 |
+
try:
|
| 578 |
+
from flash_attn import flash_attn_func # type: ignore
|
| 579 |
+
|
| 580 |
+
self.flash_attn_func = flash_attn_func
|
| 581 |
+
except ModuleNotFoundError:
|
| 582 |
+
pass
|
| 583 |
+
|
| 584 |
+
def reset_parameters(self):
|
| 585 |
+
if self.k_norm is not None:
|
| 586 |
+
self.k_norm.reset_parameters()
|
| 587 |
+
if self.q_norm is not None:
|
| 588 |
+
self.q_norm.reset_parameters()
|
| 589 |
+
init_weights(
|
| 590 |
+
self.config,
|
| 591 |
+
self.attn_out,
|
| 592 |
+
d=self.config.d_model,
|
| 593 |
+
layer_id=self.layer_id,
|
| 594 |
+
type_of_module=ModuleType.out_module,
|
| 595 |
+
)
|
| 596 |
+
init_weights(
|
| 597 |
+
self.config,
|
| 598 |
+
self.ff_out,
|
| 599 |
+
d=self.ff_out.in_features,
|
| 600 |
+
layer_id=self.layer_id,
|
| 601 |
+
type_of_module=ModuleType.out_module,
|
| 602 |
+
)
|
| 603 |
+
|
| 604 |
+
def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]):
|
| 605 |
+
if strategy == ActivationCheckpointingStrategy.fine_grained:
|
| 606 |
+
self._activation_checkpoint_fn = activation_checkpoint_function(self.config)
|
| 607 |
+
else:
|
| 608 |
+
self._activation_checkpoint_fn = None
|
| 609 |
+
|
| 610 |
+
@classmethod
|
| 611 |
+
def _cast_attn_bias(cls, bias: torch.Tensor, input_dtype: torch.dtype) -> torch.Tensor:
|
| 612 |
+
target_dtype = input_dtype
|
| 613 |
+
# NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function
|
| 614 |
+
# `is_autocast_cpu_enabled()` for CPU autocast.
|
| 615 |
+
# See https://github.com/pytorch/pytorch/issues/110966.
|
| 616 |
+
if bias.device.type == "cuda" and torch.is_autocast_enabled():
|
| 617 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
| 618 |
+
elif bias.device.type == "cpu" and torch.is_autocast_cpu_enabled():
|
| 619 |
+
target_dtype = torch.get_autocast_cpu_dtype()
|
| 620 |
+
if bias.dtype != target_dtype:
|
| 621 |
+
bias = bias.to(target_dtype)
|
| 622 |
+
ensure_finite_(bias, check_neg_inf=True, check_pos_inf=False)
|
| 623 |
+
return bias
|
| 624 |
+
|
| 625 |
+
def _scaled_dot_product_attention(
|
| 626 |
+
self,
|
| 627 |
+
q: torch.Tensor,
|
| 628 |
+
k: torch.Tensor,
|
| 629 |
+
v: torch.Tensor,
|
| 630 |
+
attn_mask: Optional[torch.Tensor] = None,
|
| 631 |
+
dropout_p: float = 0.0,
|
| 632 |
+
is_causal: bool = False,
|
| 633 |
+
) -> torch.Tensor:
|
| 634 |
+
"""
|
| 635 |
+
Computes scaled dot product attention on query, key and value tensors, using an optional
|
| 636 |
+
attention mask if passed, and applying dropout if a probability greater than 0.0 is specified.
|
| 637 |
+
"""
|
| 638 |
+
if self.flash_attn_func is not None and attn_mask is None:
|
| 639 |
+
r = self.flash_attn_func(
|
| 640 |
+
q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), dropout_p=dropout_p, causal=False
|
| 641 |
+
)
|
| 642 |
+
return r.transpose(1, 2)
|
| 643 |
+
else:
|
| 644 |
+
# torch's sdpa doesn't support GQA, so we're doing this
|
| 645 |
+
assert k.size(1) == v.size(1)
|
| 646 |
+
num_kv_heads = k.size(1)
|
| 647 |
+
num_q_heads = q.size(1)
|
| 648 |
+
if num_q_heads != num_kv_heads:
|
| 649 |
+
assert num_q_heads % num_kv_heads == 0
|
| 650 |
+
k = k.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
|
| 651 |
+
v = v.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
|
| 652 |
+
|
| 653 |
+
# Modify: MDM set causal to False, and with no attn_mask.
|
| 654 |
+
return F.scaled_dot_product_attention(
|
| 655 |
+
q,
|
| 656 |
+
k,
|
| 657 |
+
v,
|
| 658 |
+
attn_mask=None,
|
| 659 |
+
dropout_p=dropout_p,
|
| 660 |
+
is_causal=False,
|
| 661 |
+
)
|
| 662 |
+
|
| 663 |
+
def attention(
|
| 664 |
+
self,
|
| 665 |
+
q: torch.Tensor,
|
| 666 |
+
k: torch.Tensor,
|
| 667 |
+
v: torch.Tensor,
|
| 668 |
+
attention_bias: Optional[torch.Tensor] = None,
|
| 669 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 670 |
+
use_cache: bool = False,
|
| 671 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
| 672 |
+
B, T, C = q.size() # batch size, sequence length, d_model
|
| 673 |
+
dtype = k.dtype
|
| 674 |
+
|
| 675 |
+
# Optionally apply layer norm to keys and queries.
|
| 676 |
+
if self.q_norm is not None and self.k_norm is not None:
|
| 677 |
+
q = self.q_norm(q).to(dtype=dtype)
|
| 678 |
+
k = self.k_norm(k).to(dtype=dtype)
|
| 679 |
+
|
| 680 |
+
# Move head forward to be next to the batch dim.
|
| 681 |
+
# shape: (B, nh, T, hs)
|
| 682 |
+
q = q.view(B, T, self.config.n_heads, C // self.config.n_heads).transpose(1, 2)
|
| 683 |
+
# shape: (B, n_kv_h, T, hs)
|
| 684 |
+
k = k.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2)
|
| 685 |
+
# shape: (B, n_kv_h, T, hs)
|
| 686 |
+
v = v.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2)
|
| 687 |
+
|
| 688 |
+
if layer_past is not None:
|
| 689 |
+
past_key, past_value = layer_past
|
| 690 |
+
k = torch.cat((past_key, k), dim=-2)
|
| 691 |
+
v = torch.cat((past_value, v), dim=-2)
|
| 692 |
+
|
| 693 |
+
present = (k, v) if use_cache else None
|
| 694 |
+
query_len, key_len = q.shape[-2], k.shape[-2] # could be different if layer_past not None
|
| 695 |
+
|
| 696 |
+
if self.config.rope:
|
| 697 |
+
# Apply rotary embeddings.
|
| 698 |
+
q, k = self.rotary_emb(q, k)
|
| 699 |
+
|
| 700 |
+
if attention_bias is not None:
|
| 701 |
+
# Resize and cast attention bias.
|
| 702 |
+
# The current dtype of the attention bias might not match the dtype that the SDP attn function will
|
| 703 |
+
# run in if AMP is enabled, and this can be a problem if some tokens are masked out due to padding
|
| 704 |
+
# as down-casting the attention bias to the autocast precision will result in -infs, which will
|
| 705 |
+
# cause the SDP attn function to produce NaNs.
|
| 706 |
+
attention_bias = self._cast_attn_bias(
|
| 707 |
+
attention_bias[:, :, key_len - query_len : key_len, :key_len], dtype
|
| 708 |
+
)
|
| 709 |
+
|
| 710 |
+
# Get the attention scores.
|
| 711 |
+
# shape: (B, nh, T, hs)
|
| 712 |
+
att = self._scaled_dot_product_attention(
|
| 713 |
+
q,
|
| 714 |
+
k,
|
| 715 |
+
v,
|
| 716 |
+
attn_mask=None,
|
| 717 |
+
dropout_p=0.0 if not self.training else self.config.attention_dropout,
|
| 718 |
+
is_causal=False,
|
| 719 |
+
)
|
| 720 |
+
|
| 721 |
+
# Re-assemble all head outputs side-by-side.
|
| 722 |
+
att = att.transpose(1, 2).contiguous().view(B, T, C)
|
| 723 |
+
|
| 724 |
+
# Apply output projection.
|
| 725 |
+
return self.attn_out(att), present
|
| 726 |
+
|
| 727 |
+
@abstractmethod
|
| 728 |
+
def forward(
|
| 729 |
+
self,
|
| 730 |
+
x: torch.Tensor,
|
| 731 |
+
attention_bias: Optional[torch.FloatTensor] = None,
|
| 732 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 733 |
+
use_cache: bool = False,
|
| 734 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
| 735 |
+
raise NotImplementedError
|
| 736 |
+
|
| 737 |
+
@classmethod
|
| 738 |
+
def build(cls, layer_id: int, config: ModelConfig, cache: BufferCache) -> LLaDABlock:
|
| 739 |
+
if config.block_type == BlockType.sequential:
|
| 740 |
+
return LLaDASequentialBlock(layer_id, config, cache)
|
| 741 |
+
elif config.block_type == BlockType.llama:
|
| 742 |
+
return LLaDALlamaBlock(layer_id, config, cache)
|
| 743 |
+
else:
|
| 744 |
+
raise NotImplementedError(f"Unknown block type: '{config.block_type}'")
|
| 745 |
+
|
| 746 |
+
|
| 747 |
+
class LLaDASequentialBlock(LLaDABlock):
|
| 748 |
+
"""
|
| 749 |
+
This is a typical transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))``
|
| 750 |
+
(plus another skip connection).
|
| 751 |
+
"""
|
| 752 |
+
|
| 753 |
+
def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache):
|
| 754 |
+
super().__init__(layer_id, config, cache)
|
| 755 |
+
# Layer norms.
|
| 756 |
+
self.attn_norm = LayerNorm.build(config)
|
| 757 |
+
self.ff_norm = LayerNorm.build(config)
|
| 758 |
+
# Attention input projection. Projects x -> (q, k, v)
|
| 759 |
+
head_dim = config.d_model // config.n_heads
|
| 760 |
+
self.fused_dims = (
|
| 761 |
+
config.d_model,
|
| 762 |
+
config.effective_n_kv_heads * head_dim,
|
| 763 |
+
config.effective_n_kv_heads * head_dim,
|
| 764 |
+
)
|
| 765 |
+
self.att_proj = nn.Linear(
|
| 766 |
+
config.d_model, sum(self.fused_dims), bias=config.include_bias | config.include_qkv_bias, device=config.init_device
|
| 767 |
+
)
|
| 768 |
+
# Feed-forward input projection.
|
| 769 |
+
self.ff_proj = nn.Linear(
|
| 770 |
+
config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device
|
| 771 |
+
)
|
| 772 |
+
|
| 773 |
+
def reset_parameters(self):
|
| 774 |
+
super().reset_parameters()
|
| 775 |
+
self.attn_norm.reset_parameters()
|
| 776 |
+
self.ff_norm.reset_parameters()
|
| 777 |
+
# NOTE: the standard deviation for these weights does not depend on the layer.
|
| 778 |
+
init_weights(
|
| 779 |
+
self.config, self.att_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module
|
| 780 |
+
)
|
| 781 |
+
init_weights(
|
| 782 |
+
self.config, self.ff_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module
|
| 783 |
+
)
|
| 784 |
+
|
| 785 |
+
def forward(
|
| 786 |
+
self,
|
| 787 |
+
x: torch.Tensor,
|
| 788 |
+
attention_bias: Optional[torch.Tensor] = None,
|
| 789 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 790 |
+
use_cache: bool = False,
|
| 791 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
| 792 |
+
# Get query, key, value projections.
|
| 793 |
+
# shape:
|
| 794 |
+
# - for regular attn q, k, v: (batch_size, seq_len, d_model)
|
| 795 |
+
# - for multi-query attn q: (batch_size, seq_len, d_model)
|
| 796 |
+
# k, v: (batch_size, seq_len, d_model // n_heads)
|
| 797 |
+
# - for group query attn q: (batch_size, seq_len, d_model)
|
| 798 |
+
# k, v: (batch_size, seq_len, d_model // n_kv_heads)
|
| 799 |
+
if self._activation_checkpoint_fn is not None:
|
| 800 |
+
q, k, v = self.att_proj(self._activation_checkpoint_fn(self.attn_norm, x)).split(
|
| 801 |
+
self.fused_dims, dim=-1
|
| 802 |
+
)
|
| 803 |
+
else:
|
| 804 |
+
q, k, v = self.att_proj(self.attn_norm(x)).split(self.fused_dims, dim=-1)
|
| 805 |
+
|
| 806 |
+
# Get attention scores.
|
| 807 |
+
if self._activation_checkpoint_fn is not None:
|
| 808 |
+
att, cache = self._activation_checkpoint_fn( # type: ignore
|
| 809 |
+
self.attention, q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache
|
| 810 |
+
)
|
| 811 |
+
else:
|
| 812 |
+
att, cache = self.attention(q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache)
|
| 813 |
+
|
| 814 |
+
# Add attention scores.
|
| 815 |
+
# shape: (B, T, C)
|
| 816 |
+
x = x + self.dropout(att)
|
| 817 |
+
|
| 818 |
+
# Add feed-forward projection.
|
| 819 |
+
# shape: (batch_size, seq_len, d_model)
|
| 820 |
+
og_x = x
|
| 821 |
+
if self._activation_checkpoint_fn is not None:
|
| 822 |
+
x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore
|
| 823 |
+
else:
|
| 824 |
+
x = self.ff_norm(x)
|
| 825 |
+
x = self.ff_proj(x)
|
| 826 |
+
if self._activation_checkpoint_fn is not None:
|
| 827 |
+
x = self._activation_checkpoint_fn(self.act, x) # type: ignore
|
| 828 |
+
else:
|
| 829 |
+
x = self.act(x)
|
| 830 |
+
x = self.ff_out(x)
|
| 831 |
+
x = self.dropout(x)
|
| 832 |
+
x = og_x + x
|
| 833 |
+
|
| 834 |
+
return x, cache
|
| 835 |
+
|
| 836 |
+
|
| 837 |
+
class LLaDALlamaBlock(LLaDABlock):
|
| 838 |
+
"""
|
| 839 |
+
This is a transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))``
|
| 840 |
+
(plus another skip connection). This block is similar to `LLaDASequentialBlock`
|
| 841 |
+
but some operations have slightly different implementations to imitate the
|
| 842 |
+
behavior of Llama.
|
| 843 |
+
"""
|
| 844 |
+
|
| 845 |
+
def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache):
|
| 846 |
+
super().__init__(layer_id, config, cache)
|
| 847 |
+
# Layer norms.
|
| 848 |
+
self.attn_norm = LayerNorm.build(config)
|
| 849 |
+
self.ff_norm = LayerNorm.build(config)
|
| 850 |
+
self.__cache = cache
|
| 851 |
+
|
| 852 |
+
# Attention input projection. Projects x -> (q, k, v)
|
| 853 |
+
head_dim = config.d_model // config.n_heads
|
| 854 |
+
q_proj_out_dim = config.d_model
|
| 855 |
+
k_proj_out_dim = config.effective_n_kv_heads * head_dim
|
| 856 |
+
v_proj_out_dim = config.effective_n_kv_heads * head_dim
|
| 857 |
+
self.q_proj = nn.Linear(
|
| 858 |
+
config.d_model, q_proj_out_dim, bias=config.include_bias | config.include_qkv_bias, device=config.init_device
|
| 859 |
+
)
|
| 860 |
+
self.k_proj = nn.Linear(
|
| 861 |
+
config.d_model, k_proj_out_dim, bias=config.include_bias | config.include_qkv_bias, device=config.init_device
|
| 862 |
+
)
|
| 863 |
+
self.v_proj = nn.Linear(
|
| 864 |
+
config.d_model, v_proj_out_dim, bias=config.include_bias | config.include_qkv_bias, device=config.init_device
|
| 865 |
+
)
|
| 866 |
+
|
| 867 |
+
# Feed-forward input projection.
|
| 868 |
+
#gate
|
| 869 |
+
self.ff_proj = nn.Linear(
|
| 870 |
+
config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device
|
| 871 |
+
)
|
| 872 |
+
#up
|
| 873 |
+
self.up_proj = nn.Linear(
|
| 874 |
+
config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device
|
| 875 |
+
)
|
| 876 |
+
|
| 877 |
+
def reset_parameters(self):
|
| 878 |
+
super().reset_parameters()
|
| 879 |
+
self.attn_norm.reset_parameters()
|
| 880 |
+
self.ff_norm.reset_parameters()
|
| 881 |
+
# NOTE: the standard deviation for these weights does not depend on the layer.
|
| 882 |
+
init_weights(self.config, self.q_proj, d=self.config.d_model, layer_id=None)
|
| 883 |
+
init_weights(self.config, self.k_proj, d=self.config.d_model, layer_id=None)
|
| 884 |
+
init_weights(self.config, self.v_proj, d=self.config.d_model, layer_id=None)
|
| 885 |
+
init_weights(self.config, self.ff_proj, d=self.config.d_model, layer_id=None)
|
| 886 |
+
init_weights(self.config, self.up_proj, d=self.config.d_model, layer_id=None) # new add
|
| 887 |
+
|
| 888 |
+
def forward(
|
| 889 |
+
self,
|
| 890 |
+
x: torch.Tensor,
|
| 891 |
+
attention_bias: Optional[torch.Tensor] = None,
|
| 892 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 893 |
+
use_cache: bool = False,
|
| 894 |
+
**kwargs,
|
| 895 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
| 896 |
+
# Get query, key, value projections.
|
| 897 |
+
# shape:
|
| 898 |
+
# - for regular attn q, k, v: (batch_size, seq_len, d_model)
|
| 899 |
+
# - for multi-query attn q: (batch_size, seq_len, d_model)
|
| 900 |
+
# k, v: (batch_size, seq_len, d_model // n_heads)
|
| 901 |
+
# - for group query attn q: (batch_size, seq_len, d_model)
|
| 902 |
+
# k, v: (batch_size, seq_len, d_model // n_kv_heads)
|
| 903 |
+
|
| 904 |
+
|
| 905 |
+
|
| 906 |
+
|
| 907 |
+
|
| 908 |
+
|
| 909 |
+
x_normed = self.attn_norm(x)
|
| 910 |
+
q = self.q_proj(x_normed)
|
| 911 |
+
k = self.k_proj(x_normed)
|
| 912 |
+
v = self.v_proj(x_normed)
|
| 913 |
+
|
| 914 |
+
# Get attention scores.
|
| 915 |
+
if self._activation_checkpoint_fn is not None:
|
| 916 |
+
att, cache = self._activation_checkpoint_fn( # type: ignore
|
| 917 |
+
self.attention, q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache
|
| 918 |
+
)
|
| 919 |
+
else:
|
| 920 |
+
att, cache = self.attention(q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache)
|
| 921 |
+
|
| 922 |
+
# Add attention scores.
|
| 923 |
+
# shape: (B, T, C)
|
| 924 |
+
x = x + self.dropout(att)
|
| 925 |
+
|
| 926 |
+
# Add feed-forward projection.
|
| 927 |
+
# shape: (batch_size, seq_len, d_model)
|
| 928 |
+
og_x = x
|
| 929 |
+
if self._activation_checkpoint_fn is not None:
|
| 930 |
+
x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore
|
| 931 |
+
else:
|
| 932 |
+
x = self.ff_norm(x)
|
| 933 |
+
x, x_up = self.ff_proj(x), self.up_proj(x) # new add
|
| 934 |
+
if self._activation_checkpoint_fn is not None:
|
| 935 |
+
x = self._activation_checkpoint_fn(self.act, x) # type: ignore
|
| 936 |
+
else:
|
| 937 |
+
x = self.act(x)
|
| 938 |
+
x = x * x_up # new add
|
| 939 |
+
x = self.ff_out(x)
|
| 940 |
+
x = self.dropout(x)
|
| 941 |
+
x = og_x + x
|
| 942 |
+
|
| 943 |
+
return x, cache
|
| 944 |
+
|
| 945 |
+
|
| 946 |
+
class LLaDAOutput(NamedTuple):
|
| 947 |
+
logits: torch.FloatTensor
|
| 948 |
+
"""
|
| 949 |
+
A tensor of shape `(batch_size, seq_len, vocab_size)` representing the log probabilities
|
| 950 |
+
for the next token *before* normalization via (log) softmax.
|
| 951 |
+
"""
|
| 952 |
+
|
| 953 |
+
attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]]
|
| 954 |
+
"""
|
| 955 |
+
Attention keys and values from each block.
|
| 956 |
+
"""
|
| 957 |
+
|
| 958 |
+
hidden_states: Optional[Tuple[torch.Tensor]]
|
| 959 |
+
"""
|
| 960 |
+
Hidden states from each block.
