File size: 91,159 Bytes
936ce55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

-------------------------- DeepSpeed Flops Profiler --------------------------
Profile Summary at step 2:
Notations:
data parallel size (dp_size), model parallel size(mp_size),
number of parameters (params), number of multiply-accumulate operations(MACs),
number of floating-point operations (flops), floating-point operations per second (FLOPS),
fwd latency (forward propagation latency), bwd latency (backward propagation latency),
step (weights update latency), iter latency (sum of fwd, bwd and step latency)

world size:                                                             32      
data parallel size:                                                     32      
model parallel size:                                                    1       
batch size per GPU:                                                     16      
params per GPU:                                                         3.05 B  
params of model = params per GPU * mp_size:                             3.05 B  
fwd MACs per GPU:                                                       9.86 TMACs
fwd flops per GPU:                                                      19.73 T 
fwd flops of model = fwd flops per GPU * mp_size:                       19.73 T 
fwd latency:                                                            158.91 ms
fwd FLOPS per GPU = fwd flops per GPU / fwd latency:                    124.15 TFLOPS
bwd latency:                                                            559.86 ms
bwd FLOPS per GPU = 2 * fwd flops per GPU / bwd latency:                70.48 TFLOPS
fwd+bwd FLOPS per GPU = 3 * fwd flops per GPU / (fwd+bwd latency):      82.34 TFLOPS
step latency:                                                           167.69 ms
iter latency:                                                           886.46 ms
FLOPS per GPU = 3 * fwd flops per GPU / iter latency:                   66.77 TFLOPS
samples/second:                                                         577.58  

----------------------------- Aggregated Profile per GPU -----------------------------
Top 1 modules in terms of params, MACs or fwd latency at different model depths:
depth 0:
    params      - {'DiT': '3.05 B'}
    MACs        - {'DiT': '9.86 TMACs'}
    fwd latency - {'DiT': '158.73 ms'}
depth 1:
    params      - {'ModuleList': '3.02 B'}
    MACs        - {'ModuleList': '9.8 TMACs'}
    fwd latency - {'ModuleList': '154.18 ms'}
depth 2:
    params      - {'DiTLayer': '3.02 B'}
    MACs        - {'DiTLayer': '9.8 TMACs'}
    fwd latency - {'DiTLayer': '154.18 ms'}
depth 3:
    params      - {'GemmaMLP': '1.51 B'}
    MACs        - {'GemmaMLP': '6.18 TMACs'}
    fwd latency - {'DiTSelfAttention': '81.24 ms'}

------------------------------ Detailed Profile per GPU ------------------------------
Each module profile is listed after its name in the following order: 
params, percentage of total params, MACs, percentage of total MACs, fwd latency, percentage of total fwd latency, fwd FLOPS

Note: 1. A module can have torch.nn.module or torch.nn.functional to compute logits (e.g. CrossEntropyLoss). They are not counted as submodules, thus not to be printed out. However they make up the difference between a parent's MACs (or latency) and the sum of its submodules'.
2. Number of floating-point operations is a theoretical estimation, thus FLOPS computed using that could be larger than the maximum system throughput.
3. The fwd latency listed in the top module's profile is directly captured at the module forward function in PyTorch, thus it's less than the fwd latency shown above which is captured in DeepSpeed.

DiT(
  3.05 B = 100% Params, 9.86 TMACs = 100% MACs, 158.73 ms = 100% latency, 124.29 TFLOPS
  (layers): ModuleList(
    (0): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.24 ms = 3.3% latency, 124.79 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 628.95 us = 0.4% latency, 1.28 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 36.24 us = 0.02% latency, 904.2 MFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 184.54 us = 0.12% latency, 4.36 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 237.46 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.76 ms = 1.74% latency, 87.27 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 462.77 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 238.42 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 276.8 us = 0.17% latency, 248.26 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 160.93 us = 0.1% latency, 106.75 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 151.87 us = 0.1% latency, 113.12 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 137.09 us = 0.09% latency, 125.32 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 136.85 us = 0.09% latency, 125.54 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 251.05 us = 0.16% latency, 273.72 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 238.18 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.23 ms = 0.77% latency, 336.48 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 343.8 us = 0.22% latency, 399.76 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 322.1 us = 0.2% latency, 426.69 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 301.36 us = 0.19% latency, 456.06 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 86.55 us = 0.05% latency, 387.71 GFLOPS)
      )
    )
    (1): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.12 ms = 3.23% latency, 127.56 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 585.56 us = 0.37% latency, 1.38 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 33.38 us = 0.02% latency, 981.71 MFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 159.98 us = 0.1% latency, 5.03 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 240.56 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.71 ms = 1.71% latency, 88.76 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 462.77 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 248.19 us = 0.16% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 248.67 us = 0.16% latency, 276.35 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 156.64 us = 0.1% latency, 109.68 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 149.73 us = 0.09% latency, 114.74 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 139.47 us = 0.09% latency, 123.18 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 136.61 us = 0.09% latency, 125.75 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 242.95 us = 0.15% latency, 282.86 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 237.94 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.21 ms = 0.76% latency, 341.33 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 334.02 us = 0.21% latency, 411.46 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 319.96 us = 0.2% latency, 429.55 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 301.36 us = 0.19% latency, 456.06 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 83.68 us = 0.05% latency, 400.96 GFLOPS)
      )
    )
