FutureMa commited on
Commit
1f2b36b
·
verified ·
1 Parent(s): d877bb1

Upload stance analysis model - 2025-09-07 23:28:46

Browse files
Files changed (6) hide show
  1. README.md +139 -3
  2. config.json +39 -0
  3. model.safetensors +3 -0
  4. special_tokens_map.json +7 -0
  5. tokenizer_config.json +58 -0
  6. vocab.txt +0 -0
README.md CHANGED
@@ -1,3 +1,139 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: zh
3
+ library_name: transformers
4
+ pipeline_tag: text-classification
5
+ tags:
6
+ - bert
7
+ - chinese
8
+ - stance-analysis
9
+ - text-classification
10
+ - pytorch
11
+ - safetensors
12
+ datasets:
13
+ - custom-stance-dataset
14
+ metrics:
15
+ - accuracy
16
+ - f1
17
+ model-index:
18
+ - name: stance-ch
19
+ results:
20
+ - task:
21
+ type: text-classification
22
+ name: Stance Analysis
23
+ dataset:
24
+ type: custom
25
+ name: Chinese Stance Dataset
26
+ metrics:
27
+ - type: accuracy
28
+ value: N/A
29
+ name: Test Accuracy
30
+ - type: accuracy
31
+ value: N/A
32
+ name: Validation Accuracy
33
+ ---
34
+
35
+ # Chinese BERT for Stance Analysis (立场分析)
36
+
37
+ 这是一个基于BERT的中文立场分析模型,能够识别文本中表达的支持(SUPPORTIVE)或反对(OPPOSING)立场。
38
+
39
+ ## 模型信息
40
+
41
+ - **模型基础**: bert-base-chinese
42
+ - **任务类型**: 二分类文本分类
43
+ - **语言**: 中文 (Chinese)
44
+ - **训练数据**: 包含6,668条立场标注数据
45
+ - **标签**: OPPOSING (反对), SUPPORTIVE (支持)
46
+
47
+ ## 性能指标
48
+
49
+ | 指标 | 数值 |
50
+ |------|------|
51
+ | 验证集准确率 | N/A |
52
+ | 测试集准确率 | N/A |
53
+ | 训练轮数 | N/A |
54
+
55
+ ## 使用方法
56
+
57
+ ```python
58
+ from transformers import BertTokenizer, BertForSequenceClassification
59
+ import torch
60
+
61
+ # 加载模型和tokenizer
62
+ model_name = "FutureMa/stance_ch"
63
+ tokenizer = BertTokenizer.from_pretrained(model_name)
64
+ model = BertForSequenceClassification.from_pretrained(model_name)
65
+
66
+ # 示例预测
67
+ def predict_stance(text):
68
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
69
+
70
+ with torch.no_grad():
71
+ outputs = model(**inputs)
72
+ predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
73
+ predicted_class = torch.argmax(predictions, dim=-1).item()
74
+
75
+ labels = {"0": "OPPOSING", "1": "SUPPORTIVE"}
76
+ confidence = predictions[0][predicted_class].item()
77
+
78
+ return {
79
+ "stance": labels[str(predicted_class)],
80
+ "confidence": confidence
81
+ }
82
+
83
+ # 使用示例
84
+ text = "我完全支持这个政策,它对社会发展有积极作用。"
85
+ result = predict_stance(text)
86
+ print(f"立场: {result['stance']}, 置信度: {result['confidence']:.4f}")
87
+ ```
88
+
89
+ ## 数据格式
90
+
91
+ 训练数据采用以下格式:
92
+ ```
93
+ topic: [话题内容]
94
+ answer: [回答内容]
95
+ ```
96
+
97
+ 模型基于回答内容判断其对话题的立场。
98
+
99
+ ## 标签说明
100
+
101
+ - `OPPOSING` (0): 反对立场
102
+ - `SUPPORTIVE` (1): 支持立场
103
+
104
+ ## 训练详情
105
+
106
+ - **优化器**: AdamW
107
+ - **学习率**: 2e-5
108
+ - **批次大小**: 16
109
+ - **最大序列长度**: 512
110
+ - **早停策略**: 验证集准确率连续3轮无提升
111
+ - **数据划分**: 训练集 6,268 / 验证集 200 / 测试集 200
112
+
113
+ ## 注意事项
114
+
115
+ 1. 模型主要针对中文文本训练
116
+ 2. 最佳输入长度为512个token以内
117
+ 3. 模型对政治、社会话题的立场分析效果较好
118
+ 4. 建议在使用前对特定领域数据进行微调
119
+
120
+ ## 许可证
121
+
122
+ 本模型遵循Apache-2.0许可证。
123
+
124
+ ## 引用
125
+
126
+ 如果使用本模型,请引用:
127
+ ```bibtex
128
+ @misc{stance_ch_2025,
129
+ title={Chinese BERT for Stance Analysis},
130
+ author={FutureMa},
131
+ year={2025},
132
+ publisher={Hugging Face},
133
+ url={https://huggingface.co/FutureMa/stance_ch}
134
+ }
135
+ ```
136
+
137
+ ---
138
+
139
+ *模型训练时间: 2025年09月07日*
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "directionality": "bidi",
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "OPPOSING",
13
+ "1": "SUPPORTIVE"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "OPPOSING": 0,
19
+ "SUPPORTIVE": 1
20
+ },
21
+ "layer_norm_eps": 1e-12,
22
+ "max_position_embeddings": 512,
23
+ "model_type": "bert",
24
+ "num_attention_heads": 12,
25
+ "num_hidden_layers": 12,
26
+ "pad_token_id": 0,
27
+ "pooler_fc_size": 768,
28
+ "pooler_num_attention_heads": 12,
29
+ "pooler_num_fc_layers": 3,
30
+ "pooler_size_per_head": 128,
31
+ "pooler_type": "first_token_transform",
32
+ "position_embedding_type": "absolute",
33
+ "problem_type": "single_label_classification",
34
+ "torch_dtype": "float32",
35
+ "transformers_version": "4.52.4",
36
+ "type_vocab_size": 2,
37
+ "use_cache": true,
38
+ "vocab_size": 21128
39
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b87945a5870efc3849933dbb40cf3d1792915436469f8c4e0aa9579d9798ead
3
+ size 409100208
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff