FuryTMP commited on
Commit
9229a2d
·
verified ·
1 Parent(s): 9c49b92

Update README.md

Browse files

info about the onnx model

Files changed (1) hide show
  1. README.md +52 -3
README.md CHANGED
@@ -1,3 +1,52 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - depth-estimation
5
+ - onnx
6
+ - computer-vision
7
+ - visiondepth3d
8
+ - mit-license
9
+ ---
10
+
11
+ # Distilled AnyDepth (ONNX) – For VisionDepth3D
12
+
13
+ > **Model Origin:** This model is based on [Distilled AnyDepth by Westlake-AGI-Lab](https://github.com/Westlake-AGI-Lab/Distill-Any-Depth), originally developed by ISL (Intel Intelligent Systems Lab).
14
+ > I did not train this model — I have converted it to ONNX format for fast, GPU-accelerated inference within tools such as VisionDepth3D.
15
+
16
+ ## 🧠 About This Model
17
+
18
+ This is a direct conversion of the **Distill-Any-Depth** PyTorch model to **ONNX**, intended for lightweight, real-time depth estimation from single RGB images.
19
+
20
+ ### ✔️ Key Features:
21
+ - ONNX format (exported from PyTorch)
22
+ - Compatible with ONNX Runtime and TensorRT
23
+ - Excellent for 2D to 3D depth workflows
24
+ - Works seamlessly with **VisionDepth3D**
25
+
26
+ ## 📌 Intended Use
27
+
28
+ - Real-time or batch depth map generation
29
+ - 2D to 3D conversion pipelines (e.g., SBS 3D video)
30
+ - Works on Windows, Linux (CUDA-supported)
31
+
32
+ ## 📜 License and Attribution
33
+
34
+ ### Citation
35
+ @article{he2025distill,
36
+ title = {Distill Any Depth: Distillation Creates a Stronger Monocular Depth Estimator},
37
+ author = {Xiankang He and Dongyan Guo and Hongji Li and Ruibo Li and Ying Cui and Chi Zhang},
38
+ year = {2025},
39
+ journal = {arXiv preprint arXiv: 2502.19204}
40
+ }
41
+
42
+ - **Source Model:** [Distilled AnyDepth by Westlake-AGI-Lab](https://github.com/Westlake-AGI-Lab/Distill-Any-Depth)
43
+ - **License:** MIT
44
+ - **Modifications:** Only format conversion (no retraining or weight changes)
45
+
46
+ > If you use this model, please credit the original authors: Westlake-AGI-Lab.
47
+
48
+ ## 💻 How to Use
49
+
50
+ ```python
51
+ import onnxruntime as ort
52
+ ort.InferenceSession("distilled_anydepth.onnx", providers=["CUDAExecutionProvider"])