    (2): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.12 ms = 3.23% latency, 127.59 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 585.08 us = 0.37% latency, 1.38 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 34.33 us = 0.02% latency, 954.44 MFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 160.69 us = 0.1% latency, 5.01 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 238.66 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.71 ms = 1.71% latency, 88.83 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 462.06 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 235.08 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 254.15 us = 0.16% latency, 270.38 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 154.26 us = 0.1% latency, 111.37 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 159.03 us = 0.1% latency, 108.03 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 139.47 us = 0.09% latency, 123.18 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 136.38 us = 0.09% latency, 125.97 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 238.9 us = 0.15% latency, 287.66 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 236.03 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.21 ms = 0.76% latency, 340.46 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 333.55 us = 0.21% latency, 412.05 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 322.82 us = 0.2% latency, 425.75 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 299.93 us = 0.19% latency, 458.24 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 85.59 us = 0.05% latency, 392.03 GFLOPS)
      )
    )
    (3): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.11 ms = 3.22% latency, 127.97 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 602.25 us = 0.38% latency, 1.34 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 33.14 us = 0.02% latency, 988.77 MFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 164.27 us = 0.1% latency, 4.9 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 241.04 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.68 ms = 1.69% latency, 89.59 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 462.29 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 234.84 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 247.48 us = 0.16% latency, 277.68 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 154.26 us = 0.1% latency, 111.37 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 151.16 us = 0.1% latency, 113.66 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 139.24 us = 0.09% latency, 123.39 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 136.85 us = 0.09% latency, 125.54 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 233.41 us = 0.15% latency, 294.41 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 238.66 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.2 ms = 0.76% latency, 342.82 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 331.88 us = 0.21% latency, 414.12 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 317.81 us = 0.2% latency, 432.45 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 300.41 us = 0.19% latency, 457.51 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 82.49 us = 0.05% latency, 406.76 GFLOPS)
      )
    )
    (4): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.09 ms = 3.21% latency, 128.43 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 581.98 us = 0.37% latency, 1.38 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 33.14 us = 0.02% latency, 988.77 MFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 159.98 us = 0.1% latency, 5.03 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 241.04 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.69 ms = 1.69% latency, 89.53 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 462.53 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 234.13 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 247.24 us = 0.16% latency, 277.95 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 157.36 us = 0.1% latency, 109.18 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 151.63 us = 0.1% latency, 113.3 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 139.47 us = 0.09% latency, 123.18 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 137.57 us = 0.09% latency, 124.88 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 237.46 us = 0.15% latency, 289.39 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 239.61 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.2 ms = 0.76% latency, 343.16 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 329.73 us = 0.21% latency, 416.82 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 317.81 us = 0.2% latency, 432.45 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 302.55 us = 0.19% latency, 454.26 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 82.25 us = 0.05% latency, 407.93 GFLOPS)
      )
    )
    (5): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.09 ms = 3.21% latency, 128.42 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 581.5 us = 0.37% latency, 1.38 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 34.33 us = 0.02% latency, 954.44 MFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 158.55 us = 0.1% latency, 5.08 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 240.56 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.69 ms = 1.69% latency, 89.58 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 461.58 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 234.84 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 242.23 us = 0.15% latency, 283.69 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 156.4 us = 0.1% latency, 109.84 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 151.16 us = 0.1% latency, 113.66 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 141.62 us = 0.09% latency, 121.31 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 136.14 us = 0.09% latency, 126.2 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 239.85 us = 0.15% latency, 286.51 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 239.37 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.2 ms = 0.76% latency, 342.68 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 335.93 us = 0.21% latency, 409.13 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 320.2 us = 0.2% latency, 429.23 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 297.78 us = 0.19% latency, 461.54 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 81.06 us = 0.05% latency, 413.93 GFLOPS)
      )
    )
    (6): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.16 ms = 3.25% latency, 126.68 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 582.22 us = 0.37% latency, 1.38 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 33.38 us = 0.02% latency, 981.71 MFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 159.03 us = 0.1% latency, 5.06 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 240.09 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.72 ms = 1.71% latency, 88.51 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 462.53 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 235.56 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 249.86 us = 0.16% latency, 275.03 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 159.98 us = 0.1% latency, 107.39 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 152.11 us = 0.1% latency, 112.94 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 143.05 us = 0.09% latency, 120.1 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 139.24 us = 0.09% latency, 123.39 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 236.99 us = 0.15% latency, 289.97 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 238.66 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.23 ms = 0.78% latency, 334.53 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 336.65 us = 0.21% latency, 408.26 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 330.69 us = 0.21% latency, 415.62 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 304.7 us = 0.19% latency, 451.06 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 85.59 us = 0.05% latency, 392.03 GFLOPS)
      )
    )
    (7): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.19 ms = 3.27% latency, 126.06 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 600.58 us = 0.38% latency, 1.34 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 34.81 us = 0.02% latency, 941.36 MFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 169.99 us = 0.11% latency, 4.74 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 241.04 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.72 ms = 1.71% latency, 88.39 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 463.01 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 235.08 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 257.25 us = 0.16% latency, 267.13 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 156.16 us = 0.1% latency, 110.01 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 150.68 us = 0.09% latency, 114.02 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 139.95 us = 0.09% latency, 122.76 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 140.91 us = 0.09% latency, 121.92 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 247.72 us = 0.16% latency, 277.41 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 239.61 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.23 ms = 0.78% latency, 334.72 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 340.7 us = 0.21% latency, 403.4 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 321.63 us = 0.2% latency, 427.32 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 311.14 us = 0.2% latency, 441.73 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 83.45 us = 0.05% latency, 402.11 GFLOPS)
      )
    )
    (8): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.15 ms = 3.24% latency, 127.04 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 592.95 us = 0.37% latency, 1.36 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 34.09 us = 0.02% latency, 961.11 MFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 154.02 us = 0.1% latency, 5.23 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 241.04 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.72 ms = 1.71% latency, 88.56 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 462.53 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 235.08 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 249.62 us = 0.16% latency, 275.29 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 153.06 us = 0.1% latency, 112.24 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 149.73 us = 0.09% latency, 114.74 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 141.86 us = 0.09% latency, 121.11 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 148.53 us = 0.09% latency, 115.66 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 244.62 us = 0.15% latency, 280.93 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 238.18 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.22 ms = 0.77% latency, 339.19 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 334.98 us = 0.21% latency, 410.29 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 318.29 us = 0.2% latency, 431.81 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 306.13 us = 0.19% latency, 448.96 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 83.21 us = 0.05% latency, 403.26 GFLOPS)
      )
    )
    (9): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.17 ms = 3.26% latency, 126.46 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 590.8 us = 0.37% latency, 1.36 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 33.86 us = 0.02% latency, 967.88 MFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 161.17 us = 0.1% latency, 5 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 241.76 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.72 ms = 1.71% latency, 88.44 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 463.01 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 235.08 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 255.11 us = 0.16% latency, 269.37 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 161.17 us = 0.1% latency, 106.59 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 148.53 us = 0.09% latency, 115.66 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 140.67 us = 0.09% latency, 122.13 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 137.57 us = 0.09% latency, 124.88 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 255.58 us = 0.16% latency, 268.87 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 236.75 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.23 ms = 0.78% latency, 334.14 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 337.84 us = 0.21% latency, 406.82 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 338.55 us = 0.21% latency, 405.96 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 300.17 us = 0.19% latency, 457.87 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 83.45 us = 0.05% latency, 402.11 GFLOPS)
      )
    )
    (10): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.11 ms = 3.22% latency, 127.93 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 581.98 us = 0.37% latency, 1.38 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 33.86 us = 0.02% latency, 967.88 MFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 161.89 us = 0.1% latency, 4.97 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 238.66 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.69 ms = 1.7% latency, 89.31 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 461.58 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 237.94 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 244.62 us = 0.15% latency, 280.93 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 157.12 us = 0.1% latency, 109.34 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 150.68 us = 0.09% latency, 114.02 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 137.33 us = 0.09% latency, 125.1 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 135.9 us = 0.09% latency, 126.42 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 247.48 us = 0.16% latency, 277.68 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 237.94 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.21 ms = 0.76% latency, 340.39 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 336.17 us = 0.21% latency, 408.84 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 319.48 us = 0.2% latency, 430.19 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 301.12 us = 0.19% latency, 456.42 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 81.06 us = 0.05% latency, 413.93 GFLOPS)