|
| 961 |
+
"""
|
| 962 |
+
|
| 963 |
+
|
| 964 |
+
class LLaDAGenerateOutput(NamedTuple):
|
| 965 |
+
token_ids: torch.LongTensor
|
| 966 |
+
"""
|
| 967 |
+
The generated token IDs, a tensor of shape `(batch_size, beam_size, max_steps)`.
|
| 968 |
+
These do *not* include the original input IDs.
|
| 969 |
+
"""
|
| 970 |
+
|
| 971 |
+
scores: torch.FloatTensor
|
| 972 |
+
"""
|
| 973 |
+
The scores of the generated sequences, a tensor of shape `(batch_size, beam_size)`.
|
| 974 |
+
"""
|
| 975 |
+
|
| 976 |
+
|
| 977 |
+
class LLaDABlockGroup(nn.ModuleList):
|
| 978 |
+
def __init__(self, config: ModelConfig, layer_offset: int, modules: Optional[Iterable[nn.Module]] = None):
|
| 979 |
+
super().__init__(modules)
|
| 980 |
+
self.config = config
|
| 981 |
+
self.layer_offset = layer_offset
|
| 982 |
+
self.activation_checkpointing_strategy: Optional[ActivationCheckpointingStrategy] = None
|
| 983 |
+
self._activation_checkpoint_fn = activation_checkpoint_function(self.config)
|
| 984 |
+
|
| 985 |
+
def forward(
|
| 986 |
+
self,
|
| 987 |
+
x: torch.Tensor,
|
| 988 |
+
attention_bias: Optional[torch.FloatTensor] = None,
|
| 989 |
+
layers_past: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
|
| 990 |
+
use_cache: bool = False,
|
| 991 |
+
) -> Tuple[torch.Tensor, Optional[List[Tuple[torch.Tensor, torch.Tensor]]]]:
|
| 992 |
+
attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None
|
| 993 |
+
for block_idx, block in enumerate(self):
|
| 994 |
+
layer_past = None if layers_past is None else layers_past[block_idx]
|
| 995 |
+
block_idx += self.layer_offset
|
| 996 |
+
if (
|
| 997 |
+
(self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.whole_layer)
|
| 998 |
+
or (
|
| 999 |
+
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_two
|
| 1000 |
+
and block_idx % 2 == 0
|
| 1001 |
+
)
|
| 1002 |
+
or (
|
| 1003 |
+
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_three
|
| 1004 |
+
and block_idx % 3 == 0
|
| 1005 |
+
)
|
| 1006 |
+
or (
|
| 1007 |
+
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_four
|
| 1008 |
+
and block_idx % 4 == 0
|
| 1009 |
+
)
|
| 1010 |
+
):
|
| 1011 |
+
# shape: (batch_size, seq_len, d_model)
|
| 1012 |
+
x, cache = self._activation_checkpoint_fn( # type: ignore
|
| 1013 |
+
block, x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache
|
| 1014 |
+
)
|
| 1015 |
+
else:
|
| 1016 |
+
# shape: (batch_size, seq_len, d_model)
|
| 1017 |
+
x, cache = block(x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache)
|
| 1018 |
+
if attn_key_values is not None:
|
| 1019 |
+
assert cache is not None
|
| 1020 |
+
attn_key_values.append(cache)
|
| 1021 |
+
return x, attn_key_values
|
| 1022 |
+
|
| 1023 |
+
def reset_parameters(self):
|
| 1024 |
+
for block in self:
|
| 1025 |
+
block.reset_parameters()
|
| 1026 |
+
|
| 1027 |
+
def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]):
|
| 1028 |
+
self.activation_checkpointing_strategy = strategy
|
| 1029 |
+
for block in self:
|
| 1030 |
+
block.set_activation_checkpointing(strategy)
|
| 1031 |
+
|
| 1032 |
+
|
| 1033 |
+
class LLaDAModel(nn.Module):
|
| 1034 |
+
def __init__(self, config: ModelConfig, init_params: bool = True):
|
| 1035 |
+
super().__init__()
|
| 1036 |
+
self.config = config
|
| 1037 |
+
self.__cache = BufferCache()
|
| 1038 |
+
|
| 1039 |
+
# Validate config.
|
| 1040 |
+
if self.config.alibi and self.config.flash_attention:
|
| 1041 |
+
raise Exception("ALiBi is currently not supported with FlashAttention")
|
| 1042 |
+
|
| 1043 |
+
if self.config.alibi and self.config.rope:
|
| 1044 |
+
raise Exception("ALiBi and RoPE are mutually exclusive")
|
| 1045 |
+
|
| 1046 |
+
if self.config.embedding_size is not None and self.config.embedding_size != self.config.vocab_size:
|
| 1047 |
+
if self.config.embedding_size < self.config.vocab_size:
|
| 1048 |
+
raise Exception("embedding size should be at least as big as vocab size")
|
| 1049 |
+
elif self.config.embedding_size % 128 != 0:
|
| 1050 |
+
import warnings
|
| 1051 |
+
|
| 1052 |
+
warnings.warn(
|
| 1053 |
+
"Embedding size is not a multiple of 128! This could hurt throughput performance.", UserWarning
|
| 1054 |
+
)
|
| 1055 |
+
|
| 1056 |
+
self.activation_checkpointing_strategy: Optional[ActivationCheckpointingStrategy] = None
|
| 1057 |
+
self._activation_checkpoint_fn: Callable = activation_checkpoint_function(self.config)
|
| 1058 |
+
|
| 1059 |
+
if not (
|
| 1060 |
+
0 < self.config.block_group_size <= self.config.n_layers
|
| 1061 |
+
and self.config.n_layers % self.config.block_group_size == 0
|
| 1062 |
+
):
|
| 1063 |
+
raise Exception("n layers must be divisible by block group size")
|
| 1064 |
+
|
| 1065 |
+
torch.backends.cuda.enable_flash_sdp(True)
|
| 1066 |
+
torch.backends.cuda.enable_mem_efficient_sdp(False) # this is super slow so make sure torch won't use it
|
| 1067 |
+
|
| 1068 |
+
self.transformer = nn.ModuleDict(
|
| 1069 |
+
dict(
|
| 1070 |
+
wte=nn.Embedding(
|
| 1071 |
+
config.embedding_size or config.vocab_size, config.d_model, device=config.init_device
|
| 1072 |
+
),
|
| 1073 |
+
emb_drop=Dropout(config.embedding_dropout),
|
| 1074 |
+
ln_f=LayerNorm.build(config),
|
| 1075 |
+
)
|
| 1076 |
+
)
|
| 1077 |
+
|
| 1078 |
+
blocks = [LLaDABlock.build(i, config, self.__cache) for i in range(config.n_layers)]
|
| 1079 |
+
if self.config.block_group_size > 1:
|
| 1080 |
+
block_groups = [
|
| 1081 |
+
LLaDABlockGroup(config, i, blocks[i : i + config.block_group_size])
|
| 1082 |
+
for i in range(0, config.n_layers, config.block_group_size)
|
| 1083 |
+
]
|
| 1084 |
+
self.transformer.update({"block_groups": nn.ModuleList(block_groups)})
|
| 1085 |
+
else:
|
| 1086 |
+
self.transformer.update({"blocks": nn.ModuleList(blocks)})
|
| 1087 |
+
|
| 1088 |
+
if not (self.config.alibi or self.config.rope):
|
| 1089 |
+
self.transformer.update(
|
| 1090 |
+
{"wpe": nn.Embedding(config.max_sequence_length, config.d_model, device=config.init_device)}
|
| 1091 |
+
)
|
| 1092 |
+
if not config.weight_tying:
|
| 1093 |
+
self.transformer.update(
|
| 1094 |
+
{
|
| 1095 |
+
"ff_out": nn.Linear(
|
| 1096 |
+
config.d_model,
|
| 1097 |
+
config.embedding_size or config.vocab_size,
|
| 1098 |
+
bias=config.include_bias,
|
| 1099 |
+
device=config.init_device,
|
| 1100 |
+
)
|
| 1101 |
+
}
|
| 1102 |
+
)
|
| 1103 |
+
# When `init_device="meta"` FSDP will call `reset_parameters()` to initialize weights.
|
| 1104 |
+
if init_params and self.config.init_device != "meta":
|
| 1105 |
+
self.reset_parameters()
|
| 1106 |
+
self.__num_fwd_flops: Optional[int] = None
|
| 1107 |
+
|
| 1108 |
+
# Warm up cache.
|
| 1109 |
+
if self.config.alibi:
|
| 1110 |
+
get_causal_attention_bias(self.__cache, config.max_sequence_length, _non_meta_init_device(config))
|
| 1111 |
+
self.get_alibi_attention_bias(config.max_sequence_length, _non_meta_init_device(config))
|
| 1112 |
+
|
| 1113 |
+
def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]):
|
| 1114 |
+
self.activation_checkpointing_strategy = strategy
|
| 1115 |
+
if self.config.block_group_size != 1:
|
| 1116 |
+
for block_group in self.transformer.block_groups:
|
| 1117 |
+
block_group.set_activation_checkpointing(strategy)
|
| 1118 |
+
else:
|
| 1119 |
+
for block in self.transformer.blocks:
|
| 1120 |
+
block.set_activation_checkpointing(strategy)
|
| 1121 |
+
|
| 1122 |
+
@property
|
| 1123 |
+
def device(self) -> torch.device:
|
| 1124 |
+
device: torch.device = self.transformer.wte.weight.device # type: ignore
|
| 1125 |
+
if device.type == "meta":
|
| 1126 |
+
return _non_meta_init_device(self.config)
|
| 1127 |
+
else:
|
| 1128 |
+
return device
|
| 1129 |
+
|
| 1130 |
+
def reset_parameters(self):
|
| 1131 |
+
log.info("Initializing model parameters...")
|
| 1132 |
+
# Top-level embeddings / linear layers.
|
| 1133 |
+
init_weights(
|
| 1134 |
+
self.config,
|
| 1135 |
+
self.transformer.wte, # type: ignore
|
| 1136 |
+
std_factor=(0.5 * math.sqrt(self.config.d_model)) if self.config.scale_logits else 1.0,
|
| 1137 |
+
type_of_module=ModuleType.emb,
|
| 1138 |
+
)
|
| 1139 |
+
if hasattr(self.transformer, "wpe"):
|
| 1140 |
+
init_weights(self.config, self.transformer.wpe, type_of_module=ModuleType.emb) # type: ignore
|
| 1141 |
+
|
| 1142 |
+
# Top-level layer norm.
|
| 1143 |
+
self.transformer.ln_f.reset_parameters() # type: ignore
|
| 1144 |
+
|
| 1145 |
+
# Output weights.
|
| 1146 |
+
if hasattr(self.transformer, "ff_out"):
|
| 1147 |
+
init_weights(self.config, self.transformer.ff_out, type_of_module=ModuleType.final_out) # type: ignore
|
| 1148 |
+
|
| 1149 |
+
# Let the blocks handle themselves.
|
| 1150 |
+
if self.config.block_group_size == 1:
|
| 1151 |
+
for block in self.transformer.blocks:
|
| 1152 |
+
block.reset_parameters()
|
| 1153 |
+
else:
|
| 1154 |
+
for block_group in self.transformer.block_groups:
|
| 1155 |
+
block_group.reset_parameters()
|
| 1156 |
+
|
| 1157 |
+
def get_alibi_attention_bias(self, seq_len: int, device: torch.device) -> torch.Tensor:
|
| 1158 |
+
if (alibi_bias := self.__cache.get("alibi_attention_bias")) is not None and alibi_bias.shape[
|
| 1159 |
+
-1
|
| 1160 |
+
] >= seq_len:
|
| 1161 |
+
if alibi_bias.device != device:
|
| 1162 |
+
alibi_bias = alibi_bias.to(device)
|
| 1163 |
+
self.__cache["alibi_attention_bias"] = alibi_bias
|
| 1164 |
+
return alibi_bias
|
| 1165 |
+
with torch.autocast(device.type, enabled=False):
|
| 1166 |
+
alibi_bias = alibi_attention_bias(seq_len, self.config, device)
|
| 1167 |
+
self.__cache["alibi_attention_bias"] = alibi_bias
|
| 1168 |
+
return alibi_bias
|
| 1169 |
+
|
| 1170 |
+
def forward(
|
| 1171 |
+
self,
|
| 1172 |
+
input_ids: torch.LongTensor,
|
| 1173 |
+
input_embeddings: Optional[torch.FloatTensor] = None,
|
| 1174 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1175 |
+
attention_bias: Optional[torch.Tensor] = None,
|
| 1176 |
+
past_key_values: Optional[Sequence[Tuple[torch.Tensor, torch.Tensor]]] = None,
|
| 1177 |
+
use_cache: bool = False,
|
| 1178 |
+
last_logits_only: bool = False,
|
| 1179 |
+
output_hidden_states: Optional[bool] = None,
|
| 1180 |
+
) -> LLaDAOutput:
|
| 1181 |
+
"""
|
| 1182 |
+
:param input_ids: A tensor of shape `(batch_size, seq_len)`.
|
| 1183 |
+
:param input_embeddings: A tensor of shape `(batch_size, seq_len, d_model)` with input
|
| 1184 |
+
embeddings. When provided, it is treated as the output of the input embedding layer.
|
| 1185 |
+
:param attention_mask: A tensor of shape `(batch_size, seq_len)` that indicates
|
| 1186 |
+
which input IDs are masked. A `1` value in the mask means that
|
| 1187 |
+
the corresponding input ID should *not* be ignored. A `0` means
|
| 1188 |
+
that the corresponding input ID is masked.
|
| 1189 |
+
|
| 1190 |
+
This has the same meaning as the `attention_mask` in HuggingFace's `transformers`
|
| 1191 |
+
library.
|
| 1192 |
+
:param attention_bias: A tensor of shape `(batch_size, 1, seq_len, seq_len)`,
|
| 1193 |
+
`(1, 1, seq_len, seq_len)`, or `(seq_len, seq_len)`. This is used
|
| 1194 |
+
to introduce causal or other biases.
|
| 1195 |
+
|
| 1196 |
+
If the tensor is a bool or byte tensor, a `True` or `1` at `attention_bias[:, :, i, j]`
|
| 1197 |
+
indicates that the i-th element in the sequence is allowed to attend to the j-th
|
| 1198 |
+
element in the sequence.
|
| 1199 |
+
|
| 1200 |
+
If the tensor is a float tensor, it will just be added to the attention
|
| 1201 |
+
scores before the softmax.
|
| 1202 |
+
|
| 1203 |
+
The default is causal, which corresponds to a lower-diagonal byte matrix of ones.
|
| 1204 |
+
:param past_key_values: Pre-computed keys and values for each attention block.
|
| 1205 |
+
Can be used to speed up sequential decoding. The `input_ids` which have
|
| 1206 |
+
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
| 1207 |
+
:param use_cache: If `True`, return key and value tensors for each block.
|
| 1208 |
+
:param last_logits_only: If `True`, only compute the logits for the last token of each sequence.
|
| 1209 |
+
This can speed up decoding when you only care about the next token.
|
| 1210 |
+
"""
|
| 1211 |
+
# Add Basic MDM Model config check
|
| 1212 |
+
assert not self.config.alibi, "Alibi length extrapolation is not supported for MDM."
|
| 1213 |
+
assert self.config.rope, "Rope must be used in Llama-Encoder for MDM."
|
| 1214 |
+
assert (past_key_values is None and not use_cache), "The kvcache is not suppotred for MDM."
|
| 1215 |
+
|
| 1216 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else False
|
| 1217 |
+
|
| 1218 |
+
if past_key_values:
|
| 1219 |
+
assert len(past_key_values) == self.config.n_layers
|
| 1220 |
+
|
| 1221 |
+
batch_size, seq_len = input_ids.size() if input_embeddings is None else input_embeddings.size()[:2]
|
| 1222 |
+
if past_key_values is None:
|
| 1223 |
+
past_length = 0
|
| 1224 |
+
else:
|
| 1225 |
+
past_length = past_key_values[0][0].size(-2)
|
| 1226 |
+
|
| 1227 |
+
# Get embeddings of input.
|
| 1228 |
+
# shape: (batch_size, seq_len, d_model)
|
| 1229 |
+
x = self.transformer.wte(input_ids) if input_embeddings is None else input_embeddings # type: ignore
|
| 1230 |
+
|
| 1231 |
+
if self.config.input_emb_norm:
|
| 1232 |
+
x = x * (self.config.d_model**0.5)
|
| 1233 |
+
|
| 1234 |
+
if not (self.config.alibi or self.config.rope):
|
| 1235 |
+
# Get positional embeddings.
|
| 1236 |
+
# shape: (1, seq_len)
|
| 1237 |
+
pos = torch.arange(past_length, past_length + seq_len, dtype=torch.long, device=x.device).unsqueeze(0)
|
| 1238 |
+
# shape: (1, seq_len, d_model)
|
| 1239 |
+
pos_emb = self.transformer.wpe(pos) # type: ignore
|
| 1240 |
+
x = pos_emb + x
|
| 1241 |
+
|
| 1242 |
+
# Add input + positional embeddings and apply dropout.
|
| 1243 |
+
# shape: (batch_size, seq_len, d_model)
|
| 1244 |
+
x = self.transformer.emb_drop(x) # type: ignore
|
| 1245 |
+
|
| 1246 |
+
# Transform the attention mask into what the blocks expect.
|
| 1247 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
| 1248 |
+
# shape: (batch_size, 1, 1, seq_len)
|
| 1249 |
+
attention_mask = attention_mask.to(dtype=torch.float).view(batch_size, -1)[:, None, None, :]
|
| 1250 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(attention_mask.dtype).min
|
| 1251 |
+
else:
|
| 1252 |
+
attention_mask = None
|
| 1253 |
+
|
| 1254 |
+
# Merge attention mask with attention bias.
|
| 1255 |
+
if (
|
| 1256 |
+
attention_bias is not None
|
| 1257 |
+
or attention_mask is not None
|
| 1258 |
+
or self.config.alibi
|
| 1259 |
+
# NOTE (epwalsh): we need to initialize the attn bias in order for attn to work properly
|
| 1260 |
+
# with key+value cache. Otherwise `F.scaled_dot_product_attention()` doesn't seem to compute
|
| 1261 |
+
# scores correctly.
|
| 1262 |
+
or past_key_values is not None
|
| 1263 |
+
):
|
| 1264 |
+
if attention_bias is None and self.config.alibi:
|
| 1265 |
+
attention_bias = get_causal_attention_bias(
|
| 1266 |
+
self.__cache, past_length + seq_len, x.device
|
| 1267 |
+
) + self.get_alibi_attention_bias(past_length + seq_len, x.device)
|
| 1268 |
+
elif attention_bias is None:
|
| 1269 |
+
attention_bias = get_causal_attention_bias(self.__cache, past_length + seq_len, x.device)
|
| 1270 |
+
elif attention_bias.dtype in (torch.int8, torch.bool):
|
| 1271 |
+
attention_bias = attention_bias.to(dtype=torch.float)
|
| 1272 |
+
attention_bias.masked_fill_(attention_bias == 0.0, torch.finfo(attention_bias.dtype).min)
|
| 1273 |
+
|
| 1274 |
+
# Transform to the right shape and data type.
|
| 1275 |
+
mask_len = seq_len
|
| 1276 |
+
if attention_mask is not None:
|
| 1277 |
+
mask_len = attention_mask.shape[-1]
|
| 1278 |
+
elif past_key_values is not None:
|
| 1279 |
+
mask_len = past_key_values[0][0].shape[-2] + seq_len
|
| 1280 |
+
attention_bias = attention_bias[:, :, :mask_len, :mask_len].to(dtype=torch.float)
|
| 1281 |
+
|
| 1282 |
+
# Add in the masking bias.
|
| 1283 |
+
if attention_mask is not None:
|
| 1284 |
+
attention_bias = attention_bias + attention_mask
|
| 1285 |
+
# Might get -infs after adding attention mask, since dtype.min + dtype.min = -inf.
|
| 1286 |
+
# `F.scaled_dot_product_attention()` doesn't handle -inf like you'd expect, instead
|
| 1287 |
+
# it can produce NaNs.
|
| 1288 |
+
ensure_finite_(attention_bias, check_neg_inf=True, check_pos_inf=False)
|
| 1289 |
+
|
| 1290 |
+
attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None
|
| 1291 |
+
|
| 1292 |
+
# decoder layers
|
| 1293 |
+
all_hidden_states = []
|
| 1294 |
+
|
| 1295 |
+
# Apply blocks one-by-one.
|
| 1296 |
+
if self.config.block_group_size == 1:
|
| 1297 |
+
for block_idx, block in enumerate(self.transformer.blocks):
|
| 1298 |
+
if output_hidden_states:
|
| 1299 |
+
# add hidden states
|
| 1300 |
+
all_hidden_states.append(x)
|
| 1301 |
+
|
| 1302 |
+
layer_past = None if past_key_values is None else past_key_values[block_idx]
|
| 1303 |
+
if (
|
| 1304 |
+
(self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.whole_layer)
|
| 1305 |
+
or (
|
| 1306 |
+
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_two
|
| 1307 |
+
and block_idx % 2 == 0
|
| 1308 |
+
)
|
| 1309 |
+
or (
|
| 1310 |
+
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_three
|
| 1311 |
+
and block_idx % 3 == 0
|
| 1312 |
+
)
|
| 1313 |
+
or (
|
| 1314 |
+
self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_four
|
| 1315 |
+
and block_idx % 4 == 0
|
| 1316 |
+
)
|
| 1317 |
+
):
|
| 1318 |
+
# shape: (batch_size, seq_len, d_model)
|
| 1319 |
+
x, cache = self._activation_checkpoint_fn(
|
| 1320 |
+
block, x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache
|
| 1321 |
+
)
|
| 1322 |
+
else:
|
| 1323 |
+
# shape: (batch_size, seq_len, d_model)
|
| 1324 |
+
x, cache = block(x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache)
|
| 1325 |
+
if attn_key_values is not None:
|
| 1326 |
+
assert cache is not None
|
| 1327 |
+
attn_key_values.append(cache)
|
| 1328 |
+
else:
|
| 1329 |
+
for group_idx, block_group in enumerate(self.transformer.block_groups):
|
| 1330 |
+
if output_hidden_states:
|
| 1331 |
+
# add hidden states
|
| 1332 |
+
all_hidden_states.append(x)
|
| 1333 |
+
|
| 1334 |
+
layers_past = (
|
| 1335 |
+
None
|
| 1336 |
+
if past_key_values is None
|
| 1337 |
+
else past_key_values[
|
| 1338 |
+
group_idx * self.config.block_group_size : (group_idx + 1) * self.config.block_group_size
|
| 1339 |
+
]
|
| 1340 |
+
)
|
| 1341 |
+
x, cache = block_group(
|
| 1342 |
+
x, attention_bias=attention_bias, layers_past=layers_past, use_cache=use_cache
|
| 1343 |
+
)
|
| 1344 |
+
if attn_key_values is not None:
|
| 1345 |
+
assert cache is not None
|
| 1346 |
+
attn_key_values.extend(cache)
|
| 1347 |
+
|
| 1348 |
+
if last_logits_only:
|
| 1349 |
+
# shape: (batch_size, 1, d_model)
|
| 1350 |
+
x = x[:, -1, :].unsqueeze(1)
|
| 1351 |
+
|
| 1352 |
+
# Apply final layer norm.
|
| 1353 |
+
# shape: (batch_size, seq_len or 1, d_model)
|
| 1354 |
+
x = self.transformer.ln_f(x) # type: ignore
|
| 1355 |
+
if output_hidden_states:
|
| 1356 |
+
# add final hidden state post-final-layernorm, following HuggingFace's convention
|
| 1357 |
+
all_hidden_states.append(x)
|
| 1358 |
+
|
| 1359 |
+
# Get logits.
|
| 1360 |
+
# shape: (batch_size, seq_len or 1, vocab_size)
|
| 1361 |
+
if self.config.weight_tying:
|
| 1362 |
+
logits = F.linear(x, self.transformer.wte.weight, None) # type: ignore
|
| 1363 |
+
else:
|
| 1364 |
+
logits = self.transformer.ff_out(x) # type: ignore
|
| 1365 |
+
if self.config.scale_logits:
|
| 1366 |
+
logits.mul_(1 / math.sqrt(self.config.d_model))
|
| 1367 |
+
|
| 1368 |
+
return LLaDAOutput(logits=logits, attn_key_values=attn_key_values, hidden_states=tuple(all_hidden_states) if output_hidden_states else None) # type: ignore[arg-type]
|
| 1369 |
+
|
| 1370 |
+
|
| 1371 |
+
def create_model_config_from_pretrained_config(config: LLaDAConfig):
|
| 1372 |
+
"""
|
| 1373 |
+
Utility function
|
| 1374 |
+
"""
|
| 1375 |
+
|
| 1376 |
+
kwargs = {}
|
| 1377 |
+
for field in fields(ModelConfig):
|
| 1378 |
+
kwargs[field.name] = getattr(config, field.name)
|
| 1379 |
+
|
| 1380 |
+
model_config = ModelConfig(**kwargs)
|
| 1381 |
+
return model_config
|
| 1382 |
+
|
| 1383 |
+
|
| 1384 |
+
def add_gumbel_noise(logits, temperature):
|
| 1385 |
+
'''
|
| 1386 |
+
The Gumbel max is a method for sampling categorical distributions.
|
| 1387 |
+
According to arXiv:2409.02908, for MDM, low-precision Gumbel Max improves perplexity score but reduces generation quality.
|
| 1388 |
+
Thus, we use float64.
|
| 1389 |
+
'''
|
| 1390 |
+
logits = logits.to(torch.float64)
|
| 1391 |
+
noise = torch.rand_like(logits, dtype=torch.float64)
|
| 1392 |
+
gumbel_noise = (- torch.log(noise)) ** temperature
|
| 1393 |
+
return logits.exp() / gumbel_noise
|
| 1394 |
+
|
| 1395 |
+
|
| 1396 |
+
def get_num_transfer_tokens(mask_index, steps):
|
| 1397 |
+
'''
|
| 1398 |
+
In the reverse process, the interval [0, 1] is uniformly discretized into steps intervals.
|
| 1399 |
+
Furthermore, because LLaDA employs a linear noise schedule (as defined in Eq. (8)),
|
| 1400 |
+
the expected number of tokens transitioned at each step should be consistent.
|
| 1401 |
+
|
| 1402 |
+
This function is designed to precompute the number of tokens that need to be transitioned at each step.
|
| 1403 |
+
'''
|
| 1404 |
+
mask_num = mask_index.sum(dim=1, keepdim=True) #
|
| 1405 |
+
|
| 1406 |
+
base = mask_num // steps
|
| 1407 |
+
remainder = mask_num % steps
|
| 1408 |
+
|
| 1409 |
+
num_transfer_tokens = torch.zeros(mask_num.size(0), steps, device=mask_index.device, dtype=torch.int64) + base
|
| 1410 |
+
|
| 1411 |
+
for i in range(mask_num.size(0)):
|
| 1412 |
+
num_transfer_tokens[i, :remainder[i]] += 1
|
| 1413 |
+
|
| 1414 |
+
return num_transfer_tokens
|
| 1415 |
+
|
| 1416 |
+
|
| 1417 |
+
|
| 1418 |
+
class LLaDAModelLM(PreTrainedModel):
|
| 1419 |
+
"""
|
| 1420 |
+
Extremely barebones HF model wrapper.
|
| 1421 |
+
"""
|
| 1422 |
+
|
| 1423 |
+
config_class = LLaDAConfig
|
| 1424 |
+
base_model_prefix = "model"
|
| 1425 |
+
_no_split_modules = ["LLaDABlock", "LLaDASequentialBlock", "LLaDALlamaBlock"]
|
| 1426 |
+
|
| 1427 |
+
def __init__(self, config: LLaDAConfig, model: Optional[LLaDAModel] = None, init_params: bool = False):
|
| 1428 |
+
super().__init__(config)
|
| 1429 |
+
|
| 1430 |
+
if not model:
|
| 1431 |
+
model_config = create_model_config_from_pretrained_config(config)
|
| 1432 |
+
# Initialize model (always on CPU to start with so we don't run out of GPU memory).
|
| 1433 |
+
model_config.init_device = "cpu"
|
| 1434 |
+
self.model = LLaDAModel(model_config, init_params=init_params)
|
| 1435 |
+
else:
|
| 1436 |
+
self.model = model
|
| 1437 |
+
|
| 1438 |
+
def forward(
|
| 1439 |
+
self,
|
| 1440 |
+
input_ids: torch.LongTensor = None,
|
| 1441 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1442 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1443 |
+
attention_bias: Optional[torch.Tensor] = None,
|
| 1444 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1445 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1446 |
+
use_cache: Optional[bool] = None,
|
| 1447 |
+
output_attentions: Optional[bool] = None,
|
| 1448 |
+
output_hidden_states: Optional[bool] = None,
|
| 1449 |
+
return_dict: Optional[bool] = None,
|
| 1450 |
+
cache_position: Optional[Cache] = None, # This is a hack mitigation of an issue in transformers `4.39.x`
|
| 1451 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1452 |
+
if use_cache is None:
|
| 1453 |
+
use_cache = self.config.use_cache
|
| 1454 |
+
|
| 1455 |
+
if output_attentions:
|
| 1456 |
+
raise ValueError("output_attentions is not yet supported in LLaDA")
|
| 1457 |
+
|
| 1458 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1459 |
+
|
| 1460 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1461 |
+
outputs = self.model.forward(
|
| 1462 |
+
input_ids=input_ids,
|
| 1463 |
+
input_embeddings=inputs_embeds,
|
| 1464 |
+
attention_mask=attention_mask,
|
| 1465 |
+
attention_bias=attention_bias,
|
| 1466 |
+
past_key_values=past_key_values,
|
| 1467 |
+
use_cache=use_cache,
|
| 1468 |
+
output_hidden_states=output_hidden_states,
|
| 1469 |
+
)
|
| 1470 |
+
|
| 1471 |
+
logits = outputs.logits
|
| 1472 |
+
hidden_states = outputs.hidden_states
|
| 1473 |
+
|
| 1474 |
+
loss = None
|
| 1475 |
+
if labels is not None:
|
| 1476 |
+
import warnings
|
| 1477 |
+
warnings.warn("Note that for LLaDA, you cannot calculate the loss here.", UserWarning)
|
| 1478 |
+
if not return_dict:
|
| 1479 |
+
output = (logits,) + outputs[1:]
|
| 1480 |
+
return (loss,) + output if loss is not None else output
|
| 1481 |
+
|
| 1482 |
+
return CausalLMOutputWithPast(
|
| 1483 |
+
logits=logits,
|
| 1484 |
+
past_key_values=outputs.attn_key_values,
|
| 1485 |
+
hidden_states=hidden_states,
|
| 1486 |
+
)
|
| 1487 |
+
|
| 1488 |
+
def can_generate(self) -> bool:
|
| 1489 |
+
return True
|
| 1490 |
+
|
| 1491 |
+
def prepare_inputs_for_generation(
|
| 1492 |
+
self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs
|
| 1493 |
+
):
|
| 1494 |
+
if past_key_values:
|
| 1495 |
+
# This is because we want the model to only process the last generated token.
|
| 1496 |
+
input_ids = input_ids[:, -1:]
|
| 1497 |
+
model_inputs = {"input_ids": input_ids, "past_key_values": past_key_values}
|
| 1498 |
+
|
| 1499 |
+
model_inputs.update(kwargs)
|
| 1500 |
+
model_inputs["use_cache"] = kwargs.pop("use_cache", self.config.use_cache)
|
| 1501 |
+
return model_inputs
|
| 1502 |
+
|
| 1503 |
+
# TODO: these are required to make the implementation complete.
|
| 1504 |
+
# def resize_position_embeddings(self, new_num_position_embeddings: int):
|
| 1505 |
+
# pass
|
| 1506 |
+
#
|
| 1507 |
+
# def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
|
| 1508 |
+
# pass
|
| 1509 |
+
#
|
| 1510 |
+
# def _reorder_cache(self, past_key_values, beam_idx):
|
| 1511 |
+
# pass
|
| 1512 |
+
|
| 1513 |
+
def get_input_embeddings(self) -> torch.nn.Module:
|
| 1514 |
+
return self.model.transformer.wte
|
| 1515 |
+
|
| 1516 |
+
def set_input_embeddings(self, value: torch.nn.Module):
|
| 1517 |
+
self.model.transformer.wte = value
|
| 1518 |
+
|
| 1519 |
+
def get_output_embeddings(self):
|
| 1520 |
+
if self.config.weight_tying:
|
| 1521 |
+
return self.model.transformer.wte
|
| 1522 |
+
else:
|
| 1523 |
+
return self.model.transformer.ff_out
|
| 1524 |
+
|
| 1525 |
+
def set_output_embeddings(self, value: torch.nn.Module):
|
| 1526 |
+
if self.config.weight_tying:
|
| 1527 |
+
self.model.transformer.wte = value
|
| 1528 |
+
else:
|
| 1529 |
+
self.model.transformer.ff_out = value
|
| 1530 |
+
|
| 1531 |
+
def tie_weights(self):
|
| 1532 |
+
if self.config.weight_tying:
|
| 1533 |
+
self.model.transformer.ff_out = self.model.transformer.wte
|
| 1534 |
+
|
| 1535 |
+
|
| 1536 |
+
|
| 1537 |
+
|
| 1538 |
+
# Register the model so that it is available for transformer pipelines, auto-loading, etc.
|
| 1539 |
+
AutoModel.register(LLaDAConfig, LLaDAModelLM)
|
quant_log.csv
ADDED
|
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
layer,module,loss,damp,time
|
| 2 |
+
0,attn_out,0.46341,0.01000,0.954
|
| 3 |
+
0,k_proj,0.34266,0.01000,0.776
|
| 4 |
+
0,v_proj,0.20672,0.01000,0.765
|
| 5 |
+
0,q_proj,0.35039,0.01000,0.767
|
| 6 |
+
0,ff_proj,0.13190,0.01000,0.781
|
| 7 |
+
0,up_proj,0.12847,0.01000,0.780
|
| 8 |
+
0,ff_out,0.01228,0.01000,3.181
|
| 9 |
+
1,attn_out,0.01194,0.01000,0.770
|
| 10 |
+
1,k_proj,0.23597,0.01000,0.771
|
| 11 |
+
1,v_proj,0.09884,0.01000,0.771
|
| 12 |
+
1,q_proj,0.20662,0.01000,0.769
|
| 13 |
+
1,ff_proj,0.20367,0.01000,0.784
|
| 14 |
+
1,up_proj,0.19539,0.01000,0.781
|
| 15 |
+
1,ff_out,0.02346,0.01000,3.186
|
| 16 |
+
2,attn_out,0.01837,0.01000,0.777
|
| 17 |
+
2,k_proj,0.54666,0.01000,0.769
|
| 18 |
+
2,v_proj,0.15541,0.01000,0.773
|
| 19 |
+
2,q_proj,0.48452,0.01000,0.774
|
| 20 |
+
2,ff_proj,0.48127,0.01000,0.787
|
| 21 |
+
2,up_proj,0.46108,0.01000,0.786
|
| 22 |
+
2,ff_out,0.07804,0.01000,3.186
|
| 23 |
+
3,attn_out,0.03099,0.01000,0.772
|
| 24 |
+
3,k_proj,0.38418,0.01000,0.769
|
| 25 |
+
3,v_proj,0.19304,0.01000,0.771
|
| 26 |
+
3,q_proj,0.35970,0.01000,0.769
|
| 27 |
+
3,ff_proj,1.27731,0.01000,0.784
|
| 28 |
+
3,up_proj,1.22143,0.01000,0.782
|
| 29 |
+
3,ff_out,0.20094,0.01000,3.188
|
| 30 |
+
4,attn_out,0.12638,0.01000,0.773
|
| 31 |
+
4,k_proj,0.83292,0.01000,0.770
|
| 32 |
+
4,v_proj,0.38806,0.01000,0.772
|
| 33 |
+
4,q_proj,0.77561,0.01000,0.773
|
| 34 |
+
4,ff_proj,2.68135,0.01000,0.783
|
| 35 |
+
4,up_proj,2.55238,0.01000,0.786
|
| 36 |
+
4,ff_out,0.38676,0.01000,3.189
|
| 37 |
+
5,attn_out,0.16436,0.01000,0.769
|
| 38 |
+
5,k_proj,1.79130,0.01000,0.777
|
| 39 |
+
5,v_proj,0.82750,0.01000,0.768
|
| 40 |
+
5,q_proj,1.64704,0.01000,0.769
|
| 41 |
+
5,ff_proj,4.76394,0.01000,0.783
|
| 42 |
+
5,up_proj,4.49322,0.01000,0.782
|
| 43 |
+
5,ff_out,0.58687,0.01000,3.194
|
| 44 |
+
6,attn_out,0.20771,0.01000,0.780
|
| 45 |
+
6,k_proj,2.01228,0.01000,0.767
|
| 46 |
+
6,v_proj,1.03743,0.01000,0.768
|
| 47 |
+
6,q_proj,1.89607,0.01000,0.771
|
| 48 |
+
6,ff_proj,6.48302,0.01000,0.782
|
| 49 |
+
6,up_proj,6.10663,0.01000,0.784
|
| 50 |
+
6,ff_out,0.74378,0.01000,3.192
|
| 51 |
+
7,attn_out,0.36060,0.01000,0.771
|
| 52 |
+
7,k_proj,4.17220,0.01000,0.774
|
| 53 |
+
7,v_proj,2.44076,0.01000,0.768
|
| 54 |
+
7,q_proj,4.06058,0.01000,0.774
|
| 55 |
+
7,ff_proj,9.79079,0.01000,0.783
|
| 56 |
+
7,up_proj,9.06263,0.01000,0.783
|
| 57 |
+
7,ff_out,1.07243,0.01000,3.186
|
| 58 |
+
8,attn_out,0.39326,0.01000,0.787
|
| 59 |
+
8,k_proj,3.43061,0.01000,0.795
|
| 60 |
+
8,v_proj,2.17513,0.01000,0.789
|
| 61 |
+
8,q_proj,3.33074,0.01000,0.787
|
| 62 |
+
8,ff_proj,13.66650,0.01000,0.787
|
| 63 |
+
8,up_proj,12.39581,0.01000,0.783
|
| 64 |
+
8,ff_out,1.46948,0.01000,3.188
|
| 65 |
+
9,attn_out,0.44965,0.01000,0.768
|
| 66 |
+
9,k_proj,3.89497,0.01000,0.769
|
| 67 |
+
9,v_proj,2.59796,0.01000,0.769
|
| 68 |
+
9,q_proj,3.78964,0.01000,0.768
|
| 69 |
+
9,ff_proj,15.71218,0.01000,0.781
|
| 70 |
+
9,up_proj,14.43543,0.01000,0.783
|
| 71 |
+
9,ff_out,1.73658,0.01000,3.185
|
| 72 |
+
10,attn_out,0.70652,0.01000,0.771
|
| 73 |
+
10,k_proj,9.19544,0.01000,0.768
|
| 74 |
+
10,v_proj,5.84565,0.01000,0.769
|
| 75 |
+
10,q_proj,9.08747,0.01000,0.769
|
| 76 |
+
10,ff_proj,18.82842,0.01000,0.780
|
| 77 |
+
10,up_proj,17.43126,0.01000,0.784
|
| 78 |
+
10,ff_out,2.19000,0.01000,3.186
|
| 79 |
+
11,attn_out,0.86296,0.01000,0.772
|
| 80 |
+
11,k_proj,5.60106,0.01000,0.769
|
| 81 |
+
11,v_proj,3.91052,0.01000,0.770
|
| 82 |
+
11,q_proj,5.47517,0.01000,0.768
|
| 83 |
+
11,ff_proj,20.85402,0.01000,0.785
|
| 84 |
+
11,up_proj,19.44729,0.01000,0.786
|
| 85 |
+
11,ff_out,2.66935,0.01000,3.186
|
| 86 |
+
12,attn_out,1.22999,0.01000,0.768
|
| 87 |
+
12,k_proj,7.09898,0.01000,0.768
|
| 88 |
+
12,v_proj,5.29340,0.01000,0.770
|
| 89 |
+
12,q_proj,6.99607,0.01000,0.771
|
| 90 |
+
12,ff_proj,20.98769,0.01000,0.785
|
| 91 |
+
12,up_proj,20.04654,0.01000,0.781
|
| 92 |
+
12,ff_out,3.13588,0.01000,3.187
|
| 93 |
+
13,attn_out,2.20784,0.01000,0.770
|
| 94 |
+
13,k_proj,12.16435,0.01000,0.766
|
| 95 |
+
13,v_proj,9.20147,0.01000,0.775
|
| 96 |
+
13,q_proj,12.00730,0.01000,0.767
|
| 97 |
+
13,ff_proj,25.78384,0.01000,0.782
|
| 98 |
+
13,up_proj,24.78483,0.01000,0.788
|
| 99 |
+
13,ff_out,3.97851,0.01000,3.193
|
| 100 |
+
14,attn_out,2.15204,0.01000,0.771
|
| 101 |
+
14,k_proj,9.78138,0.01000,0.769
|
| 102 |
+
14,v_proj,7.98051,0.01000,0.771
|
| 103 |
+
14,q_proj,9.64774,0.01000,0.771
|
| 104 |
+
14,ff_proj,28.72415,0.01000,0.782
|
| 105 |
+
14,up_proj,28.31051,0.01000,0.780
|
| 106 |
+
14,ff_out,4.65950,0.01000,3.189
|
| 107 |
+
15,attn_out,2.43048,0.01000,0.772
|
| 108 |
+
15,k_proj,10.99642,0.01000,0.769
|
| 109 |
+
15,v_proj,9.12490,0.01000,0.769
|
| 110 |
+
15,q_proj,10.80180,0.01000,0.774
|
| 111 |
+
15,ff_proj,26.85725,0.01000,0.785
|
| 112 |
+
15,up_proj,27.94277,0.01000,0.788
|
| 113 |
+
15,ff_out,5.20905,0.01000,3.193
|
| 114 |
+
16,attn_out,3.47777,0.01000,0.782
|
| 115 |
+
16,k_proj,15.06714,0.01000,0.770
|
| 116 |
+
16,v_proj,13.86565,0.01000,0.768
|
| 117 |
+
16,q_proj,14.89437,0.01000,0.772
|
| 118 |
+
16,ff_proj,32.00780,0.01000,0.783
|
| 119 |
+
16,up_proj,33.22430,0.01000,0.782
|
| 120 |
+
16,ff_out,5.62781,0.01000,3.191
|
| 121 |
+
17,attn_out,4.15703,0.01000,0.773
|
| 122 |
+
17,k_proj,14.72787,0.01000,0.767
|
| 123 |
+
17,v_proj,13.57190,0.01000,0.769
|
| 124 |
+
17,q_proj,14.44084,0.01000,0.770
|
| 125 |
+
17,ff_proj,33.70467,0.01000,0.781
|
| 126 |
+
17,up_proj,36.58906,0.01000,0.781
|
| 127 |
+
17,ff_out,6.80083,0.01000,3.191
|
| 128 |
+
18,attn_out,4.32158,0.01000,0.770
|
| 129 |
+
18,k_proj,14.62437,0.01000,0.770
|
| 130 |
+
18,v_proj,14.06934,0.01000,0.769
|
| 131 |
+
18,q_proj,14.27620,0.01000,0.770
|
| 132 |
+
18,ff_proj,34.71724,0.01000,0.782
|
| 133 |
+
18,up_proj,39.04211,0.01000,0.783
|
| 134 |
+
18,ff_out,7.68221,0.01000,3.191
|
| 135 |
+
19,attn_out,4.92948,0.01000,0.768
|
| 136 |
+
19,k_proj,17.51657,0.01000,0.773
|
| 137 |
+
19,v_proj,17.43266,0.01000,0.770
|
| 138 |
+
19,q_proj,17.24541,0.01000,0.772
|
| 139 |
+
19,ff_proj,37.16630,0.01000,0.782
|
| 140 |
+
19,up_proj,43.14838,0.01000,0.782
|
| 141 |
+
19,ff_out,9.42345,0.01000,3.188
|
| 142 |
+
20,attn_out,6.12879,0.01000,0.769
|
| 143 |
+
20,k_proj,15.77261,0.01000,0.772
|
| 144 |
+
20,v_proj,17.70500,0.01000,0.769
|
| 145 |
+
20,q_proj,15.46614,0.01000,0.772
|
| 146 |
+
20,ff_proj,37.29077,0.01000,0.786
|
| 147 |
+
20,up_proj,44.48997,0.01000,0.784
|
| 148 |
+
20,ff_out,10.20414,0.01000,3.192
|
| 149 |
+
21,attn_out,6.42759,0.01000,0.768
|
| 150 |
+
21,k_proj,17.71529,0.01000,0.769
|
| 151 |
+
21,v_proj,20.06910,0.01000,0.771
|
| 152 |
+
21,q_proj,17.42245,0.01000,0.771
|
| 153 |
+
21,ff_proj,41.39098,0.01000,0.783
|
| 154 |
+
21,up_proj,50.89703,0.01000,0.784
|
| 155 |
+
21,ff_out,12.42898,0.01000,3.199
|
| 156 |
+
22,attn_out,7.56994,0.01000,0.768
|
| 157 |
+
22,k_proj,19.16720,0.01000,0.770
|
| 158 |
+
22,v_proj,25.46598,0.01000,0.770
|
| 159 |
+
22,q_proj,18.93143,0.01000,0.768
|
| 160 |
+
22,ff_proj,45.91537,0.01000,0.783
|
| 161 |
+
22,up_proj,57.92929,0.01000,0.786
|
| 162 |
+
22,ff_out,14.98442,0.01000,3.194
|
| 163 |
+
23,attn_out,7.94560,0.01000,0.771
|
| 164 |
+
23,k_proj,19.21059,0.01000,0.767
|
| 165 |
+
23,v_proj,25.61421,0.01000,0.770
|
| 166 |
+
23,q_proj,19.07206,0.01000,0.767
|
| 167 |
+
23,ff_proj,52.68341,0.01000,0.787
|
| 168 |
+
23,up_proj,69.04587,0.01000,0.785
|
| 169 |
+
23,ff_out,20.84775,0.01000,3.205
|
| 170 |
+
24,attn_out,9.99096,0.01000,0.778
|
| 171 |
+
24,k_proj,18.64584,0.01000,0.769
|
| 172 |
+
24,v_proj,27.92673,0.01000,0.780
|
| 173 |
+
24,q_proj,18.41230,0.01000,0.768
|
| 174 |
+
24,ff_proj,56.93608,0.01000,0.783
|
| 175 |
+
24,up_proj,76.87387,0.01000,0.792
|
| 176 |
+
24,ff_out,27.15800,0.01000,3.193
|
| 177 |
+
25,attn_out,12.65934,0.01000,0.769
|
| 178 |
+
25,k_proj,20.20930,0.01000,0.770
|
| 179 |
+
25,v_proj,34.10970,0.01000,0.768
|
| 180 |
+
25,q_proj,20.15265,0.01000,0.769
|
| 181 |
+
25,ff_proj,64.59988,0.01000,0.780
|
| 182 |
+
25,up_proj,83.80959,0.01000,0.782
|
| 183 |
+
25,ff_out,35.60532,0.01000,3.190
|
| 184 |
+
26,attn_out,13.90159,0.01000,0.772
|
| 185 |
+
26,k_proj,19.57176,0.01000,0.771
|
| 186 |
+
26,v_proj,38.59014,0.01000,0.770
|
| 187 |
+
26,q_proj,19.55781,0.01000,0.770
|
| 188 |
+
26,ff_proj,79.34944,0.01000,0.785
|
| 189 |
+
26,up_proj,100.75468,0.01000,0.783
|
| 190 |
+
26,ff_out,47.41343,0.01000,3.191
|
| 191 |
+
27,attn_out,14.04380,0.01000,0.772
|
| 192 |
+
27,k_proj,21.52296,0.01000,0.772
|
| 193 |
+
27,v_proj,49.67180,0.01000,0.773
|
| 194 |
+
27,q_proj,21.66185,0.01000,0.772
|
| 195 |
+
27,ff_proj,88.83227,0.01000,0.786
|
| 196 |
+
27,up_proj,109.52364,0.01000,0.783
|
| 197 |
+
27,ff_out,67.93266,0.01000,3.197
|
| 198 |
+
28,attn_out,18.71825,0.01000,0.773
|
| 199 |
+
28,k_proj,21.00661,0.01000,0.771
|
| 200 |
+
28,v_proj,54.85551,0.01000,0.771
|
| 201 |
+
28,q_proj,21.08429,0.01000,0.771
|
| 202 |
+
28,ff_proj,97.04969,0.01000,0.784
|
| 203 |
+
28,up_proj,116.35686,0.01000,0.785
|
| 204 |
+
28,ff_out,68.13924,0.01000,3.191
|
| 205 |
+
29,attn_out,17.44988,0.01000,0.774
|
| 206 |
+
29,k_proj,19.76582,0.01000,0.770
|
| 207 |
+
29,v_proj,61.01070,0.01000,0.770
|
| 208 |
+
29,q_proj,19.79408,0.01000,0.766
|
| 209 |
+
29,ff_proj,103.81013,0.01000,0.785
|
| 210 |
+
29,up_proj,125.43891,0.01000,0.784
|
| 211 |
+
29,ff_out,69.22803,0.01000,3.194
|
| 212 |
+
30,attn_out,28.99095,0.01000,0.771
|
| 213 |
+
30,k_proj,21.20842,0.01000,0.771
|
| 214 |
+
30,v_proj,90.21648,0.01000,0.769
|
| 215 |
+
30,q_proj,21.18415,0.01000,0.772
|
| 216 |
+
30,ff_proj,114.58118,0.01000,0.783
|
| 217 |
+
30,up_proj,136.53314,0.01000,0.784
|
| 218 |
+
30,ff_out,81.22633,0.01000,3.211
|
| 219 |
+
31,attn_out,73.61667,0.01000,0.772
|
| 220 |
+
31,k_proj,23.93774,0.01000,0.776
|
| 221 |
+
31,v_proj,113.72330,0.01000,0.773
|
| 222 |
+
31,q_proj,24.07770,0.01000,0.775
|
| 223 |
+
31,ff_proj,127.92827,0.01000,0.795
|
| 224 |
+
31,up_proj,148.89145,0.01000,0.796
|
| 225 |
+
31,ff_out,233.53690,0.01000,3.204
|
quantize_config.json
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bits": 4,
|
| 3 |
+
"group_size": 128,
|
| 4 |
+
"desc_act": true,
|
| 5 |
+
"sym": false,
|
| 6 |
+
"lm_head": false,
|
| 7 |
+
"quant_method": "gptq",
|
| 8 |
+
"checkpoint_format": "gptq",
|
| 9 |
+
"pack_dtype": "int32",
|
| 10 |
+
"meta": {
|
| 11 |
+
"quantizer": [
|
| 12 |
+
"gptqmodel:2.0.0-dev"
|
| 13 |
+
],
|
| 14 |
+
"uri": "https://github.com/modelcloud/gptqmodel",
|
| 15 |
+
"damp_percent": 0.01,
|
| 16 |
+
"damp_auto_increment": 0.0025,
|
| 17 |
+
"static_groups": false,
|
| 18 |
+
"true_sequential": true,
|
| 19 |
+
"mse": 0.0
|
| 20 |
+
}
|
| 21 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<role>",
|
| 4 |
+
"</role>",
|
| 5 |
+
"<|arithmetic_start|>",
|
| 6 |
+
"<|arithmetic_end|>",
|
| 7 |
+
"<|number_start|>",
|
| 8 |
+
"<|number_end|>"
|
| 9 |
+
],
|
| 10 |
+
"bos_token": {
|
| 11 |
+
"content": "<|startoftext|>",
|
| 12 |
+
"lstrip": false,
|
| 13 |
+
"normalized": false,
|
| 14 |
+
"rstrip": false,
|
| 15 |
+
"single_word": false
|
| 16 |
+
},
|
| 17 |
+
"cls_token": {
|
| 18 |
+
"content": "[CLS]",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"eos_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
},
|
| 31 |
+
"pad_token": "<|endoftext|>"
|
| 32 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,2183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"126080": {
|
| 6 |
+
"content": "<|startoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"126081": {
|
| 14 |
+
"content": "<|endoftext|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"126082": {
|
| 22 |
+
"content": "[CLS]",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"126083": {
|
| 30 |
+
"content": "[gMASK]",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"126084": {
|
| 38 |
+
"content": "<|reserved_token_0|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"126085": {
|
| 46 |
+
"content": "<|reserved_token_1|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"126086": {
|
| 54 |
+
"content": "<|reserved_token_2|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"126087": {
|
| 62 |
+
"content": "<|reserved_token_3|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"126088": {
|
| 70 |
+
"content": "<|reserved_token_4|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"126089": {
|
| 78 |
+
"content": "<|reserved_token_5|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"126090": {
|
| 86 |
+
"content": "<|reserved_token_6|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"126091": {
|
| 94 |
+
"content": "<|reserved_token_7|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"126092": {
|
| 102 |
+
"content": "<|reserved_token_8|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"126093": {
|
| 110 |
+
"content": "<|reserved_token_9|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"126094": {
|
| 118 |
+
"content": "<|reserved_token_10|>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": true
|
| 124 |
+
},
|
| 125 |
+
"126095": {
|
| 126 |
+
"content": "<|reserved_token_11|>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": true
|
| 132 |
+
},
|
| 133 |
+
"126096": {
|
| 134 |
+
"content": "<|reserved_token_12|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": true
|
| 140 |
+
},
|
| 141 |
+
"126097": {
|
| 142 |
+
"content": "<|reserved_token_13|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": true
|
| 148 |
+
},
|
| 149 |
+
"126098": {
|
| 150 |
+
"content": "<|reserved_token_14|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": true
|
| 156 |
+
},
|
| 157 |
+
"126099": {
|
| 158 |
+
"content": "<|reserved_token_15|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": true
|
| 164 |
+
},
|
| 165 |
+
"126100": {
|
| 166 |
+
"content": "<|reserved_token_16|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": true
|
| 172 |
+
},
|
| 173 |
+
"126101": {
|
| 174 |
+
"content": "<|reserved_token_17|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": true
|
| 180 |
+
},
|
| 181 |
+
"126102": {
|
| 182 |
+
"content": "<|reserved_token_18|>",
|
| 183 |
+
"lstrip": false,
|
| 184 |
+
"normalized": false,
|
| 185 |
+
"rstrip": false,
|
| 186 |
+
"single_word": false,
|
| 187 |
+
"special": true
|
| 188 |
+
},
|
| 189 |
+
"126103": {
|
| 190 |
+
"content": "<|reserved_token_19|>",
|
| 191 |
+
"lstrip": false,
|
| 192 |
+
"normalized": false,
|
| 193 |
+
"rstrip": false,
|
| 194 |
+
"single_word": false,
|
| 195 |
+
"special": true
|
| 196 |
+
},
|
| 197 |
+
"126104": {
|
| 198 |
+
"content": "<|reserved_token_20|>",
|
| 199 |
+
"lstrip": false,
|
| 200 |
+
"normalized": false,
|
| 201 |
+
"rstrip": false,
|
| 202 |
+
"single_word": false,
|
| 203 |
+
"special": true
|
| 204 |
+
},
|
| 205 |
+
"126105": {
|
| 206 |
+
"content": "<|reserved_token_21|>",
|
| 207 |
+
"lstrip": false,
|
| 208 |
+
"normalized": false,
|
| 209 |
+
"rstrip": false,
|
| 210 |
+
"single_word": false,
|
| 211 |
+
"special": true
|
| 212 |
+
},
|
| 213 |
+
"126106": {
|
| 214 |
+
"content": "<|reserved_token_22|>",
|
| 215 |
+
"lstrip": false,
|
| 216 |
+
"normalized": false,
|
| 217 |
+
"rstrip": false,
|
| 218 |
+
"single_word": false,
|
| 219 |
+
"special": true
|
| 220 |
+
},
|
| 221 |
+
"126107": {
|
| 222 |
+
"content": "<|reserved_token_23|>",
|
| 223 |
+
"lstrip": false,
|
| 224 |
+
"normalized": false,
|
| 225 |
+
"rstrip": false,
|
| 226 |
+
"single_word": false,
|
| 227 |
+
"special": true
|
| 228 |
+
},
|
| 229 |
+
"126108": {
|
| 230 |
+
"content": "<|reserved_token_24|>",
|
| 231 |
+
"lstrip": false,
|
| 232 |
+
"normalized": false,
|
| 233 |
+
"rstrip": false,
|
| 234 |
+
"single_word": false,
|
| 235 |
+
"special": true
|
| 236 |
+
},
|
| 237 |
+
"126109": {
|
| 238 |
+
"content": "<|reserved_token_25|>",
|
| 239 |
+
"lstrip": false,
|
| 240 |
+
"normalized": false,
|
| 241 |
+
"rstrip": false,
|
| 242 |
+
"single_word": false,
|
| 243 |
+
"special": true
|
| 244 |
+
},
|
| 245 |
+
"126110": {
|
| 246 |
+
"content": "<|reserved_token_26|>",
|
| 247 |
+
"lstrip": false,
|
| 248 |
+
"normalized": false,
|
| 249 |
+
"rstrip": false,
|
| 250 |
+
"single_word": false,
|
| 251 |
+
"special": true
|
| 252 |
+
},
|
| 253 |
+
"126111": {
|
| 254 |
+
"content": "<|reserved_token_27|>",
|
| 255 |
+
"lstrip": false,
|
| 256 |
+
"normalized": false,
|
| 257 |
+
"rstrip": false,
|
| 258 |
+
"single_word": false,
|
| 259 |
+
"special": true
|
| 260 |
+
},
|
| 261 |
+
"126112": {
|
| 262 |
+
"content": "<|reserved_token_28|>",
|
| 263 |
+
"lstrip": false,
|
| 264 |
+
"normalized": false,
|
| 265 |
+
"rstrip": false,
|
| 266 |
+
"single_word": false,
|
| 267 |
+
"special": true
|
| 268 |
+
},
|
| 269 |
+
"126113": {
|
| 270 |
+
"content": "<|reserved_token_29|>",
|
| 271 |
+
"lstrip": false,
|
| 272 |
+
"normalized": false,
|
| 273 |
+
"rstrip": false,
|
| 274 |
+
"single_word": false,
|
| 275 |
+
"special": true
|
| 276 |
+
},
|
| 277 |
+
"126114": {
|
| 278 |
+
"content": "<|reserved_token_30|>",
|
| 279 |
+
"lstrip": false,
|
| 280 |
+
"normalized": false,
|
| 281 |
+
"rstrip": false,
|
| 282 |
+
"single_word": false,
|
| 283 |
+
"special": true
|
| 284 |
+
},
|
| 285 |
+
"126115": {
|
| 286 |
+
"content": "<|reserved_token_31|>",
|
| 287 |
+
"lstrip": false,
|
| 288 |
+
"normalized": false,
|
| 289 |
+
"rstrip": false,
|
| 290 |
+
"single_word": false,
|
| 291 |
+
"special": true
|
| 292 |
+
},
|
| 293 |
+
"126116": {
|
| 294 |
+
"content": "<|reserved_token_32|>",
|
| 295 |
+
"lstrip": false,
|
| 296 |
+
"normalized": false,
|
| 297 |
+
"rstrip": false,
|
| 298 |
+
"single_word": false,
|
| 299 |
+
"special": true
|
| 300 |
+
},
|
| 301 |
+
"126117": {
|
| 302 |
+
"content": "<|reserved_token_33|>",
|
| 303 |
+
"lstrip": false,
|
| 304 |
+
"normalized": false,
|
| 305 |
+
"rstrip": false,
|
| 306 |
+
"single_word": false,
|
| 307 |
+
"special": true
|
| 308 |
+
},
|
| 309 |
+
"126118": {
|
| 310 |
+
"content": "<|reserved_token_34|>",
|
| 311 |
+
"lstrip": false,
|
| 312 |
+
"normalized": false,
|
| 313 |
+
"rstrip": false,
|
| 314 |
+
"single_word": false,
|
| 315 |
+
"special": true
|
| 316 |
+
},
|
| 317 |
+
"126119": {
|
| 318 |
+
"content": "<|reserved_token_35|>",
