File size: 11,340 Bytes
e0930f1
 
 
06b4917
e0930f1
 
 
 
 
 
 
 
 
 
 
 
06b4917
e0930f1
06b4917
 
 
 
 
e0930f1
 
06b4917
 
 
 
e0930f1
 
06b4917
 
1a527b6
 
06b4917
 
 
 
 
 
e0930f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06b4917
e0930f1
 
 
 
 
58ccfcd
e0930f1
 
 
58ccfcd
 
06b4917
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0930f1
 
 
 
1a527b6
e0930f1
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
library_name: transformers
license: apache-2.0
base_model: facebook/detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: detr-arrows
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# detr-arrows

This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0051
- Map: 0.0157
- Map 50: 0.0235
- Map 75: 0.017
- Map Small: 0.0157
- Map Medium: -1.0
- Map Large: -1.0
- Mar 1: 0.0854
- Mar 10: 0.0917
- Mar 100: 0.2917
- Mar Small: 0.2917
- Mar Medium: -1.0
- Mar Large: -1.0
- Map Left: 0.0
- Mar 100 Left: 0.0
- Map Right: -1.0
- Mar 100 Right: -1.0
- Map Up: 0.0385
- Mar 100 Up: 0.2667
- Map Down: 0.0146
- Mar 100 Down: 0.8
- Map ?: 0.0099
- Mar 100 ?: 0.1