      )
    )
    (11): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.07 ms = 3.19% latency, 128.95 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 577.21 us = 0.36% latency, 1.4 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 32.66 us = 0.02% latency, 1 GFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 159.03 us = 0.1% latency, 5.06 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 237.94 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.67 ms = 1.68% latency, 90.06 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 461.1 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 234.6 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 244.14 us = 0.15% latency, 281.47 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 152.59 us = 0.1% latency, 112.59 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 149.97 us = 0.09% latency, 114.56 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 141.14 us = 0.09% latency, 121.72 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 134.71 us = 0.08% latency, 127.54 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 235.32 us = 0.15% latency, 292.03 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 236.99 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.2 ms = 0.76% latency, 342.48 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 334.98 us = 0.21% latency, 410.29 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 317.57 us = 0.2% latency, 432.78 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 300.17 us = 0.19% latency, 457.87 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 80.82 us = 0.05% latency, 415.15 GFLOPS)
      )
    )
    (12): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.11 ms = 3.22% latency, 128.03 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 587.22 us = 0.37% latency, 1.37 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 34.33 us = 0.02% latency, 954.44 MFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 163.32 us = 0.1% latency, 4.93 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 238.42 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.7 ms = 1.7% latency, 89.2 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 462.29 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 233.41 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 245.33 us = 0.15% latency, 280.11 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 159.26 us = 0.1% latency, 107.87 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 151.16 us = 0.1% latency, 113.66 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 140.91 us = 0.09% latency, 121.92 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 136.38 us = 0.09% latency, 125.97 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 235.32 us = 0.15% latency, 292.03 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 240.09 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.2 ms = 0.76% latency, 343.16 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 332.12 us = 0.21% latency, 413.83 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 317.57 us = 0.2% latency, 432.78 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 300.41 us = 0.19% latency, 457.51 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 81.54 us = 0.05% latency, 411.51 GFLOPS)
      )
    )
    (13): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.11 ms = 3.22% latency, 127.94 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 582.7 us = 0.37% latency, 1.38 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 32.19 us = 0.02% latency, 1.02 GFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 158.79 us = 0.1% latency, 5.07 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 240.56 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.68 ms = 1.69% latency, 89.82 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 462.53 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 232.93 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 248.43 us = 0.16% latency, 276.61 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 154.73 us = 0.1% latency, 111.03 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 150.68 us = 0.09% latency, 114.02 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 138.04 us = 0.09% latency, 124.45 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 134.94 us = 0.09% latency, 127.31 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 234.84 us = 0.15% latency, 292.62 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 236.99 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.23 ms = 0.78% latency, 334.98 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 349.76 us = 0.22% latency, 392.95 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 322.82 us = 0.2% latency, 425.75 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 302.79 us = 0.19% latency, 453.91 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 82.73 us = 0.05% latency, 405.58 GFLOPS)
      )
    )
    (14): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.11 ms = 3.22% latency, 127.87 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 584.13 us = 0.37% latency, 1.38 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 33.38 us = 0.02% latency, 981.71 MFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 160.69 us = 0.1% latency, 5.01 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 240.09 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.69 ms = 1.7% latency, 89.25 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 461.34 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 244.14 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 244.62 us = 0.15% latency, 280.93 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 154.97 us = 0.1% latency, 110.86 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 148.53 us = 0.09% latency, 115.66 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 138.04 us = 0.09% latency, 124.45 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 135.9 us = 0.09% latency, 126.42 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 241.52 us = 0.15% latency, 284.53 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 240.33 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.21 ms = 0.76% latency, 340.99 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 337.12 us = 0.21% latency, 407.68 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 319.72 us = 0.2% latency, 429.87 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 299.45 us = 0.19% latency, 458.97 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 81.3 us = 0.05% latency, 412.72 GFLOPS)
      )
    )