|
| 319 |
+
"lstrip": false,
|
| 320 |
+
"normalized": false,
|
| 321 |
+
"rstrip": false,
|
| 322 |
+
"single_word": false,
|
| 323 |
+
"special": true
|
| 324 |
+
},
|
| 325 |
+
"126120": {
|
| 326 |
+
"content": "<|reserved_token_36|>",
|
| 327 |
+
"lstrip": false,
|
| 328 |
+
"normalized": false,
|
| 329 |
+
"rstrip": false,
|
| 330 |
+
"single_word": false,
|
| 331 |
+
"special": true
|
| 332 |
+
},
|
| 333 |
+
"126121": {
|
| 334 |
+
"content": "<|reserved_token_37|>",
|
| 335 |
+
"lstrip": false,
|
| 336 |
+
"normalized": false,
|
| 337 |
+
"rstrip": false,
|
| 338 |
+
"single_word": false,
|
| 339 |
+
"special": true
|
| 340 |
+
},
|
| 341 |
+
"126122": {
|
| 342 |
+
"content": "<|reserved_token_38|>",
|
| 343 |
+
"lstrip": false,
|
| 344 |
+
"normalized": false,
|
| 345 |
+
"rstrip": false,
|
| 346 |
+
"single_word": false,
|
| 347 |
+
"special": true
|
| 348 |
+
},
|
| 349 |
+
"126123": {
|
| 350 |
+
"content": "<|reserved_token_39|>",
|
| 351 |
+
"lstrip": false,
|
| 352 |
+
"normalized": false,
|
| 353 |
+
"rstrip": false,
|
| 354 |
+
"single_word": false,
|
| 355 |
+
"special": true
|
| 356 |
+
},
|
| 357 |
+
"126124": {
|
| 358 |
+
"content": "<|reserved_token_40|>",
|
| 359 |
+
"lstrip": false,
|
| 360 |
+
"normalized": false,
|
| 361 |
+
"rstrip": false,
|
| 362 |
+
"single_word": false,
|
| 363 |
+
"special": true
|
| 364 |
+
},
|
| 365 |
+
"126125": {
|
| 366 |
+
"content": "<|reserved_token_41|>",
|
| 367 |
+
"lstrip": false,
|
| 368 |
+
"normalized": false,
|
| 369 |
+
"rstrip": false,
|
| 370 |
+
"single_word": false,
|
| 371 |
+
"special": true
|
| 372 |
+
},
|
| 373 |
+
"126126": {
|
| 374 |
+
"content": "<|reserved_token_42|>",
|
| 375 |
+
"lstrip": false,
|
| 376 |
+
"normalized": false,
|
| 377 |
+
"rstrip": false,
|
| 378 |
+
"single_word": false,
|
| 379 |
+
"special": true
|
| 380 |
+
},
|
| 381 |
+
"126127": {
|
| 382 |
+
"content": "<|reserved_token_43|>",
|
| 383 |
+
"lstrip": false,
|
| 384 |
+
"normalized": false,
|
| 385 |
+
"rstrip": false,
|
| 386 |
+
"single_word": false,
|
| 387 |
+
"special": true
|
| 388 |
+
},
|
| 389 |
+
"126128": {
|
| 390 |
+
"content": "<|reserved_token_44|>",
|
| 391 |
+
"lstrip": false,
|
| 392 |
+
"normalized": false,
|
| 393 |
+
"rstrip": false,
|
| 394 |
+
"single_word": false,
|
| 395 |
+
"special": true
|
| 396 |
+
},
|
| 397 |
+
"126129": {
|
| 398 |
+
"content": "<|reserved_token_45|>",
|
| 399 |
+
"lstrip": false,
|
| 400 |
+
"normalized": false,
|
| 401 |
+
"rstrip": false,
|
| 402 |
+
"single_word": false,
|
| 403 |
+
"special": true
|
| 404 |
+
},
|
| 405 |
+
"126130": {
|
| 406 |
+
"content": "<|reserved_token_46|>",
|
| 407 |
+
"lstrip": false,
|
| 408 |
+
"normalized": false,
|
| 409 |
+
"rstrip": false,
|
| 410 |
+
"single_word": false,
|
| 411 |
+
"special": true
|
| 412 |
+
},
|
| 413 |
+
"126131": {
|
| 414 |
+
"content": "<|reserved_token_47|>",
|
| 415 |
+
"lstrip": false,
|
| 416 |
+
"normalized": false,
|
| 417 |
+
"rstrip": false,
|
| 418 |
+
"single_word": false,
|
| 419 |
+
"special": true
|
| 420 |
+
},
|
| 421 |
+
"126132": {
|
| 422 |
+
"content": "<|reserved_token_48|>",
|
| 423 |
+
"lstrip": false,
|
| 424 |
+
"normalized": false,
|
| 425 |
+
"rstrip": false,
|
| 426 |
+
"single_word": false,
|
| 427 |
+
"special": true
|
| 428 |
+
},
|
| 429 |
+
"126133": {
|
| 430 |
+
"content": "<|reserved_token_49|>",
|
| 431 |
+
"lstrip": false,
|
| 432 |
+
"normalized": false,
|
| 433 |
+
"rstrip": false,
|
| 434 |
+
"single_word": false,
|
| 435 |
+
"special": true
|
| 436 |
+
},
|
| 437 |
+
"126134": {
|
| 438 |
+
"content": "<|reserved_token_50|>",
|
| 439 |
+
"lstrip": false,
|
| 440 |
+
"normalized": false,
|
| 441 |
+
"rstrip": false,
|
| 442 |
+
"single_word": false,
|
| 443 |
+
"special": true
|
| 444 |
+
},
|
| 445 |
+
"126135": {
|
| 446 |
+
"content": "<|reserved_token_51|>",
|
| 447 |
+
"lstrip": false,
|
| 448 |
+
"normalized": false,
|
| 449 |
+
"rstrip": false,
|
| 450 |
+
"single_word": false,
|
| 451 |
+
"special": true
|
| 452 |
+
},
|
| 453 |
+
"126136": {
|
| 454 |
+
"content": "<|reserved_token_52|>",
|
| 455 |
+
"lstrip": false,
|
| 456 |
+
"normalized": false,
|
| 457 |
+
"rstrip": false,
|
| 458 |
+
"single_word": false,
|
| 459 |
+
"special": true
|
| 460 |
+
},
|
| 461 |
+
"126137": {
|
| 462 |
+
"content": "<|reserved_token_53|>",
|
| 463 |
+
"lstrip": false,
|
| 464 |
+
"normalized": false,
|
| 465 |
+
"rstrip": false,
|
| 466 |
+
"single_word": false,
|
| 467 |
+
"special": true
|
| 468 |
+
},
|
| 469 |
+
"126138": {
|
| 470 |
+
"content": "<|reserved_token_54|>",
|
| 471 |
+
"lstrip": false,
|
| 472 |
+
"normalized": false,
|
| 473 |
+
"rstrip": false,
|
| 474 |
+
"single_word": false,
|
| 475 |
+
"special": true
|
| 476 |
+
},
|
| 477 |
+
"126139": {
|
| 478 |
+
"content": "<|reserved_token_55|>",
|
| 479 |
+
"lstrip": false,
|
| 480 |
+
"normalized": false,
|
| 481 |
+
"rstrip": false,
|
| 482 |
+
"single_word": false,
|
| 483 |
+
"special": true
|
| 484 |
+
},
|
| 485 |
+
"126140": {
|
| 486 |
+
"content": "<|reserved_token_56|>",
|
| 487 |
+
"lstrip": false,
|
| 488 |
+
"normalized": false,
|
| 489 |
+
"rstrip": false,
|
| 490 |
+
"single_word": false,
|
| 491 |
+
"special": true
|
| 492 |
+
},
|
| 493 |
+
"126141": {
|
| 494 |
+
"content": "<|reserved_token_57|>",
|
| 495 |
+
"lstrip": false,
|
| 496 |
+
"normalized": false,
|
| 497 |
+
"rstrip": false,
|
| 498 |
+
"single_word": false,
|
| 499 |
+
"special": true
|
| 500 |
+
},
|
| 501 |
+
"126142": {
|
| 502 |
+
"content": "<|reserved_token_58|>",
|
| 503 |
+
"lstrip": false,
|
| 504 |
+
"normalized": false,
|
| 505 |
+
"rstrip": false,
|
| 506 |
+
"single_word": false,
|
| 507 |
+
"special": true
|
| 508 |
+
},
|
| 509 |
+
"126143": {
|
| 510 |
+
"content": "<|reserved_token_59|>",
|
| 511 |
+
"lstrip": false,
|
| 512 |
+
"normalized": false,
|
| 513 |
+
"rstrip": false,
|
| 514 |
+
"single_word": false,
|
| 515 |
+
"special": true
|
| 516 |
+
},
|
| 517 |
+
"126144": {
|
| 518 |
+
"content": "<|reserved_token_60|>",
|
| 519 |
+
"lstrip": false,
|
| 520 |
+
"normalized": false,
|
| 521 |
+
"rstrip": false,
|
| 522 |
+
"single_word": false,
|
| 523 |
+
"special": true
|
| 524 |
+
},
|
| 525 |
+
"126145": {
|
| 526 |
+
"content": "<|reserved_token_61|>",
|
| 527 |
+
"lstrip": false,
|
| 528 |
+
"normalized": false,
|
| 529 |
+
"rstrip": false,
|
| 530 |
+
"single_word": false,
|
| 531 |
+
"special": true
|
| 532 |
+
},
|
| 533 |
+
"126146": {
|
| 534 |
+
"content": "<|reserved_token_62|>",
|
| 535 |
+
"lstrip": false,
|
| 536 |
+
"normalized": false,
|
| 537 |
+
"rstrip": false,
|
| 538 |
+
"single_word": false,
|
| 539 |
+
"special": true
|
| 540 |
+
},
|
| 541 |
+
"126147": {
|
| 542 |
+
"content": "<|reserved_token_63|>",
|
| 543 |
+
"lstrip": false,
|
| 544 |
+
"normalized": false,
|
| 545 |
+
"rstrip": false,
|
| 546 |
+
"single_word": false,
|
| 547 |
+
"special": true
|
| 548 |
+
},
|
| 549 |
+
"126148": {
|
| 550 |
+
"content": "<|reserved_token_64|>",
|
| 551 |
+
"lstrip": false,
|
| 552 |
+
"normalized": false,
|
| 553 |
+
"rstrip": false,
|
| 554 |
+
"single_word": false,
|
| 555 |
+
"special": true
|
| 556 |
+
},
|
| 557 |
+
"126149": {
|
| 558 |
+
"content": "<|reserved_token_65|>",
|
| 559 |
+
"lstrip": false,
|
| 560 |
+
"normalized": false,
|
| 561 |
+
"rstrip": false,
|
| 562 |
+
"single_word": false,
|
| 563 |
+
"special": true
|
| 564 |
+
},
|
| 565 |
+
"126150": {
|
| 566 |
+
"content": "<|reserved_token_66|>",
|
| 567 |
+
"lstrip": false,
|
| 568 |
+
"normalized": false,
|
| 569 |
+
"rstrip": false,
|
| 570 |
+
"single_word": false,
|
| 571 |
+
"special": true
|
| 572 |
+
},
|
| 573 |
+
"126151": {
|
| 574 |
+
"content": "<|reserved_token_67|>",
|
| 575 |
+
"lstrip": false,
|
| 576 |
+
"normalized": false,
|
| 577 |
+
"rstrip": false,
|
| 578 |
+
"single_word": false,
|
| 579 |
+
"special": true
|
| 580 |
+
},
|
| 581 |
+
"126152": {
|
| 582 |
+
"content": "<|reserved_token_68|>",
|
| 583 |
+
"lstrip": false,
|
| 584 |
+
"normalized": false,
|
| 585 |
+
"rstrip": false,
|
| 586 |
+
"single_word": false,
|
| 587 |
+
"special": true
|
| 588 |
+
},
|
| 589 |
+
"126153": {
|
| 590 |
+
"content": "<|reserved_token_69|>",
|
| 591 |
+
"lstrip": false,
|
| 592 |
+
"normalized": false,
|
| 593 |
+
"rstrip": false,
|
| 594 |
+
"single_word": false,
|
| 595 |
+
"special": true
|
| 596 |
+
},
|
| 597 |
+
"126154": {
|
| 598 |
+
"content": "<|reserved_token_70|>",
|
| 599 |
+
"lstrip": false,
|
| 600 |
+
"normalized": false,
|
| 601 |
+
"rstrip": false,
|
| 602 |
+
"single_word": false,
|
| 603 |
+
"special": true
|
| 604 |
+
},
|
| 605 |
+
"126155": {
|
| 606 |
+
"content": "<|reserved_token_71|>",
|
| 607 |
+
"lstrip": false,
|
| 608 |
+
"normalized": false,
|
| 609 |
+
"rstrip": false,
|
| 610 |
+
"single_word": false,
|
| 611 |
+
"special": true
|
| 612 |
+
},
|
| 613 |
+
"126156": {
|
| 614 |
+
"content": "<|reserved_token_72|>",
|
| 615 |
+
"lstrip": false,
|
| 616 |
+
"normalized": false,
|
| 617 |
+
"rstrip": false,
|
| 618 |
+
"single_word": false,
|
| 619 |
+
"special": true
|
| 620 |
+
},
|
| 621 |
+
"126157": {
|
| 622 |
+
"content": "<|reserved_token_73|>",
|
| 623 |
+
"lstrip": false,
|
| 624 |
+
"normalized": false,
|
| 625 |
+
"rstrip": false,
|
| 626 |
+
"single_word": false,
|
| 627 |
+
"special": true
|
| 628 |
+
},
|
| 629 |
+
"126158": {
|
| 630 |
+
"content": "<|reserved_token_74|>",
|
| 631 |
+
"lstrip": false,
|
| 632 |
+
"normalized": false,
|
| 633 |
+
"rstrip": false,
|
| 634 |
+
"single_word": false,
|
| 635 |
+
"special": true
|
| 636 |
+
},
|
| 637 |
+
"126159": {
|
| 638 |
+
"content": "<|reserved_token_75|>",
|
| 639 |
+
"lstrip": false,
|
| 640 |
+
"normalized": false,
|
| 641 |
+
"rstrip": false,
|
| 642 |
+
"single_word": false,
|
| 643 |
+
"special": true
|
| 644 |
+
},
|
| 645 |
+
"126160": {
|
| 646 |
+
"content": "<|reserved_token_76|>",
|
| 647 |
+
"lstrip": false,
|
| 648 |
+
"normalized": false,
|
| 649 |
+
"rstrip": false,
|
| 650 |
+
"single_word": false,
|
| 651 |
+
"special": true
|
| 652 |
+
},
|
| 653 |
+
"126161": {
|
| 654 |
+
"content": "<|reserved_token_77|>",
|
| 655 |
+
"lstrip": false,
|
| 656 |
+
"normalized": false,
|
| 657 |
+
"rstrip": false,
|
| 658 |
+
"single_word": false,
|
| 659 |
+
"special": true
|
| 660 |
+
},
|
| 661 |
+
"126162": {
|
| 662 |
+
"content": "<|reserved_token_78|>",
|
| 663 |
+
"lstrip": false,
|
| 664 |
+
"normalized": false,
|
| 665 |
+
"rstrip": false,
|
| 666 |
+
"single_word": false,
|
| 667 |
+
"special": true
|
| 668 |
+
},
|
| 669 |
+
"126163": {
|
| 670 |
+
"content": "<|reserved_token_79|>",
|
| 671 |
+
"lstrip": false,
|
| 672 |
+
"normalized": false,
|
| 673 |
+
"rstrip": false,
|
| 674 |
+
"single_word": false,
|
| 675 |
+
"special": true
|
| 676 |
+
},
|
| 677 |
+
"126164": {
|
| 678 |
+
"content": "<|reserved_token_80|>",
|
| 679 |
+
"lstrip": false,
|
| 680 |
+
"normalized": false,
|
| 681 |
+
"rstrip": false,
|
| 682 |
+
"single_word": false,
|
| 683 |
+
"special": true
|
| 684 |
+
},
|
| 685 |
+
"126165": {
|
| 686 |
+
"content": "<|reserved_token_81|>",
|
| 687 |
+
"lstrip": false,
|
| 688 |
+
"normalized": false,
|
| 689 |
+
"rstrip": false,
|
| 690 |
+
"single_word": false,
|
| 691 |
+
"special": true
|
| 692 |
+
},
|
| 693 |
+
"126166": {
|
| 694 |
+
"content": "<|reserved_token_82|>",
|
| 695 |
+
"lstrip": false,
|
| 696 |
+
"normalized": false,
|
| 697 |
+
"rstrip": false,
|
| 698 |
+
"single_word": false,
|
| 699 |
+
"special": true
|
| 700 |
+
},
|
| 701 |
+
"126167": {
|
| 702 |
+
"content": "<|reserved_token_83|>",
|
| 703 |
+
"lstrip": false,
|
| 704 |
+
"normalized": false,
|
| 705 |
+
"rstrip": false,
|
| 706 |
+
"single_word": false,
|
| 707 |
+
"special": true
|
| 708 |
+
},
|
| 709 |
+
"126168": {
|
| 710 |
+
"content": "<|reserved_token_84|>",
|
| 711 |
+
"lstrip": false,
|
| 712 |
+
"normalized": false,
|
| 713 |
+
"rstrip": false,
|
| 714 |
+
"single_word": false,
|
| 715 |
+
"special": true
|
| 716 |
+
},
|
| 717 |
+
"126169": {
|
| 718 |
+
"content": "<|reserved_token_85|>",
|
| 719 |
+
"lstrip": false,
|
| 720 |
+
"normalized": false,
|
| 721 |
+
"rstrip": false,
|
| 722 |
+
"single_word": false,
|
| 723 |
+
"special": true
|
| 724 |
+
},
|
| 725 |
+
"126170": {
|
| 726 |
+
"content": "<|reserved_token_86|>",
|
| 727 |
+
"lstrip": false,
|
| 728 |
+
"normalized": false,
|
| 729 |
+
"rstrip": false,
|
| 730 |
+
"single_word": false,
|
| 731 |
+
"special": true
|
| 732 |
+
},
|
| 733 |
+
"126171": {
|
| 734 |
+
"content": "<|reserved_token_87|>",
|
| 735 |
+
"lstrip": false,
|
| 736 |
+
"normalized": false,
|
| 737 |
+
"rstrip": false,
|
| 738 |
+
"single_word": false,
|
| 739 |
+
"special": true
|
| 740 |
+
},
|
| 741 |
+
"126172": {
|
| 742 |
+
"content": "<|reserved_token_88|>",
|
| 743 |
+
"lstrip": false,
|
| 744 |
+
"normalized": false,
|
| 745 |
+
"rstrip": false,
|
| 746 |
+
"single_word": false,
|
| 747 |
+
"special": true
|
| 748 |
+
},
|
| 749 |
+
"126173": {
|
| 750 |
+
"content": "<|reserved_token_89|>",
|
| 751 |
+
"lstrip": false,
|
| 752 |
+
"normalized": false,
|
| 753 |
+
"rstrip": false,
|
| 754 |
+
"single_word": false,
|
| 755 |
+
"special": true
|
| 756 |
+
},
|
| 757 |
+
"126174": {
|
| 758 |
+
"content": "<|reserved_token_90|>",
|
| 759 |
+
"lstrip": false,
|
| 760 |
+
"normalized": false,
|
| 761 |
+
"rstrip": false,
|
| 762 |
+
"single_word": false,
|
| 763 |
+
"special": true
|
| 764 |
+
},
|
| 765 |
+
"126175": {
|
| 766 |
+
"content": "<|reserved_token_91|>",
|
| 767 |
+
"lstrip": false,
|
| 768 |
+
"normalized": false,
|
| 769 |
+
"rstrip": false,
|
| 770 |
+
"single_word": false,
|
| 771 |
+
"special": true
|
| 772 |
+
},
|
| 773 |
+
"126176": {
|
| 774 |
+
"content": "<|reserved_token_92|>",
|
| 775 |
+
"lstrip": false,
|
| 776 |
+
"normalized": false,
|
| 777 |
+
"rstrip": false,
|
| 778 |
+
"single_word": false,
|
| 779 |
+
"special": true
|
| 780 |
+
},
|
| 781 |
+
"126177": {
|
| 782 |
+
"content": "<|reserved_token_93|>",
|
| 783 |
+
"lstrip": false,
|
| 784 |
+
"normalized": false,
|
| 785 |
+
"rstrip": false,
|
| 786 |
+
"single_word": false,
|
| 787 |
+
"special": true
|
| 788 |
+
},
|
| 789 |
+
"126178": {
|
| 790 |
+
"content": "<|reserved_token_94|>",
|
| 791 |
+
"lstrip": false,
|
| 792 |
+
"normalized": false,
|
| 793 |
+
"rstrip": false,
|
| 794 |
+
"single_word": false,
|
| 795 |
+
"special": true
|
| 796 |
+