    (15): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.11 ms = 3.22% latency, 127.93 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 578.88 us = 0.36% latency, 1.39 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 32.66 us = 0.02% latency, 1 GFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 158.55 us = 0.1% latency, 5.08 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 240.33 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.71 ms = 1.7% latency, 88.87 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 463.25 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 231.74 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 246.29 us = 0.16% latency, 279.02 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 155.45 us = 0.1% latency, 110.52 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 150.68 us = 0.09% latency, 114.02 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 141.86 us = 0.09% latency, 121.11 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 150.44 us = 0.09% latency, 114.2 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 239.37 us = 0.15% latency, 287.08 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 237.46 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.21 ms = 0.76% latency, 342.07 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 335.22 us = 0.21% latency, 410 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 319 us = 0.2% latency, 430.84 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 298.74 us = 0.19% latency, 460.06 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 81.3 us = 0.05% latency, 412.72 GFLOPS)
      )
    )
    (16): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.1 ms = 3.22% latency, 128.09 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 578.64 us = 0.36% latency, 1.39 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 33.14 us = 0.02% latency, 988.77 MFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 159.26 us = 0.1% latency, 5.06 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 238.9 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.69 ms = 1.69% latency, 89.54 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 462.06 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 231.27 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 245.33 us = 0.15% latency, 280.11 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 153.54 us = 0.1% latency, 111.89 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 147.58 us = 0.09% latency, 116.41 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 140.19 us = 0.09% latency, 122.55 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 136.85 us = 0.09% latency, 125.54 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 244.14 us = 0.15% latency, 281.47 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 237.46 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.22 ms = 0.77% latency, 339.12 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 338.79 us = 0.21% latency, 405.67 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 319.96 us = 0.2% latency, 429.55 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 301.6 us = 0.19% latency, 455.7 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 81.54 us = 0.05% latency, 411.51 GFLOPS)
      )
    )
    (17): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.1 ms = 3.21% latency, 128.11 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 573.16 us = 0.36% latency, 1.41 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 32.9 us = 0.02% latency, 995.93 MFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 156.88 us = 0.1% latency, 5.13 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 236.75 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.69 ms = 1.69% latency, 89.43 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 461.82 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 234.13 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 247.72 us = 0.16% latency, 277.41 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 157.59 us = 0.1% latency, 109.01 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 148.3 us = 0.09% latency, 115.85 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 139.24 us = 0.09% latency, 123.39 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 135.66 us = 0.09% latency, 126.64 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 242.47 us = 0.15% latency, 283.41 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 239.13 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.22 ms = 0.77% latency, 339.06 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 339.03 us = 0.21% latency, 405.39 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 320.67 us = 0.2% latency, 428.6 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 301.6 us = 0.19% latency, 455.7 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 82.02 us = 0.05% latency, 409.12 GFLOPS)
      )
    )
    (18): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.19 ms = 3.27% latency, 125.93 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 584.6 us = 0.37% latency, 1.38 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 33.14 us = 0.02% latency, 988.77 MFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 160.22 us = 0.1% latency, 5.03 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 241.76 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.74 ms = 1.72% latency, 87.86 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 469.68 us = 0.3% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 239.85 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 245.33 us = 0.15% latency, 280.11 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 158.79 us = 0.1% latency, 108.19 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 153.78 us = 0.1% latency, 111.72 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 143.77 us = 0.09% latency, 119.5 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 140.91 us = 0.09% latency, 121.92 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 249.86 us = 0.16% latency, 275.03 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 239.13 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.24 ms = 0.78% latency, 332.22 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 349.28 us = 0.22% latency, 393.49 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 328.06 us = 0.21% latency, 418.94 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 306.61 us = 0.19% latency, 448.26 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 83.92 us = 0.05% latency, 399.82 GFLOPS)
      )
    )
    (19): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.26 ms = 3.32% latency, 124.18 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 604.15 us = 0.38% latency, 1.33 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 37.67 us = 0.02% latency, 869.87 MFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 167.61 us = 0.11% latency, 4.8 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 240.33 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.78 ms = 1.75% latency, 86.61 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 465.63 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 250.34 us = 0.16% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 255.11 us = 0.16% latency, 269.37 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 166.18 us = 0.1% latency, 103.38 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 156.88 us = 0.1% latency, 109.51 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 149.01 us = 0.09% latency, 115.29 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 141.38 us = 0.09% latency, 121.51 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 253.68 us = 0.16% latency, 270.89 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 239.37 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.25 ms = 0.79% latency, 330.25 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 349.76 us = 0.22% latency, 392.95 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 326.4 us = 0.21% latency, 421.08 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 311.61 us = 0.2% latency, 441.06 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 83.92 us = 0.05% latency, 399.82 GFLOPS)
      )
    )
    (20): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.13 ms = 3.23% latency, 127.45 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 586.75 us = 0.37% latency, 1.37 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 34.57 us = 0.02% latency, 947.85 MFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 161.89 us = 0.1% latency, 4.97 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 239.13 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.69 ms = 1.69% latency, 89.53 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 463.25 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 232.93 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 243.43 us = 0.15% latency, 282.3 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 154.97 us = 0.1% latency, 110.86 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 147.1 us = 0.09% latency, 116.79 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 142.57 us = 0.09% latency, 120.5 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 135.9 us = 0.09% latency, 126.42 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 241.99 us = 0.15% latency, 283.97 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 240.33 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.23 ms = 0.77% latency, 335.37 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 342.37 us = 0.22% latency, 401.44 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 322.82 us = 0.2% latency, 425.75 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 307.56 us = 0.19% latency, 446.87 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 82.97 us = 0.05% latency, 404.42 GFLOPS)
      )
    )
    (21): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.15 ms = 3.25% latency, 126.85 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 586.03 us = 0.37% latency, 1.37 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 34.09 us = 0.02% latency, 961.11 MFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 160.22 us = 0.1% latency, 5.03 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 240.33 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.73 ms = 1.72% latency, 88.03 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 463.72 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 235.08 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 256.06 us = 0.16% latency, 268.37 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 163.79 us = 0.1% latency, 104.89 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 151.87 us = 0.1% latency, 113.12 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 141.62 us = 0.09% latency, 121.31 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 136.61 us = 0.09% latency, 125.75 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 248.67 us = 0.16% latency, 276.35 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 238.9 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.21 ms = 0.76% latency, 340.59 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 337.6 us = 0.21% latency, 407.11 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 320.67 us = 0.2% latency, 428.6 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 300.41 us = 0.19% latency, 457.51 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 81.78 us = 0.05% latency, 410.31 GFLOPS)
      )
    )
    (22): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.14 ms = 3.24% latency, 127.25 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 585.79 us = 0.37% latency, 1.37 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 34.09 us = 0.02% latency, 961.11 MFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 163.08 us = 0.1% latency, 4.94 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 241.52 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.71 ms = 1.71% latency, 88.84 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 462.77 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 239.37 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 258.21 us = 0.16% latency, 266.14 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 154.5 us = 0.1% latency, 111.2 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 149.01 us = 0.09% latency, 115.29 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 139.95 us = 0.09% latency, 122.76 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 137.33 us = 0.09% latency, 125.1 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 237.94 us = 0.15% latency, 288.81 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 239.37 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.22 ms = 0.77% latency, 337.86 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 340.22 us = 0.21% latency, 403.97 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 323.53 us = 0.2% latency, 424.81 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 301.12 us = 0.19% latency, 456.42 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 82.25 us = 0.05% latency, 407.93 GFLOPS)
      )
    )
    (23): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.15 ms = 3.25% latency, 126.88 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 595.81 us = 0.38% latency, 1.35 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 34.81 us = 0.02% latency, 941.36 MFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 169.52 us = 0.11% latency, 4.75 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 239.61 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.71 ms = 1.71% latency, 88.66 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 466.35 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 238.9 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 249.15 us = 0.16% latency, 275.82 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 153.54 us = 0.1% latency, 111.89 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 150.2 us = 0.09% latency, 114.38 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 142.34 us = 0.09% latency, 120.7 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 137.09 us = 0.09% latency, 125.32 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 243.66 us = 0.15% latency, 282.03 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 236.27 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.22 ms = 0.77% latency, 337.34 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 342.61 us = 0.22% latency, 401.16 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 320.43 us = 0.2% latency, 428.91 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 303.27 us = 0.19% latency, 453.19 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 82.73 us = 0.05% latency, 405.58 GFLOPS)