},
|
| 797 |
+
"126179": {
|
| 798 |
+
"content": "<|reserved_token_95|>",
|
| 799 |
+
"lstrip": false,
|
| 800 |
+
"normalized": false,
|
| 801 |
+
"rstrip": false,
|
| 802 |
+
"single_word": false,
|
| 803 |
+
"special": true
|
| 804 |
+
},
|
| 805 |
+
"126180": {
|
| 806 |
+
"content": "<|reserved_token_96|>",
|
| 807 |
+
"lstrip": false,
|
| 808 |
+
"normalized": false,
|
| 809 |
+
"rstrip": false,
|
| 810 |
+
"single_word": false,
|
| 811 |
+
"special": true
|
| 812 |
+
},
|
| 813 |
+
"126181": {
|
| 814 |
+
"content": "<|reserved_token_97|>",
|
| 815 |
+
"lstrip": false,
|
| 816 |
+
"normalized": false,
|
| 817 |
+
"rstrip": false,
|
| 818 |
+
"single_word": false,
|
| 819 |
+
"special": true
|
| 820 |
+
},
|
| 821 |
+
"126182": {
|
| 822 |
+
"content": "<|reserved_token_98|>",
|
| 823 |
+
"lstrip": false,
|
| 824 |
+
"normalized": false,
|
| 825 |
+
"rstrip": false,
|
| 826 |
+
"single_word": false,
|
| 827 |
+
"special": true
|
| 828 |
+
},
|
| 829 |
+
"126183": {
|
| 830 |
+
"content": "<|reserved_token_99|>",
|
| 831 |
+
"lstrip": false,
|
| 832 |
+
"normalized": false,
|
| 833 |
+
"rstrip": false,
|
| 834 |
+
"single_word": false,
|
| 835 |
+
"special": true
|
| 836 |
+
},
|
| 837 |
+
"126184": {
|
| 838 |
+
"content": "<|reserved_token_100|>",
|
| 839 |
+
"lstrip": false,
|
| 840 |
+
"normalized": false,
|
| 841 |
+
"rstrip": false,
|
| 842 |
+
"single_word": false,
|
| 843 |
+
"special": true
|
| 844 |
+
},
|
| 845 |
+
"126185": {
|
| 846 |
+
"content": "<|reserved_token_101|>",
|
| 847 |
+
"lstrip": false,
|
| 848 |
+
"normalized": false,
|
| 849 |
+
"rstrip": false,
|
| 850 |
+
"single_word": false,
|
| 851 |
+
"special": true
|
| 852 |
+
},
|
| 853 |
+
"126186": {
|
| 854 |
+
"content": "<|reserved_token_102|>",
|
| 855 |
+
"lstrip": false,
|
| 856 |
+
"normalized": false,
|
| 857 |
+
"rstrip": false,
|
| 858 |
+
"single_word": false,
|
| 859 |
+
"special": true
|
| 860 |
+
},
|
| 861 |
+
"126187": {
|
| 862 |
+
"content": "<|reserved_token_103|>",
|
| 863 |
+
"lstrip": false,
|
| 864 |
+
"normalized": false,
|
| 865 |
+
"rstrip": false,
|
| 866 |
+
"single_word": false,
|
| 867 |
+
"special": true
|
| 868 |
+
},
|
| 869 |
+
"126188": {
|
| 870 |
+
"content": "<|reserved_token_104|>",
|
| 871 |
+
"lstrip": false,
|
| 872 |
+
"normalized": false,
|
| 873 |
+
"rstrip": false,
|
| 874 |
+
"single_word": false,
|
| 875 |
+
"special": true
|
| 876 |
+
},
|
| 877 |
+
"126189": {
|
| 878 |
+
"content": "<|reserved_token_105|>",
|
| 879 |
+
"lstrip": false,
|
| 880 |
+
"normalized": false,
|
| 881 |
+
"rstrip": false,
|
| 882 |
+
"single_word": false,
|
| 883 |
+
"special": true
|
| 884 |
+
},
|
| 885 |
+
"126190": {
|
| 886 |
+
"content": "<|reserved_token_106|>",
|
| 887 |
+
"lstrip": false,
|
| 888 |
+
"normalized": false,
|
| 889 |
+
"rstrip": false,
|
| 890 |
+
"single_word": false,
|
| 891 |
+
"special": true
|
| 892 |
+
},
|
| 893 |
+
"126191": {
|
| 894 |
+
"content": "<|reserved_token_107|>",
|
| 895 |
+
"lstrip": false,
|
| 896 |
+
"normalized": false,
|
| 897 |
+
"rstrip": false,
|
| 898 |
+
"single_word": false,
|
| 899 |
+
"special": true
|
| 900 |
+
},
|
| 901 |
+
"126192": {
|
| 902 |
+
"content": "<|reserved_token_108|>",
|
| 903 |
+
"lstrip": false,
|
| 904 |
+
"normalized": false,
|
| 905 |
+
"rstrip": false,
|
| 906 |
+
"single_word": false,
|
| 907 |
+
"special": true
|
| 908 |
+
},
|
| 909 |
+
"126193": {
|
| 910 |
+
"content": "<|reserved_token_109|>",
|
| 911 |
+
"lstrip": false,
|
| 912 |
+
"normalized": false,
|
| 913 |
+
"rstrip": false,
|
| 914 |
+
"single_word": false,
|
| 915 |
+
"special": true
|
| 916 |
+
},
|
| 917 |
+
"126194": {
|
| 918 |
+
"content": "<|reserved_token_110|>",
|
| 919 |
+
"lstrip": false,
|
| 920 |
+
"normalized": false,
|
| 921 |
+
"rstrip": false,
|
| 922 |
+
"single_word": false,
|
| 923 |
+
"special": true
|
| 924 |
+
},
|
| 925 |
+
"126195": {
|
| 926 |
+
"content": "<|reserved_token_111|>",
|
| 927 |
+
"lstrip": false,
|
| 928 |
+
"normalized": false,
|
| 929 |
+
"rstrip": false,
|
| 930 |
+
"single_word": false,
|
| 931 |
+
"special": true
|
| 932 |
+
},
|
| 933 |
+
"126196": {
|
| 934 |
+
"content": "<|reserved_token_112|>",
|
| 935 |
+
"lstrip": false,
|
| 936 |
+
"normalized": false,
|
| 937 |
+
"rstrip": false,
|
| 938 |
+
"single_word": false,
|
| 939 |
+
"special": true
|
| 940 |
+
},
|
| 941 |
+
"126197": {
|
| 942 |
+
"content": "<|reserved_token_113|>",
|
| 943 |
+
"lstrip": false,
|
| 944 |
+
"normalized": false,
|
| 945 |
+
"rstrip": false,
|
| 946 |
+
"single_word": false,
|
| 947 |
+
"special": true
|
| 948 |
+
},
|
| 949 |
+
"126198": {
|
| 950 |
+
"content": "<|reserved_token_114|>",
|
| 951 |
+
"lstrip": false,
|
| 952 |
+
"normalized": false,
|
| 953 |
+
"rstrip": false,
|
| 954 |
+
"single_word": false,
|
| 955 |
+
"special": true
|
| 956 |
+
},
|
| 957 |
+
"126199": {
|
| 958 |
+
"content": "<|reserved_token_115|>",
|
| 959 |
+
"lstrip": false,
|
| 960 |
+
"normalized": false,
|
| 961 |
+
"rstrip": false,
|
| 962 |
+
"single_word": false,
|
| 963 |
+
"special": true
|
| 964 |
+
},
|
| 965 |
+
"126200": {
|
| 966 |
+
"content": "<|reserved_token_116|>",
|
| 967 |
+
"lstrip": false,
|
| 968 |
+
"normalized": false,
|
| 969 |
+
"rstrip": false,
|
| 970 |
+
"single_word": false,
|
| 971 |
+
"special": true
|
| 972 |
+
},
|
| 973 |
+
"126201": {
|
| 974 |
+
"content": "<|reserved_token_117|>",
|
| 975 |
+
"lstrip": false,
|
| 976 |
+
"normalized": false,
|
| 977 |
+
"rstrip": false,
|
| 978 |
+
"single_word": false,
|
| 979 |
+
"special": true
|
| 980 |
+
},
|
| 981 |
+
"126202": {
|
| 982 |
+
"content": "<|reserved_token_118|>",
|
| 983 |
+
"lstrip": false,
|
| 984 |
+
"normalized": false,
|
| 985 |
+
"rstrip": false,
|
| 986 |
+
"single_word": false,
|
| 987 |
+
"special": true
|
| 988 |
+
},
|
| 989 |
+
"126203": {
|
| 990 |
+
"content": "<|reserved_token_119|>",
|
| 991 |
+
"lstrip": false,
|
| 992 |
+
"normalized": false,
|
| 993 |
+
"rstrip": false,
|
| 994 |
+
"single_word": false,
|
| 995 |
+
"special": true
|
| 996 |
+
},
|
| 997 |
+
"126204": {
|
| 998 |
+
"content": "<|reserved_token_120|>",
|
| 999 |
+
"lstrip": false,
|
| 1000 |
+
"normalized": false,
|
| 1001 |
+
"rstrip": false,
|
| 1002 |
+
"single_word": false,
|
| 1003 |
+
"special": true
|
| 1004 |
+
},
|
| 1005 |
+
"126205": {
|
| 1006 |
+
"content": "<|reserved_token_121|>",
|
| 1007 |
+
"lstrip": false,
|
| 1008 |
+
"normalized": false,
|
| 1009 |
+
"rstrip": false,
|
| 1010 |
+
"single_word": false,
|
| 1011 |
+
"special": true
|
| 1012 |
+
},
|
| 1013 |
+
"126206": {
|
| 1014 |
+
"content": "<|reserved_token_122|>",
|
| 1015 |
+
"lstrip": false,
|
| 1016 |
+
"normalized": false,
|
| 1017 |
+
"rstrip": false,
|
| 1018 |
+
"single_word": false,
|
| 1019 |
+
"special": true
|
| 1020 |
+
},
|
| 1021 |
+
"126207": {
|
| 1022 |
+
"content": "<|reserved_token_123|>",
|
| 1023 |
+
"lstrip": false,
|
| 1024 |
+
"normalized": false,
|
| 1025 |
+
"rstrip": false,
|
| 1026 |
+
"single_word": false,
|
| 1027 |
+
"special": true
|
| 1028 |
+
},
|
| 1029 |
+
"126208": {
|
| 1030 |
+
"content": "<|reserved_token_124|>",
|
| 1031 |
+
"lstrip": false,
|
| 1032 |
+
"normalized": false,
|
| 1033 |
+
"rstrip": false,
|
| 1034 |
+
"single_word": false,
|
| 1035 |
+
"special": true
|
| 1036 |
+
},
|
| 1037 |
+
"126209": {
|
| 1038 |
+
"content": "<|reserved_token_125|>",
|
| 1039 |
+
"lstrip": false,
|
| 1040 |
+
"normalized": false,
|
| 1041 |
+
"rstrip": false,
|
| 1042 |
+
"single_word": false,
|
| 1043 |
+
"special": true
|
| 1044 |
+
},
|
| 1045 |
+
"126210": {
|
| 1046 |
+
"content": "<|reserved_token_126|>",
|
| 1047 |
+
"lstrip": false,
|
| 1048 |
+
"normalized": false,
|
| 1049 |
+
"rstrip": false,
|
| 1050 |
+
"single_word": false,
|
| 1051 |
+
"special": true
|
| 1052 |
+
},
|
| 1053 |
+
"126211": {
|
| 1054 |
+
"content": "<|reserved_token_127|>",
|
| 1055 |
+
"lstrip": false,
|
| 1056 |
+
"normalized": false,
|
| 1057 |
+
"rstrip": false,
|
| 1058 |
+
"single_word": false,
|
| 1059 |
+
"special": true
|
| 1060 |
+
},
|
| 1061 |
+
"126212": {
|
| 1062 |
+
"content": "<|reserved_token_128|>",
|
| 1063 |
+
"lstrip": false,
|
| 1064 |
+
"normalized": false,
|
| 1065 |
+
"rstrip": false,
|
| 1066 |
+
"single_word": false,
|
| 1067 |
+
"special": true
|
| 1068 |
+
},
|
| 1069 |
+
"126213": {
|
| 1070 |
+
"content": "<|reserved_token_129|>",
|
| 1071 |
+
"lstrip": false,
|
| 1072 |
+
"normalized": false,
|
| 1073 |
+
"rstrip": false,
|
| 1074 |
+
"single_word": false,
|
| 1075 |
+
"special": true
|
| 1076 |
+
},
|
| 1077 |
+
"126214": {
|
| 1078 |
+
"content": "<|reserved_token_130|>",
|
| 1079 |
+
"lstrip": false,
|
| 1080 |
+
"normalized": false,
|
| 1081 |
+
"rstrip": false,
|
| 1082 |
+
"single_word": false,
|
| 1083 |
+
"special": true
|
| 1084 |
+
},
|
| 1085 |
+
"126215": {
|
| 1086 |
+
"content": "<|reserved_token_131|>",
|
| 1087 |
+
"lstrip": false,
|
| 1088 |
+
"normalized": false,
|
| 1089 |
+
"rstrip": false,
|
| 1090 |
+
"single_word": false,
|
| 1091 |
+
"special": true
|
| 1092 |
+
},
|
| 1093 |
+
"126216": {
|
| 1094 |
+
"content": "<|reserved_token_132|>",
|
| 1095 |
+
"lstrip": false,
|
| 1096 |
+
"normalized": false,
|
| 1097 |
+
"rstrip": false,
|
| 1098 |
+
"single_word": false,
|
| 1099 |
+
"special": true
|
| 1100 |
+
},
|
| 1101 |
+
"126217": {
|
| 1102 |
+
"content": "<|reserved_token_133|>",
|
| 1103 |
+
"lstrip": false,
|
| 1104 |
+
"normalized": false,
|
| 1105 |
+
"rstrip": false,
|
| 1106 |
+
"single_word": false,
|
| 1107 |
+
"special": true
|
| 1108 |
+
},
|
| 1109 |
+
"126218": {
|
| 1110 |
+
"content": "<|reserved_token_134|>",
|
| 1111 |
+
"lstrip": false,
|
| 1112 |
+
"normalized": false,
|
| 1113 |
+
"rstrip": false,
|
| 1114 |
+
"single_word": false,
|
| 1115 |
+
"special": true
|
| 1116 |
+
},
|
| 1117 |
+
"126219": {
|
| 1118 |
+
"content": "<|reserved_token_135|>",
|
| 1119 |
+
"lstrip": false,
|
| 1120 |
+
"normalized": false,
|
| 1121 |
+
"rstrip": false,
|
| 1122 |
+
"single_word": false,
|
| 1123 |
+
"special": true
|
| 1124 |
+
},
|
| 1125 |
+
"126220": {
|
| 1126 |
+
"content": "<|reserved_token_136|>",
|
| 1127 |
+
"lstrip": false,
|
| 1128 |
+
"normalized": false,
|
| 1129 |
+
"rstrip": false,
|
| 1130 |
+
"single_word": false,
|
| 1131 |
+
"special": true
|
| 1132 |
+
},
|
| 1133 |
+
"126221": {
|
| 1134 |
+
"content": "<|reserved_token_137|>",
|
| 1135 |
+
"lstrip": false,
|
| 1136 |
+
"normalized": false,
|
| 1137 |
+
"rstrip": false,
|
| 1138 |
+
"single_word": false,
|
| 1139 |
+
"special": true
|
| 1140 |
+
},
|
| 1141 |
+
"126222": {
|
| 1142 |
+
"content": "<|reserved_token_138|>",
|
| 1143 |
+
"lstrip": false,
|
| 1144 |
+
"normalized": false,
|
| 1145 |
+
"rstrip": false,
|
| 1146 |
+
"single_word": false,
|
| 1147 |
+
"special": true
|
| 1148 |
+
},
|
| 1149 |
+
"126223": {
|
| 1150 |
+
"content": "<|reserved_token_139|>",
|
| 1151 |
+
"lstrip": false,
|
| 1152 |
+
"normalized": false,
|
| 1153 |
+
"rstrip": false,
|
| 1154 |
+
"single_word": false,
|
| 1155 |
+
"special": true
|
| 1156 |
+
},
|
| 1157 |
+
"126224": {
|
| 1158 |
+
"content": "<|reserved_token_140|>",
|
| 1159 |
+
"lstrip": false,
|
| 1160 |
+
"normalized": false,
|
| 1161 |
+
"rstrip": false,
|
| 1162 |
+
"single_word": false,
|
| 1163 |
+
"special": true
|
| 1164 |
+
},
|
| 1165 |
+
"126225": {
|
| 1166 |
+
"content": "<|reserved_token_141|>",
|
| 1167 |
+
"lstrip": false,
|
| 1168 |
+
"normalized": false,
|
| 1169 |
+
"rstrip": false,
|
| 1170 |
+
"single_word": false,
|
| 1171 |
+
"special": true
|
| 1172 |
+
},
|
| 1173 |
+
"126226": {
|
| 1174 |
+
"content": "<|reserved_token_142|>",
|
| 1175 |
+
"lstrip": false,
|
| 1176 |
+
"normalized": false,
|
| 1177 |
+
"rstrip": false,
|
| 1178 |
+
"single_word": false,
|
| 1179 |
+
"special": true
|
| 1180 |
+
},
|
| 1181 |
+
"126227": {
|
| 1182 |
+
"content": "<|reserved_token_143|>",
|
| 1183 |
+
"lstrip": false,
|
| 1184 |
+
"normalized": false,
|
| 1185 |
+
"rstrip": false,
|
| 1186 |
+
"single_word": false,
|
| 1187 |
+
"special": true
|
| 1188 |
+
},
|
| 1189 |
+
"126228": {
|
| 1190 |
+
"content": "<|reserved_token_144|>",
|
| 1191 |
+
"lstrip": false,
|
| 1192 |
+
"normalized": false,
|
| 1193 |
+
"rstrip": false,
|
| 1194 |
+
"single_word": false,
|
| 1195 |
+
"special": true
|
| 1196 |
+
},
|
| 1197 |
+
"126229": {
|
| 1198 |
+
"content": "<|reserved_token_145|>",
|
| 1199 |
+
"lstrip": false,
|
| 1200 |
+
"normalized": false,
|
| 1201 |
+
"rstrip": false,
|
| 1202 |
+
"single_word": false,
|
| 1203 |
+
"special": true
|
| 1204 |
+
},
|
| 1205 |
+
"126230": {
|
| 1206 |
+
"content": "<|reserved_token_146|>",
|
| 1207 |
+
"lstrip": false,
|
| 1208 |
+
"normalized": false,
|
| 1209 |
+
"rstrip": false,
|
| 1210 |
+
"single_word": false,
|
| 1211 |
+
"special": true
|
| 1212 |
+
},
|
| 1213 |
+
"126231": {
|
| 1214 |
+
"content": "<|reserved_token_147|>",
|
| 1215 |
+
"lstrip": false,
|
| 1216 |
+
"normalized": false,
|
| 1217 |
+
"rstrip": false,
|
| 1218 |
+
"single_word": false,
|
| 1219 |
+
"special": true
|
| 1220 |
+
},
|
| 1221 |
+
"126232": {
|
| 1222 |
+
"content": "<|reserved_token_148|>",
|
| 1223 |
+
"lstrip": false,
|
| 1224 |
+
"normalized": false,
|
| 1225 |
+
"rstrip": false,
|
| 1226 |
+
"single_word": false,
|
| 1227 |
+
"special": true
|
| 1228 |
+
},
|
| 1229 |
+
"126233": {
|
| 1230 |
+
"content": "<|reserved_token_149|>",
|
| 1231 |
+
"lstrip": false,
|
| 1232 |
+
"normalized": false,
|
| 1233 |
+
"rstrip": false,
|
| 1234 |
+
"single_word": false,
|
| 1235 |
+
"special": true
|
| 1236 |
+
},
|
| 1237 |
+
"126234": {
|
| 1238 |
+
"content": "<|reserved_token_150|>",
|
| 1239 |
+
"lstrip": false,
|
| 1240 |
+
"normalized": false,
|
| 1241 |
+
"rstrip": false,
|
| 1242 |
+
"single_word": false,
|
| 1243 |
+
"special": true
|
| 1244 |
+
},
|
| 1245 |
+
"126235": {
|
| 1246 |
+
"content": "<|reserved_token_151|>",
|
| 1247 |
+
"lstrip": false,
|
| 1248 |
+
"normalized": false,
|
| 1249 |
+
"rstrip": false,
|
| 1250 |
+
"single_word": false,
|
| 1251 |
+
"special": true
|
| 1252 |
+
},
|
| 1253 |
+
"126236": {
|
| 1254 |
+
"content": "<|reserved_token_152|>",
|
| 1255 |
+
"lstrip": false,
|
| 1256 |
+
"normalized": false,
|
| 1257 |
+
"rstrip": false,
|
| 1258 |
+
"single_word": false,
|
| 1259 |
+
"special": true
|
| 1260 |
+
},
|
| 1261 |
+
"126237": {
|
| 1262 |
+
"content": "<|reserved_token_153|>",
|
| 1263 |
+
"lstrip": false,
|
| 1264 |
+
"normalized": false,
|
| 1265 |
+
"rstrip": false,
|
| 1266 |
+
"single_word": false,
|
| 1267 |
+
"special": true
|
| 1268 |
+
},
|
| 1269 |
+
"126238": {
|
| 1270 |
+
"content": "<|reserved_token_154|>",
|
| 1271 |
+
"lstrip": false,
|
| 1272 |
+
"normalized": false,
|
| 1273 |
+
"rstrip": false,
|
| 1274 |
+
"single_word": false,
|
| 1275 |
+
"special": true
|
| 1276 |
+
},
|
| 1277 |
+
"126239": {
|
| 1278 |
+
"content": "<|reserved_token_155|>",
|
| 1279 |
+
"lstrip": false,
|
| 1280 |
+
"normalized": false,
|
| 1281 |
+
"rstrip": false,
|
| 1282 |
+
"single_word": false,
|
| 1283 |
+
"special": true
|
| 1284 |
+
},
|
| 1285 |
+
"126240": {
|
| 1286 |
+
"content": "<|reserved_token_156|>",
|
| 1287 |
+
"lstrip": false,
|
| 1288 |
+
"normalized": false,
|
| 1289 |
+
"rstrip": false,
|
| 1290 |
+
"single_word": false,
|
| 1291 |
+
"special": true
|
| 1292 |
+
},
|
| 1293 |
+
"126241": {
|
| 1294 |
+
"content": "<|reserved_token_157|>",
|
| 1295 |
+
"lstrip": false,
|
| 1296 |
+
"normalized": false,
|
| 1297 |
+
"rstrip": false,
|
| 1298 |
+
"single_word": false,
|
| 1299 |
+
"special": true
|
| 1300 |
+
},
|
| 1301 |
+
"126242": {
|
| 1302 |
+
"content": "<|reserved_token_158|>",
|
| 1303 |
+
"lstrip": false,
|
| 1304 |
+
"normalized": false,
|
| 1305 |
+
"rstrip": false,
|
| 1306 |
+
"single_word": false,
|
| 1307 |
+
"special": true
|
| 1308 |
+
},
|
| 1309 |
+
"126243": {
|
| 1310 |
+
"content": "<|reserved_token_159|>",
|
| 1311 |
+
"lstrip": false,
|
| 1312 |
+
"normalized": false,
|
| 1313 |
+
"rstrip": false,
|
| 1314 |
+
"single_word": false,
|
| 1315 |
+
"special": true
|
| 1316 |
+
},
|
| 1317 |
+
"126244": {
|
| 1318 |
+
"content": "<|reserved_token_160|>",
|
| 1319 |
+
"lstrip": false,
|
| 1320 |
+
"normalized": false,
|
| 1321 |
+
"rstrip": false,
|
| 1322 |
+
"single_word": false,
|
| 1323 |
+
"special": true
|
| 1324 |
+
},
|
| 1325 |
+
"126245": {
|
| 1326 |
+
"content": "<|reserved_token_161|>",
|
| 1327 |
+
"lstrip": false,
|
| 1328 |
+
"normalized": false,
|
| 1329 |
+
"rstrip": false,
|
| 1330 |
+
"single_word": false,
|
| 1331 |
+
"special": true
|
| 1332 |
+
},
|
| 1333 |
+
"126246": {
|
| 1334 |
+
"content": "<|reserved_token_162|>",
|
| 1335 |
+
"lstrip": false,
|
| 1336 |
+
"normalized": false,
|
| 1337 |
+
"rstrip": false,
|
| 1338 |
+
"single_word": false,
|
| 1339 |
+
"special": true
|
| 1340 |
+
},
|
| 1341 |
+
"126247": {
|
| 1342 |
+
"content": "<|reserved_token_163|>",
|
| 1343 |
+
"lstrip": false,
|
| 1344 |
+
"normalized": false,
|
| 1345 |
+
"rstrip": false,
|
| 1346 |
+
"single_word": false,
|
| 1347 |
+
"special": true
|
| 1348 |
+
},
|
| 1349 |
+
"126248": {
|
| 1350 |
+
"content": "<|reserved_token_164|>",
|
| 1351 |
+
"lstrip": false,
|
| 1352 |
+
"normalized": false,
|
| 1353 |
+
"rstrip": false,
|
| 1354 |
+
"single_word": false,
|
| 1355 |
+
"special": true
|
| 1356 |
+
},
|
| 1357 |
+
"126249": {
|
| 1358 |
+
"content": "<|reserved_token_165|>",
|
| 1359 |
+
"lstrip": false,
|
| 1360 |
+
"normalized": false,
|
| 1361 |
+
"rstrip": false,
|
| 1362 |
+
"single_word": false,
|
| 1363 |
+
"special": true
|
| 1364 |
+
},
|
| 1365 |
+
"126250": {
|
| 1366 |
+
"content": "<|reserved_token_166|>",
|
| 1367 |
+
"lstrip": false,
|
| 1368 |
+
"normalized": false,
|
| 1369 |
+
"rstrip": false,
|
| 1370 |
+
"single_word": false,
|
| 1371 |
+
"special": true
|
| 1372 |
+
},
|
| 1373 |
+
"126251": {
|
| 1374 |
+
"content": "<|reserved_token_167|>",
|
| 1375 |
+
"lstrip": false,
|
| 1376 |
+
"normalized": false,
|
| 1377 |
+
"rstrip": false,
|
| 1378 |
+
"single_word": false,
|
| 1379 |
+
"special": true
|
| 1380 |
+
},
|
| 1381 |
+
"126252": {
|
| 1382 |
+
"content": "<|reserved_token_168|>",
|
| 1383 |
+
"lstrip": false,
|
| 1384 |
+
"normalized": false,
|
| 1385 |
+
"rstrip": false,
|
| 1386 |
+
"single_word": false,
|
| 1387 |
+
"special": true
|
| 1388 |
+
},
|
| 1389 |
+
"126253": {
|
| 1390 |
+
"content": "<|reserved_token_169|>",
|
| 1391 |
+
"lstrip": false,
|
| 1392 |
+
"normalized": false,
|
| 1393 |
+
"rstrip": false,
|
| 1394 |
+
"single_word": false,
|
| 1395 |
+
"special": true
|
| 1396 |
+
},
|
| 1397 |
+
"126254": {
|
| 1398 |
+
"content": "<|reserved_token_170|>",
|
| 1399 |
+
"lstrip": false,
|
| 1400 |
+
"normalized": false,
|
| 1401 |
+
"rstrip": false,
|
| 1402 |
+
"single_word": false,
|
| 1403 |
+
"special": true
|
| 1404 |
+
},
|
| 1405 |
+
"126255": {
|
| 1406 |
+
"content": "<|reserved_token_171|>",
|
| 1407 |
+
"lstrip": false,
|
| 1408 |
+
"normalized": false,
|
| 1409 |
+
"rstrip": false,
|
| 1410 |
+
"single_word": false,
|
| 1411 |
+
"special": true
|
| 1412 |
+
},
|
| 1413 |
+
"126256": {
|
| 1414 |
+
"content": "<|reserved_token_172|>",
|
| 1415 |
+
"lstrip": false,
|
| 1416 |
+
"normalized": false,
|
| 1417 |
+
"rstrip": false,
|
| 1418 |
+
"single_word": false,
|
| 1419 |
+
"special": true
|
| 1420 |
+
},
|
| 1421 |
+
"126257": {
|
| 1422 |
+
"content": "<|reserved_token_173|>",
|
| 1423 |
+
"lstrip": false,
|
| 1424 |
+
"normalized": false,
|
| 1425 |
+
"rstrip": false,
|
| 1426 |
+
"single_word": false,
|
| 1427 |
+
"special": true
|
| 1428 |
+
},
|
| 1429 |
+
"126258": {
|
| 1430 |
+
"content": "<|reserved_token_174|>",
|
| 1431 |
+
"lstrip": false,
|
| 1432 |
+
"normalized": false,
|
| 1433 |
+
"rstrip": false,
|
| 1434 |
+
"single_word": false,
|
| 1435 |
+
"special": true
|
| 1436 |
+
},
|
| 1437 |
+
"126259": {
|
| 1438 |
+
"content": "<|reserved_token_175|>",
|
| 1439 |
+
"lstrip": false,
|
| 1440 |
+
"normalized": false,
|
| 1441 |
+
"rstrip": false,
|
| 1442 |
+
"single_word": false,
|
| 1443 |
+
"special": true
|
| 1444 |
+
},
|
| 1445 |
+
"126260": {
|
| 1446 |
+
"content": "<|reserved_token_176|>",
|
| 1447 |
+
"lstrip": false,
|
| 1448 |
+
"normalized": false,
|
| 1449 |
+
"rstrip": false,
|
| 1450 |
+
"single_word": false,
|
| 1451 |
+
"special": true
|
| 1452 |
+
},
|
| 1453 |
+
"126261": {
|
| 1454 |
+
"content": "<|reserved_token_177|>",
|
| 1455 |
+
"lstrip": false,
|
| 1456 |
+
"normalized": false,
|
| 1457 |
+
"rstrip": false,
|
| 1458 |
+
"single_word": false,
|
| 1459 |
+
"special": true
|
| 1460 |
+
},
|
| 1461 |
+
"126262": {
|
| 1462 |
+
"content": "<|reserved_token_178|>",
|
| 1463 |
+
"lstrip": false,
|
| 1464 |
+
"normalized": false,
|
| 1465 |
+
"rstrip": false,
|
| 1466 |
+
"single_word": false,
|
| 1467 |
+
"special": true
|
| 1468 |
+
},
|
| 1469 |
+
"126263": {
|
| 1470 |
+
"content": "<|reserved_token_179|>",
|
| 1471 |
+
"lstrip": false,
|
| 1472 |
+
"normalized": false,
|
| 1473 |
+
"rstrip": false,
|
| 1474 |
+
"single_word": false,
|
| 1475 |
+
"special": true
|
| 1476 |
+
},
|
| 1477 |
+
"126264": {
|
| 1478 |
+
"content": "<|reserved_token_180|>",
|
| 1479 |
+
"lstrip": false,
|
| 1480 |
+
"normalized": false,
|
| 1481 |
+
"rstrip": false,
|
| 1482 |
+
"single_word": false,
|
| 1483 |
+
"special": true
|
| 1484 |
+
},
|
| 1485 |
+
"126265": {
|
| 1486 |
+
"content": "<|reserved_token_181|>",
|
| 1487 |
+
"lstrip": false,
|
| 1488 |
+
"normalized": false,
|
| 1489 |
+
"rstrip": false,
|
| 1490 |
+
"single_word": false,
|
| 1491 |
+
"special": true
|
| 1492 |
+
},
|
| 1493 |
+
"126266": {
|
| 1494 |
+
"content": "<|reserved_token_182|>",
|
| 1495 |
+
"lstrip": false,
|
| 1496 |
+
"normalized": false,
|
| 1497 |
+
"rstrip": false,
|
| 1498 |
+
"single_word": false,
|
| 1499 |
+
"special": true
|
| 1500 |
+
},
|
| 1501 |
+
"126267": {
|
| 1502 |
+
"content": "<|reserved_token_183|>",
|
| 1503 |
+
"lstrip": false,
|
| 1504 |
+
"normalized": false,
|
| 1505 |
+
"rstrip": false,
|
| 1506 |
+
"single_word": false,
|
| 1507 |
+
"special": true
|
| 1508 |
+
},
|
| 1509 |
+
"126268": {
|
| 1510 |
+
"content": "<|reserved_token_184|>",
|
| 1511 |
+
"lstrip": false,
|
| 1512 |
+
"normalized": false,
|
| 1513 |
+
"rstrip": false,
|
| 1514 |
+
"single_word": false,
|
| 1515 |
+
"special": true
|
| 1516 |
+
},
|
| 1517 |
+
"126269": {
|
| 1518 |
+
"content": "<|reserved_token_185|>",
|
| 1519 |
+
"lstrip": false,
|
| 1520 |
+
"normalized": false,
|
| 1521 |
+
"rstrip": false,
|
| 1522 |
+
"single_word": false,
|
| 1523 |
+
"special": true
|
| 1524 |
+
},
|
| 1525 |
+
"126270": {
|
| 1526 |
+
"content": "<|reserved_token_186|>",
|
| 1527 |
+
"lstrip": false,
|
| 1528 |
+
"normalized": false,
|
| 1529 |
+
"rstrip": false,
|
| 1530 |
+
"single_word": false,
|
| 1531 |
+
"special": true
|
| 1532 |
+
},
|
| 1533 |
+
"126271": {
|
| 1534 |
+
"content": "<|reserved_token_187|>",
|
| 1535 |
+
"lstrip": false,
|
| 1536 |
+
"normalized": false,
|
| 1537 |
+
"rstrip": false,
|
| 1538 |
+
"single_word": false,
|
| 1539 |
+
"special": true
|
| 1540 |
+
},
|
| 1541 |
+
"126272": {
|
| 1542 |
+
"content": "<|reserved_token_188|>",
|
| 1543 |
+
"lstrip": false,
|
| 1544 |
+
"normalized": false,
|
| 1545 |
+
"rstrip": false,
|
| 1546 |
+
"single_word": false,
|
| 1547 |
+
"special": true
|
| 1548 |
+
},
|
| 1549 |
+
"126273": {
|
| 1550 |
+
"content": "<|reserved_token_189|>",
|
| 1551 |
+
"lstrip": false,
|
| 1552 |
+
"normalized": false,
|
| 1553 |
+
"rstrip": false,
|
| 1554 |
+
"single_word": false,
|
| 1555 |
+
"special": true
|
| 1556 |
+
},
|
| 1557 |
+
"126274": {
|
| 1558 |
+
"content": "<|reserved_token_190|>",
|
| 1559 |
+
"lstrip": false,
|
| 1560 |
+
"normalized": false,
|
| 1561 |
+
"rstrip": false,
|
| 1562 |
+
"single_word": false,
|
| 1563 |
+
"special": true
|
| 1564 |
+
},
|
| 1565 |
+
"126275": {
|
| 1566 |
+
"content": "<|reserved_token_191|>",
|
| 1567 |
+
"lstrip": false,
|
| 1568 |
+
"normalized": false,
|
| 1569 |
+
"rstrip": false,
|
| 1570 |
+
"single_word": false,
|
| 1571 |
+
"special": true
|
| 1572 |
+
},
|
| 1573 |
+
"126276": {
|
| 1574 |
+
"content": "<|reserved_token_192|>",
|
| 1575 |
+
"lstrip": false,
|
| 1576 |
+
"normalized": false,
|
| 1577 |
+
"rstrip": false,
|
| 1578 |
+
"single_word": false,
|
| 1579 |
+
"special": true
|
| 1580 |
+
},
|
| 1581 |
+
"126277": {
|
| 1582 |
+
"content": "<|reserved_token_193|>",
|
| 1583 |
+
"lstrip": false,
|
| 1584 |
+
"normalized": false,
|
| 1585 |
+
"rstrip": false,
|
| 1586 |
+
"single_word": false,
|
| 1587 |
+
"special": true
|
| 1588 |
+
},
|
| 1589 |
+
"126278": {
|
| 1590 |
+
"content": "<|reserved_token_194|>",
|
| 1591 |
+
"lstrip": false,
|
| 1592 |
+
"normalized": false,
|
| 1593 |
+
"rstrip": false,
|
| 1594 |
+
"single_word": false,
|
| 1595 |
+
"special": true
|
| 1596 |
+
},
|
| 1597 |
+
"126279": {
|
| 1598 |
+
"content": "<|reserved_token_195|>",
|
| 1599 |
+
"lstrip": false,
|
| 1600 |
+
"normalized": false,
|
| 1601 |
+
"rstrip": false,
|
| 1602 |
+
"single_word": false,
|
| 1603 |
+
"special": true
|
| 1604 |
+
},
|
| 1605 |
+
"126280": {
|
| 1606 |
+
"content": "<|reserved_token_196|>",
|
| 1607 |
+
"lstrip": false,
|
| 1608 |
+
"normalized": false,
|
| 1609 |
+
"rstrip": false,
|
| 1610 |
+
"single_word": false,
|
| 1611 |
+
"special": true
|
| 1612 |
+
},
|
| 1613 |
+
"126281": {
|
| 1614 |
+
"content": "<|reserved_token_197|>",
|
| 1615 |
+
"lstrip": false,
|
| 1616 |
+
"normalized": false,
|
| 1617 |
+
"rstrip": false,
|
| 1618 |
+
"single_word": false,
|
| 1619 |
+
"special": true
|
| 1620 |
+
},
|
| 1621 |
+
"126282": {
|
| 1622 |
+
"content": "<|reserved_token_198|>",
|
| 1623 |
+
"lstrip": false,
|
| 1624 |
+
"normalized": false,
|
| 1625 |
+
"rstrip": false,
|
| 1626 |
+
"single_word": false,
|
| 1627 |
+
"special": true
|
| 1628 |
+
},
|
| 1629 |
+
"126283": {
|
| 1630 |
+
"content": "<|reserved_token_199|>",
|
| 1631 |
+
"lstrip": false,
|
| 1632 |
+
"normalized": false,
|
| 1633 |
+
"rstrip": false,
|
| 1634 |
+
"single_word": false,
|
| 1635 |
+
"special": true
|
| 1636 |
+
},
|
| 1637 |
+
"126284": {
|
| 1638 |
+
"content": "<|reserved_token_200|>",
|
| 1639 |
+
"lstrip": false,
|
| 1640 |
+
"normalized": false,
|
| 1641 |
+
"rstrip": false,
|
| 1642 |
+
"single_word": false,
|
| 1643 |
+
"special": true
|
| 1644 |
+
},
|
| 1645 |
+
"126285": {
|
| 1646 |
+
"content": "<|reserved_token_201|>",
|
| 1647 |
+
"lstrip": false,
|
| 1648 |
+
"normalized": false,
|
| 1649 |
+
"rstrip": false,
|
| 1650 |
+
"single_word": false,
|
| 1651 |
+
"special": true
|
| 1652 |
+
},
|
| 1653 |
+
"126286": {
|
| 1654 |
+
"content": "<|reserved_token_202|>",
|
| 1655 |
+
"lstrip": false,
|
| 1656 |
+
"normalized": false,
|
| 1657 |
+
"rstrip": false,
|
| 1658 |
+
"single_word": false,
|
| 1659 |
+
"special": true
|
| 1660 |
+
},
|
| 1661 |
+
"126287": {
|
| 1662 |
+
"content": "<|reserved_token_203|>",
|
| 1663 |
+
"lstrip": false,
|
| 1664 |
+
"normalized": false,
|
| 1665 |
+
"rstrip": false,
|
| 1666 |
+
"single_word": false,
|
| 1667 |
+
"special": true
|
| 1668 |
+
},
|
| 1669 |
+
"126288": {
|
| 1670 |
+
"content": "<|reserved_token_204|>",
|
| 1671 |
+
"lstrip": false,
|
| 1672 |
+
"normalized": false,
|
| 1673 |
+
"rstrip": false,
|
| 1674 |
+
"single_word": false,
|
| 1675 |
+
"special": true
|
| 1676 |
+
},
|
| 1677 |
+
"126289": {
|
| 1678 |
+
"content": "<|reserved_token_205|>",
|
| 1679 |
+
"lstrip": false,
|
| 1680 |
+
"normalized": false,
|
| 1681 |
+
"rstrip": false,
|
| 1682 |
+
"single_word": false,
|
| 1683 |
+
"special": true
|
| 1684 |
+
},
|
| 1685 |
+
"126290": {
|
| 1686 |
+
"content": "<|reserved_token_206|>",
|
| 1687 |
+
"lstrip": false,
|
| 1688 |
+
"normalized": false,
|
| 1689 |
+
"rstrip": false,
|
| 1690 |
+
"single_word": false,
|
| 1691 |
+
"special": true
|
| 1692 |
+
},
|
| 1693 |
+
"126291": {
|
| 1694 |
+
"content": "<|reserved_token_207|>",
|
| 1695 |
+
"lstrip": false,
|
| 1696 |
+
"normalized": false,
|
| 1697 |
+
"rstrip": false,
|
| 1698 |
+
"single_word": false,
|
| 1699 |
+
"special": true
|
| 1700 |
+
},
|
| 1701 |
+
"126292": {
|
| 1702 |
+
"content": "<|reserved_token_208|>",
|
| 1703 |
+
"lstrip": false,
|
| 1704 |
+
"normalized": false,
|
| 1705 |
+
"rstrip": false,
|
| 1706 |
+
"single_word": false,
|
| 1707 |
+
"special": true
|
| 1708 |
+
},
|
| 1709 |
+
"126293": {
|
| 1710 |
+
"content": "<|reserved_token_209|>",
|
| 1711 |
+
"lstrip": false,
|
| 1712 |
+
"normalized": false,
|
| 1713 |
+
"rstrip": false,
|
| 1714 |
+
"single_word": false,
|
| 1715 |
+
"special": true
|
| 1716 |
+
},
|
| 1717 |
+
"126294": {
|
| 1718 |
+
"content": "<|reserved_token_210|>",
|
| 1719 |
+
"lstrip": false,
|
| 1720 |
+
"normalized": false,
|
| 1721 |
+
"rstrip": false,
|
| 1722 |
+
"single_word": false,
|
| 1723 |
+
"special": true
|
| 1724 |
+
},