      )
    )
    (24): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.12 ms = 3.23% latency, 127.67 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 581.98 us = 0.37% latency, 1.38 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 35.29 us = 0.02% latency, 928.64 MFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 160.22 us = 0.1% latency, 5.03 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 238.66 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.69 ms = 1.7% latency, 89.29 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 461.34 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 235.08 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 246.76 us = 0.16% latency, 278.48 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 157.83 us = 0.1% latency, 108.85 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 149.01 us = 0.09% latency, 115.29 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 140.67 us = 0.09% latency, 122.13 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 136.85 us = 0.09% latency, 125.54 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 244.86 us = 0.15% latency, 280.65 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 239.13 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.22 ms = 0.77% latency, 337.6 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 340.22 us = 0.21% latency, 403.97 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 326.16 us = 0.21% latency, 421.39 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 303.51 us = 0.19% latency, 452.84 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 82.25 us = 0.05% latency, 407.93 GFLOPS)
      )
    )
    (25): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.12 ms = 3.22% latency, 127.78 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 585.56 us = 0.37% latency, 1.38 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 33.86 us = 0.02% latency, 967.88 MFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 159.74 us = 0.1% latency, 5.04 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 241.04 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.69 ms = 1.7% latency, 89.35 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 462.77 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 235.08 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 246.29 us = 0.16% latency, 279.02 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 155.21 us = 0.1% latency, 110.69 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 151.87 us = 0.1% latency, 113.12 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 141.38 us = 0.09% latency, 121.51 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 137.57 us = 0.09% latency, 124.88 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 242.95 us = 0.15% latency, 282.86 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 239.13 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.21 ms = 0.76% latency, 339.86 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 337.12 us = 0.21% latency, 407.68 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 321.63 us = 0.2% latency, 427.32 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 300.88 us = 0.19% latency, 456.78 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 81.78 us = 0.05% latency, 410.31 GFLOPS)
      )
    )
    (26): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.18 ms = 3.26% latency, 126.29 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 589.61 us = 0.37% latency, 1.37 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 33.62 us = 0.02% latency, 974.74 MFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 165.22 us = 0.1% latency, 4.87 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 239.13 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.71 ms = 1.71% latency, 88.78 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 461.82 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 239.61 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 250.1 us = 0.16% latency, 274.77 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 155.69 us = 0.1% latency, 110.35 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 149.73 us = 0.09% latency, 114.74 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 139.47 us = 0.09% latency, 123.18 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 135.9 us = 0.09% latency, 126.42 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 250.34 us = 0.16% latency, 274.51 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 240.09 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.24 ms = 0.78% latency, 332.92 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 346.66 us = 0.22% latency, 396.47 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 329.02 us = 0.21% latency, 417.73 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 307.32 us = 0.19% latency, 447.22 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 83.45 us = 0.05% latency, 402.11 GFLOPS)
      )
    )
    (27): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.15 ms = 3.25% latency, 126.81 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 590.09 us = 0.37% latency, 1.36 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 34.57 us = 0.02% latency, 947.85 MFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 165.22 us = 0.1% latency, 4.87 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 237.7 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.71 ms = 1.71% latency, 88.7 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 463.25 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 234.13 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 252.25 us = 0.16% latency, 272.43 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 160.46 us = 0.1% latency, 107.07 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 151.4 us = 0.1% latency, 113.48 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 141.38 us = 0.09% latency, 121.51 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 139.24 us = 0.09% latency, 123.39 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 243.66 us = 0.15% latency, 282.03 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 238.66 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.23 ms = 0.77% latency, 336.03 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 341.65 us = 0.22% latency, 402.28 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 325.44 us = 0.21% latency, 422.32 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 304.7 us = 0.19% latency, 451.06 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 83.21 us = 0.05% latency, 403.26 GFLOPS)
      )
    )