|
| 1725 |
+
"126295": {
|
| 1726 |
+
"content": "<|reserved_token_211|>",
|
| 1727 |
+
"lstrip": false,
|
| 1728 |
+
"normalized": false,
|
| 1729 |
+
"rstrip": false,
|
| 1730 |
+
"single_word": false,
|
| 1731 |
+
"special": true
|
| 1732 |
+
},
|
| 1733 |
+
"126296": {
|
| 1734 |
+
"content": "<|reserved_token_212|>",
|
| 1735 |
+
"lstrip": false,
|
| 1736 |
+
"normalized": false,
|
| 1737 |
+
"rstrip": false,
|
| 1738 |
+
"single_word": false,
|
| 1739 |
+
"special": true
|
| 1740 |
+
},
|
| 1741 |
+
"126297": {
|
| 1742 |
+
"content": "<|reserved_token_213|>",
|
| 1743 |
+
"lstrip": false,
|
| 1744 |
+
"normalized": false,
|
| 1745 |
+
"rstrip": false,
|
| 1746 |
+
"single_word": false,
|
| 1747 |
+
"special": true
|
| 1748 |
+
},
|
| 1749 |
+
"126298": {
|
| 1750 |
+
"content": "<|reserved_token_214|>",
|
| 1751 |
+
"lstrip": false,
|
| 1752 |
+
"normalized": false,
|
| 1753 |
+
"rstrip": false,
|
| 1754 |
+
"single_word": false,
|
| 1755 |
+
"special": true
|
| 1756 |
+
},
|
| 1757 |
+
"126299": {
|
| 1758 |
+
"content": "<|reserved_token_215|>",
|
| 1759 |
+
"lstrip": false,
|
| 1760 |
+
"normalized": false,
|
| 1761 |
+
"rstrip": false,
|
| 1762 |
+
"single_word": false,
|
| 1763 |
+
"special": true
|
| 1764 |
+
},
|
| 1765 |
+
"126300": {
|
| 1766 |
+
"content": "<|reserved_token_216|>",
|
| 1767 |
+
"lstrip": false,
|
| 1768 |
+
"normalized": false,
|
| 1769 |
+
"rstrip": false,
|
| 1770 |
+
"single_word": false,
|
| 1771 |
+
"special": true
|
| 1772 |
+
},
|
| 1773 |
+
"126301": {
|
| 1774 |
+
"content": "<|reserved_token_217|>",
|
| 1775 |
+
"lstrip": false,
|
| 1776 |
+
"normalized": false,
|
| 1777 |
+
"rstrip": false,
|
| 1778 |
+
"single_word": false,
|
| 1779 |
+
"special": true
|
| 1780 |
+
},
|
| 1781 |
+
"126302": {
|
| 1782 |
+
"content": "<|reserved_token_218|>",
|
| 1783 |
+
"lstrip": false,
|
| 1784 |
+
"normalized": false,
|
| 1785 |
+
"rstrip": false,
|
| 1786 |
+
"single_word": false,
|
| 1787 |
+
"special": true
|
| 1788 |
+
},
|
| 1789 |
+
"126303": {
|
| 1790 |
+
"content": "<|reserved_token_219|>",
|
| 1791 |
+
"lstrip": false,
|
| 1792 |
+
"normalized": false,
|
| 1793 |
+
"rstrip": false,
|
| 1794 |
+
"single_word": false,
|
| 1795 |
+
"special": true
|
| 1796 |
+
},
|
| 1797 |
+
"126304": {
|
| 1798 |
+
"content": "<|reserved_token_220|>",
|
| 1799 |
+
"lstrip": false,
|
| 1800 |
+
"normalized": false,
|
| 1801 |
+
"rstrip": false,
|
| 1802 |
+
"single_word": false,
|
| 1803 |
+
"special": true
|
| 1804 |
+
},
|
| 1805 |
+
"126305": {
|
| 1806 |
+
"content": "<|reserved_token_221|>",
|
| 1807 |
+
"lstrip": false,
|
| 1808 |
+
"normalized": false,
|
| 1809 |
+
"rstrip": false,
|
| 1810 |
+
"single_word": false,
|
| 1811 |
+
"special": true
|
| 1812 |
+
},
|
| 1813 |
+
"126306": {
|
| 1814 |
+
"content": "<|reserved_token_222|>",
|
| 1815 |
+
"lstrip": false,
|
| 1816 |
+
"normalized": false,
|
| 1817 |
+
"rstrip": false,
|
| 1818 |
+
"single_word": false,
|
| 1819 |
+
"special": true
|
| 1820 |
+
},
|
| 1821 |
+
"126307": {
|
| 1822 |
+
"content": "<|reserved_token_223|>",
|
| 1823 |
+
"lstrip": false,
|
| 1824 |
+
"normalized": false,
|
| 1825 |
+
"rstrip": false,
|
| 1826 |
+
"single_word": false,
|
| 1827 |
+
"special": true
|
| 1828 |
+
},
|
| 1829 |
+
"126308": {
|
| 1830 |
+
"content": "<|reserved_token_224|>",
|
| 1831 |
+
"lstrip": false,
|
| 1832 |
+
"normalized": false,
|
| 1833 |
+
"rstrip": false,
|
| 1834 |
+
"single_word": false,
|
| 1835 |
+
"special": true
|
| 1836 |
+
},
|
| 1837 |
+
"126309": {
|
| 1838 |
+
"content": "<|reserved_token_225|>",
|
| 1839 |
+
"lstrip": false,
|
| 1840 |
+
"normalized": false,
|
| 1841 |
+
"rstrip": false,
|
| 1842 |
+
"single_word": false,
|
| 1843 |
+
"special": true
|
| 1844 |
+
},
|
| 1845 |
+
"126310": {
|
| 1846 |
+
"content": "<|reserved_token_226|>",
|
| 1847 |
+
"lstrip": false,
|
| 1848 |
+
"normalized": false,
|
| 1849 |
+
"rstrip": false,
|
| 1850 |
+
"single_word": false,
|
| 1851 |
+
"special": true
|
| 1852 |
+
},
|
| 1853 |
+
"126311": {
|
| 1854 |
+
"content": "<|reserved_token_227|>",
|
| 1855 |
+
"lstrip": false,
|
| 1856 |
+
"normalized": false,
|
| 1857 |
+
"rstrip": false,
|
| 1858 |
+
"single_word": false,
|
| 1859 |
+
"special": true
|
| 1860 |
+
},
|
| 1861 |
+
"126312": {
|
| 1862 |
+
"content": "<|reserved_token_228|>",
|
| 1863 |
+
"lstrip": false,
|
| 1864 |
+
"normalized": false,
|
| 1865 |
+
"rstrip": false,
|
| 1866 |
+
"single_word": false,
|
| 1867 |
+
"special": true
|
| 1868 |
+
},
|
| 1869 |
+
"126313": {
|
| 1870 |
+
"content": "<|reserved_token_229|>",
|
| 1871 |
+
"lstrip": false,
|
| 1872 |
+
"normalized": false,
|
| 1873 |
+
"rstrip": false,
|
| 1874 |
+
"single_word": false,
|
| 1875 |
+
"special": true
|
| 1876 |
+
},
|
| 1877 |
+
"126314": {
|
| 1878 |
+
"content": "<|reserved_token_230|>",
|
| 1879 |
+
"lstrip": false,
|
| 1880 |
+
"normalized": false,
|
| 1881 |
+
"rstrip": false,
|
| 1882 |
+
"single_word": false,
|
| 1883 |
+
"special": true
|
| 1884 |
+
},
|
| 1885 |
+
"126315": {
|
| 1886 |
+
"content": "<|reserved_token_231|>",
|
| 1887 |
+
"lstrip": false,
|
| 1888 |
+
"normalized": false,
|
| 1889 |
+
"rstrip": false,
|
| 1890 |
+
"single_word": false,
|
| 1891 |
+
"special": true
|
| 1892 |
+
},
|
| 1893 |
+
"126316": {
|
| 1894 |
+
"content": "<|reserved_token_232|>",
|
| 1895 |
+
"lstrip": false,
|
| 1896 |
+
"normalized": false,
|
| 1897 |
+
"rstrip": false,
|
| 1898 |
+
"single_word": false,
|
| 1899 |
+
"special": true
|
| 1900 |
+
},
|
| 1901 |
+
"126317": {
|
| 1902 |
+
"content": "<|reserved_token_233|>",
|
| 1903 |
+
"lstrip": false,
|
| 1904 |
+
"normalized": false,
|
| 1905 |
+
"rstrip": false,
|
| 1906 |
+
"single_word": false,
|
| 1907 |
+
"special": true
|
| 1908 |
+
},
|
| 1909 |
+
"126318": {
|
| 1910 |
+
"content": "<|reserved_token_234|>",
|
| 1911 |
+
"lstrip": false,
|
| 1912 |
+
"normalized": false,
|
| 1913 |
+
"rstrip": false,
|
| 1914 |
+
"single_word": false,
|
| 1915 |
+
"special": true
|
| 1916 |
+
},
|
| 1917 |
+
"126319": {
|
| 1918 |
+
"content": "<|reserved_token_235|>",
|
| 1919 |
+
"lstrip": false,
|
| 1920 |
+
"normalized": false,
|
| 1921 |
+
"rstrip": false,
|
| 1922 |
+
"single_word": false,
|
| 1923 |
+
"special": true
|
| 1924 |
+
},
|
| 1925 |
+
"126320": {
|
| 1926 |
+
"content": "<|reserved_token_236|>",
|
| 1927 |
+
"lstrip": false,
|
| 1928 |
+
"normalized": false,
|
| 1929 |
+
"rstrip": false,
|
| 1930 |
+
"single_word": false,
|
| 1931 |
+
"special": true
|
| 1932 |
+
},
|
| 1933 |
+
"126321": {
|
| 1934 |
+
"content": "<|reserved_token_237|>",
|
| 1935 |
+
"lstrip": false,
|
| 1936 |
+
"normalized": false,
|
| 1937 |
+
"rstrip": false,
|
| 1938 |
+
"single_word": false,
|
| 1939 |
+
"special": true
|
| 1940 |
+
},
|
| 1941 |
+
"126322": {
|
| 1942 |
+
"content": "<|reserved_token_238|>",
|
| 1943 |
+
"lstrip": false,
|
| 1944 |
+
"normalized": false,
|
| 1945 |
+
"rstrip": false,
|
| 1946 |
+
"single_word": false,
|
| 1947 |
+
"special": true
|
| 1948 |
+
},
|
| 1949 |
+
"126323": {
|
| 1950 |
+
"content": "<|reserved_token_239|>",
|
| 1951 |
+
"lstrip": false,
|
| 1952 |
+
"normalized": false,
|
| 1953 |
+
"rstrip": false,
|
| 1954 |
+
"single_word": false,
|
| 1955 |
+
"special": true
|
| 1956 |
+
},
|
| 1957 |
+
"126324": {
|
| 1958 |
+
"content": "<|reserved_token_240|>",
|
| 1959 |
+
"lstrip": false,
|
| 1960 |
+
"normalized": false,
|
| 1961 |
+
"rstrip": false,
|
| 1962 |
+
"single_word": false,
|
| 1963 |
+
"special": true
|
| 1964 |
+
},
|
| 1965 |
+
"126325": {
|
| 1966 |
+
"content": "<|reserved_token_241|>",
|
| 1967 |
+
"lstrip": false,
|
| 1968 |
+
"normalized": false,
|
| 1969 |
+
"rstrip": false,
|
| 1970 |
+
"single_word": false,
|
| 1971 |
+
"special": true
|
| 1972 |
+
},
|
| 1973 |
+
"126326": {
|
| 1974 |
+
"content": "<|reserved_token_242|>",
|
| 1975 |
+
"lstrip": false,
|
| 1976 |
+
"normalized": false,
|
| 1977 |
+
"rstrip": false,
|
| 1978 |
+
"single_word": false,
|
| 1979 |
+
"special": true
|
| 1980 |
+
},
|
| 1981 |
+
"126327": {
|
| 1982 |
+
"content": "<|reserved_token_243|>",
|
| 1983 |
+
"lstrip": false,
|
| 1984 |
+
"normalized": false,
|
| 1985 |
+
"rstrip": false,
|
| 1986 |
+
"single_word": false,
|
| 1987 |
+
"special": true
|
| 1988 |
+
},
|
| 1989 |
+
"126328": {
|
| 1990 |
+
"content": "<|reserved_token_244|>",
|
| 1991 |
+
"lstrip": false,
|
| 1992 |
+
"normalized": false,
|
| 1993 |
+
"rstrip": false,
|
| 1994 |
+
"single_word": false,
|
| 1995 |
+
"special": true
|
| 1996 |
+
},
|
| 1997 |
+
"126329": {
|
| 1998 |
+
"content": "<|reserved_token_245|>",
|
| 1999 |
+
"lstrip": false,
|
| 2000 |
+
"normalized": false,
|
| 2001 |
+
"rstrip": false,
|
| 2002 |
+
"single_word": false,
|
| 2003 |
+
"special": true
|
| 2004 |
+
},
|
| 2005 |
+
"126330": {
|
| 2006 |
+
"content": "<|reserved_token_246|>",
|
| 2007 |
+
"lstrip": false,
|
| 2008 |
+
"normalized": false,
|
| 2009 |
+
"rstrip": false,
|
| 2010 |
+
"single_word": false,
|
| 2011 |
+
"special": true
|
| 2012 |
+
},
|
| 2013 |
+
"126331": {
|
| 2014 |
+
"content": "<|reserved_token_247|>",
|
| 2015 |
+
"lstrip": false,
|
| 2016 |
+
"normalized": false,
|
| 2017 |
+
"rstrip": false,
|
| 2018 |
+
"single_word": false,
|
| 2019 |
+
"special": true
|
| 2020 |
+
},
|
| 2021 |
+
"126332": {
|
| 2022 |
+
"content": "<|reserved_token_248|>",
|
| 2023 |
+
"lstrip": false,
|
| 2024 |
+
"normalized": false,
|
| 2025 |
+
"rstrip": false,
|
| 2026 |
+
"single_word": false,
|
| 2027 |
+
"special": true
|
| 2028 |
+
},
|
| 2029 |
+
"126333": {
|
| 2030 |
+
"content": "<|reserved_token_249|>",
|
| 2031 |
+
"lstrip": false,
|
| 2032 |
+
"normalized": false,
|
| 2033 |
+
"rstrip": false,
|
| 2034 |
+
"single_word": false,
|
| 2035 |
+
"special": true
|
| 2036 |
+
},
|
| 2037 |
+
"126334": {
|
| 2038 |
+
"content": "<|reserved_token_250|>",
|
| 2039 |
+
"lstrip": false,
|
| 2040 |
+
"normalized": false,
|
| 2041 |
+
"rstrip": false,
|
| 2042 |
+
"single_word": false,
|
| 2043 |
+
"special": true
|
| 2044 |
+
},
|
| 2045 |
+
"126335": {
|
| 2046 |
+
"content": "<|reserved_token_251|>",
|
| 2047 |
+
"lstrip": false,
|
| 2048 |
+
"normalized": false,
|
| 2049 |
+
"rstrip": false,
|
| 2050 |
+
"single_word": false,
|
| 2051 |
+
"special": true
|
| 2052 |
+
},
|
| 2053 |
+
"126336": {
|
| 2054 |
+
"content": "<|mdm_mask|>",
|
| 2055 |
+
"lstrip": false,
|
| 2056 |
+
"normalized": false,
|
| 2057 |
+
"rstrip": false,
|
| 2058 |
+
"single_word": false,
|
| 2059 |
+
"special": true
|
| 2060 |
+
},
|
| 2061 |
+
"126337": {
|
| 2062 |
+
"content": "<|reserved_token_253|>",
|
| 2063 |
+
"lstrip": false,
|
| 2064 |
+
"normalized": false,
|
| 2065 |
+
"rstrip": false,
|
| 2066 |
+
"single_word": false,
|
| 2067 |
+
"special": true
|
| 2068 |
+
},
|
| 2069 |
+
"126338": {
|
| 2070 |
+
"content": "<|reserved_token_254|>",
|
| 2071 |
+
"lstrip": false,
|
| 2072 |
+
"normalized": false,
|
| 2073 |
+
"rstrip": false,
|
| 2074 |
+
"single_word": false,
|
| 2075 |
+
"special": true
|
| 2076 |
+
},
|
| 2077 |
+
"126339": {
|
| 2078 |
+
"content": "<|reserved_token_255|>",
|
| 2079 |
+
"lstrip": false,
|
| 2080 |
+
"normalized": false,
|
| 2081 |
+
"rstrip": false,
|
| 2082 |
+
"single_word": false,
|
| 2083 |
+
"special": true
|
| 2084 |
+
},
|
| 2085 |
+
"126340": {
|
| 2086 |
+
"content": "<role>",
|
| 2087 |
+
"lstrip": false,
|
| 2088 |
+
"normalized": false,
|
| 2089 |
+
"rstrip": false,
|
| 2090 |
+
"single_word": false,
|
| 2091 |
+
"special": true
|
| 2092 |
+
},
|
| 2093 |
+
"126341": {
|
| 2094 |
+
"content": "</role>",
|
| 2095 |
+
"lstrip": false,
|
| 2096 |
+
"normalized": false,
|
| 2097 |
+
"rstrip": false,
|
| 2098 |
+
"single_word": false,
|
| 2099 |
+
"special": true
|
| 2100 |
+
},
|
| 2101 |
+
"126342": {
|
| 2102 |
+
"content": "<|arithmetic_start|>",
|
| 2103 |
+
"lstrip": false,
|
| 2104 |
+
"normalized": false,
|
| 2105 |
+
"rstrip": false,
|
| 2106 |
+
"single_word": false,
|
| 2107 |
+
"special": true
|
| 2108 |
+
},
|
| 2109 |
+
"126343": {
|
| 2110 |
+
"content": "<|arithmetic_end|>",
|
| 2111 |
+
"lstrip": false,
|
| 2112 |
+
"normalized": false,
|
| 2113 |
+
"rstrip": false,
|
| 2114 |
+
"single_word": false,
|
| 2115 |
+
"special": true
|
| 2116 |
+
},
|
| 2117 |
+
"126344": {
|
| 2118 |
+
"content": "<|number_start|>",
|
| 2119 |
+
"lstrip": false,
|
| 2120 |
+
"normalized": false,
|
| 2121 |
+
"rstrip": false,
|
| 2122 |
+
"single_word": false,
|
| 2123 |
+
"special": true
|
| 2124 |
+
},
|
| 2125 |
+
"126345": {
|
| 2126 |
+
"content": "<|number_end|>",
|
| 2127 |
+
"lstrip": false,
|
| 2128 |
+
"normalized": false,
|
| 2129 |
+
"rstrip": false,
|
| 2130 |
+
"single_word": false,
|
| 2131 |
+
"special": true
|
| 2132 |
+
},
|
| 2133 |
+
"126346": {
|
| 2134 |
+
"content": "<|start_header_id|>",
|
| 2135 |
+
"lstrip": false,
|
| 2136 |
+
"normalized": false,
|
| 2137 |
+
"rstrip": false,
|
| 2138 |
+
"single_word": false,
|
| 2139 |
+
"special": true
|
| 2140 |
+
},
|
| 2141 |
+
"126347": {
|
| 2142 |
+
"content": "<|end_header_id|>",
|
| 2143 |
+
"lstrip": false,
|
| 2144 |
+
"normalized": false,
|
| 2145 |
+
"rstrip": false,
|
| 2146 |
+
"single_word": false,
|
| 2147 |
+
"special": true
|
| 2148 |
+
},
|
| 2149 |
+
"126348": {
|
| 2150 |
+
"content": "<|eot_id|>",
|
| 2151 |
+
"lstrip": false,
|
| 2152 |
+
"normalized": false,
|
| 2153 |
+
"rstrip": false,
|
| 2154 |
+
"single_word": false,
|
| 2155 |
+
"special": true
|
| 2156 |
+
}
|
| 2157 |
+
},
|
| 2158 |
+
"additional_special_tokens": [
|
| 2159 |
+
"<role>",
|
| 2160 |
+
"</role>",
|
| 2161 |
+
"<|arithmetic_start|>",
|
| 2162 |
+
"<|arithmetic_end|>",
|
| 2163 |
+
"<|number_start|>",
|
| 2164 |
+
"<|number_end|>"
|
| 2165 |
+
],
|
| 2166 |
+
"bos_token": "<|startoftext|>",
|
| 2167 |
+
"chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}",
|
| 2168 |
+
"clean_up_tokenization_spaces": false,
|
| 2169 |
+
"cls_token": "[CLS]",
|
| 2170 |
+
"eos_token": "<|endoftext|>",
|
| 2171 |
+
"fast_tokenizer": true,
|
| 2172 |
+
"gmask_token": "[gMASK]",
|
| 2173 |
+
"merges_file": null,
|
| 2174 |
+
"model_input_names": [
|
| 2175 |
+
"input_ids",
|
| 2176 |
+
"attention_mask"
|
| 2177 |
+
],
|
| 2178 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 2179 |
+
"pad_token": "<|endoftext|>",
|
| 2180 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
| 2181 |
+
"trust_remote_code": true,
|
| 2182 |
+
"vocab_file": null
|
| 2183 |
+
}
|