    (28): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.17 ms = 3.26% latency, 126.45 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 592.71 us = 0.37% latency, 1.36 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 35.29 us = 0.02% latency, 928.64 MFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 166.18 us = 0.1% latency, 4.85 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 238.66 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.73 ms = 1.72% latency, 88.07 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 464.92 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 245.33 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 252.96 us = 0.16% latency, 271.66 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 158.55 us = 0.1% latency, 108.36 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 157.12 us = 0.1% latency, 109.34 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 143.53 us = 0.09% latency, 119.7 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 137.57 us = 0.09% latency, 124.88 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 241.04 us = 0.15% latency, 285.09 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 237.46 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.22 ms = 0.77% latency, 337.8 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 342.37 us = 0.22% latency, 401.44 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 321.87 us = 0.2% latency, 427.01 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 302.55 us = 0.19% latency, 454.26 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 82.49 us = 0.05% latency, 406.76 GFLOPS)
      )
    )
    (29): DiTLayer(
      100.68 M = 3.3% Params, 326.82 GMACs = 3.31% MACs, 5.16 ms = 3.25% latency, 126.68 TFLOPS
      (input_layernorm): AdaLayerNormZero(
        25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 577.21 us = 0.36% latency, 1.4 TFLOPS
        (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 35.05 us = 0.02% latency, 934.96 MFLOPS)
        (linear): Linear(25.18 M = 0.83% Params, 402.65 MMACs = 0% MACs, 158.79 us = 0.1% latency, 5.07 TFLOPS, in_features=2048, out_features=12288, bias=True)
        (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 236.75 us = 0.15% latency, 0 FLOPS)
      )
      (self_attn): DiTSelfAttention(
        25.17 M = 0.83% Params, 120.26 GMACs = 1.22% MACs, 2.73 ms = 1.72% latency, 88 TFLOPS
        (q_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 463.72 us = 0.29% latency, 0 FLOPS)
        (k_norm): GemmaRMSNorm(128 = 0% Params, 0 MACs = 0% MACs, 237.94 us = 0.15% latency, 0 FLOPS)
        (q_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 247.48 us = 0.16% latency, 277.68 TFLOPS, in_features=2048, out_features=4096, bias=False)
        (k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 165.94 us = 0.1% latency, 103.53 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 155.21 us = 0.1% latency, 110.69 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_k_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 141.14 us = 0.09% latency, 121.72 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (text_v_proj): Linear(2.1 M = 0.07% Params, 8.59 GMACs = 0.09% MACs, 139.95 us = 0.09% latency, 122.76 TFLOPS, in_features=2048, out_features=1024, bias=False)
        (o_proj): Linear(8.39 M = 0.28% Params, 34.36 GMACs = 0.35% MACs, 252.25 us = 0.16% latency, 272.43 TFLOPS, in_features=4096, out_features=2048, bias=False)
      )
      (post_attention_layernorm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 237.7 us = 0.15% latency, 0 FLOPS)
      (mlp): GemmaMLP(
        50.33 M = 1.65% Params, 206.16 GMACs = 2.09% MACs, 1.23 ms = 0.77% latency, 336.09 TFLOPS
        (gate_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 341.42 us = 0.22% latency, 402.56 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (up_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 321.15 us = 0.2% latency, 427.96 TFLOPS, in_features=2048, out_features=8192, bias=False)
        (down_proj): Linear(16.78 M = 0.55% Params, 68.72 GMACs = 0.7% MACs, 301.84 us = 0.19% latency, 455.34 TFLOPS, in_features=8192, out_features=2048, bias=False)
        (act_fn): PytorchGELUTanh(0 = 0% Params, 0 MACs = 0% MACs, 82.49 us = 0.05% latency, 406.76 GFLOPS)
      )
    )
  )
  (patch_embed): PatchEmbed(
    133.12 K = 0% Params, 536.87 MMACs = 0.01% MACs, 487.8 us = 0.31% latency, 2.22 TFLOPS
    (proj): Conv2d(133.12 K = 0% Params, 536.87 MMACs = 0.01% MACs, 300.17 us = 0.19% latency, 3.61 TFLOPS, 16, 2048, kernel_size=(2, 2), stride=(2, 2))
  )
  (rotary_emb): GemmaRotaryEmbedding(0 = 0% Params, 0 MACs = 0% MACs, 0 s = 0% latency, 0 FLOPS)
  (time_proj): Timesteps(0 = 0% Params, 0 MACs = 0% MACs, 248.43 us = 0.16% latency, 0 FLOPS)
  (timestep_embedder): Sequential(
    4.72 M = 0.15% Params, 75.5 MMACs = 0% MACs, 493.53 us = 0.31% latency, 306.02 GFLOPS
    (0): Linear(526.34 K = 0.02% Params, 8.39 MMACs = 0% MACs, 227.93 us = 0.14% latency, 73.61 GFLOPS, in_features=256, out_features=2048, bias=True)
    (1): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 50.78 us = 0.03% latency, 645.25 MFLOPS)
    (2): Linear(4.2 M = 0.14% Params, 67.11 MMACs = 0% MACs, 144.72 us = 0.09% latency, 927.43 GFLOPS, in_features=2048, out_features=2048, bias=True)
  )
  (context_embedder): Sequential(
    4.2 M = 0.14% Params, 17.18 GMACs = 0.17% MACs, 451.56 us = 0.28% latency, 76.09 TFLOPS
    (0): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 171.18 us = 0.11% latency, 0 FLOPS)
    (1): Linear(4.2 M = 0.14% Params, 17.18 GMACs = 0.17% MACs, 226.97 us = 0.14% latency, 151.38 TFLOPS, in_features=2048, out_features=2048, bias=True)
  )
  (norm_out): AdaLayerNormOut(
    8.39 M = 0.28% Params, 134.22 MMACs = 0% MACs, 570.77 us = 0.36% latency, 470.36 GFLOPS
    (silu): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 35.05 us = 0.02% latency, 934.96 MFLOPS)
    (linear): Linear(8.39 M = 0.28% Params, 134.22 MMACs = 0% MACs, 148.77 us = 0.09% latency, 1.8 TFLOPS, in_features=2048, out_features=4096, bias=True)
    (norm): GemmaRMSNorm(2.05 K = 0% Params, 0 MACs = 0% MACs, 238.66 us = 0.15% latency, 0 FLOPS)
  )
  (proj_out): Linear(131.14 K = 0% Params, 536.87 MMACs = 0.01% MACs, 173.09 us = 0.11% latency, 6.2 TFLOPS, in_features=2048, out_features=64, bias=True)
  (repa_projector): Sequential(
    9.97 M = 0.33% Params, 40.8 GMACs = 0.41% MACs, 698.57 us = 0.44% latency, 116.84 TFLOPS
    (0): Linear(4.2 M = 0.14% Params, 17.18 GMACs = 0.17% MACs, 206.47 us = 0.13% latency, 166.41 TFLOPS, in_features=2048, out_features=2048, bias=True)
    (1): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 34.57 us = 0.02% latency, 242.65 GFLOPS)
    (2): Linear(4.2 M = 0.14% Params, 17.18 GMACs = 0.17% MACs, 171.9 us = 0.11% latency, 199.88 TFLOPS, in_features=2048, out_features=2048, bias=True)
    (3): SiLU(0 = 0% Params, 0 MACs = 0% MACs, 36.24 us = 0.02% latency, 231.48 GFLOPS)
    (4): Linear(1.57 M = 0.05% Params, 6.44 GMACs = 0.07% MACs, 148.06 us = 0.09% latency, 87.03 TFLOPS, in_features=2048, out_features=768, bias=True)
  )
)
------------------------------------------------------------------------------