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Map    | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1  | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Left | Mar 100 Left | Map Right | Mar 100 Right | Map Up | Mar 100 Up | Map Down | Mar 100 Down | Map ?  | Mar 100 ? |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:--------:|:------------:|:---------:|:-------------:|:------:|:----------:|:--------:|:------------:|:------:|:---------:|
| No log        | 1.0   | 8    | 2.9834          | 0.0001 | 0.0014 | 0.0    | 0.0002    | -1.0       | -1.0      | 0.0    | 0.0    | 0.025   | 0.025     | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.0    | 0.0        | 0.0006   | 0.1          | 0.0    | 0.0       |
| No log        | 2.0   | 16   | 2.3564          | 0.0005 | 0.0023 | 0.0    | 0.0007    | -1.0       | -1.0      | 0.0    | 0.0    | 0.05    | 0.05      | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.0    | 0.0        | 0.0019   | 0.2          | 0.0    | 0.0       |
| No log        | 3.0   | 24   | 2.1618          | 0.001  | 0.0025 | 0.0    | 0.0012    | -1.0       | -1.0      | 0.0    | 0.0    | 0.1     | 0.1       | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.0    | 0.0        | 0.004    | 0.4          | 0.0    | 0.0       |
| No log        | 4.0   | 32   | 2.0074          | 0.0005 | 0.0027 | 0.0    | 0.0007    | -1.0       | -1.0      | 0.0    | 0.0    | 0.05    | 0.05      | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.0    | 0.0        | 0.0022   | 0.2          | 0.0    | 0.0       |
| No log        | 5.0   | 40   | 1.7452          | 0.0008 | 0.003  | 0.0    | 0.0009    | -1.0       | -1.0      | 0.0    | 0.0    | 0.0812  | 0.0812    | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.0    | 0.0        | 0.0028   | 0.3          | 0.0003 | 0.025     |
| No log        | 6.0   | 48   | 1.6746          | 0.0009 | 0.0024 | 0.0    | 0.0011    | -1.0       | -1.0      | 0.0    | 0.0    | 0.1     | 0.1       | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.0    | 0.0        | 0.0038   | 0.4          | 0.0    | 0.0       |
| No log        | 7.0   | 56   | 1.5161          | 0.0014 | 0.0023 | 0.0023 | 0.0016    | -1.0       | -1.0      | 0.0    | 0.0    | 0.15    | 0.15      | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.0    | 0.0        | 0.0054   | 0.6          | 0.0    | 0.0       |
| No log        | 8.0   | 64   | 1.5721          | 0.0009 | 0.0017 | 0.0    | 0.001     | -1.0       | -1.0      | 0.0    | 0.0    | 0.125   | 0.125     | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.0    | 0.0        | 0.0034   | 0.5          | 0.0    | 0.0       |
| No log        | 9.0   | 72   | 1.4536          | 0.0014 | 0.0021 | 0.0021 | 0.0021    | -1.0       | -1.0      | 0.0    | 0.0    | 0.175   | 0.175     | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.0    | 0.0        | 0.0056   | 0.7          | 0.0    | 0.0       |
| No log        | 10.0  | 80   | 1.2638          | 0.0013 | 0.0023 | 0.0014 | 0.0019    | -1.0       | -1.0      | 0.0    | 0.0    | 0.175   | 0.175     | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.0    | 0.0        | 0.0052   | 0.7          | 0.0    | 0.0       |
| No log        | 11.0  | 88   | 1.2646          | 0.0015 | 0.0025 | 0.0014 | 0.0025    | -1.0       | -1.0      | 0.0    | 0.0    | 0.175   | 0.175     | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.0    | 0.0        | 0.0062   | 0.7          | 0.0    | 0.0       |
| No log        | 12.0  | 96   | 1.2239          | 0.0023 | 0.003  | 0.003  | 0.0038    | -1.0       | -1.0      | 0.0    | 0.0    | 0.2     | 0.2       | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.0    | 0.0        | 0.0092   | 0.8          | 0.0    | 0.0       |
| No log        | 13.0  | 104  | 1.1191          | 0.0023 | 0.0057 | 0.0025 | 0.0035    | -1.0       | -1.0      | 0.0    | 0.0125 | 0.1875  | 0.1875    | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.0    | 0.0        | 0.0068   | 0.7          | 0.0026 | 0.05      |
| No log        | 14.0  | 112  | 1.1491          | 0.0029 | 0.0054 | 0.002  | 0.0038    | -1.0       | -1.0      | 0.0312 | 0.0312 | 0.1813  | 0.1813    | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.0    | 0.0        | 0.0047   | 0.6          | 0.0068 | 0.125     |
| No log        | 15.0  | 120  | 1.1062          | 0.02   | 0.0349 | 0.0297 | 0.0287    | -1.0       | -1.0      | 0.05   | 0.075  | 0.25    | 0.25      | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.0673 | 0.2        | 0.0053   | 0.7          | 0.0074 | 0.1       |
| No log        | 16.0  | 128  | 1.0963          | 0.0705 | 0.0925 | 0.086  | 0.0705    | -1.0       | -1.0      | 0.0854 | 0.0854 | 0.2354  | 0.2354    | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.2693 | 0.2667     | 0.0058   | 0.6          | 0.007  | 0.075     |
| No log        | 17.0  | 136  | 1.0369          | 0.0349 | 0.051  | 0.0434 | 0.0349    | -1.0       | -1.0      | 0.075  | 0.0917 | 0.2917  | 0.2917    | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.1234 | 0.2667     | 0.0049   | 0.8          | 0.0114 | 0.1       |
| No log        | 18.0  | 144  | 1.0721          | 0.0324 | 0.05   | 0.0435 | 0.0324    | -1.0       | -1.0      | 0.0771 | 0.0771 | 0.2521  | 0.2521    | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.1178 | 0.2333     | 0.004    | 0.7          | 0.0077 | 0.075     |
| No log        | 19.0  | 152  | 1.0081          | 0.0623 | 0.0922 | 0.0858 | 0.0625    | -1.0       | -1.0      | 0.0646 | 0.0833 | 0.2833  | 0.2833    | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.2356 | 0.2333     | 0.0051   | 0.8          | 0.0085 | 0.1       |
| No log        | 20.0  | 160  | 1.0390          | 0.0367 | 0.0504 | 0.044  | 0.0367    | -1.0       | -1.0      | 0.0729 | 0.0854 | 0.2604  | 0.2604    | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.1347 | 0.2667     | 0.0053   | 0.7          | 0.0071 | 0.075     |
| No log        | 21.0  | 168  | 1.0262          | 0.0255 | 0.0371 | 0.0299 | 0.0255    | -1.0       | -1.0      | 0.0729 | 0.0854 | 0.2604  | 0.2604    | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.0898 | 0.2667     | 0.0052   | 0.7          | 0.0068 | 0.075     |
| No log        | 22.0  | 176  | 0.9972          | 0.0134 | 0.0223 | 0.0159 | 0.0134    | -1.0       | -1.0      | 0.0646 | 0.0833 | 0.2833  | 0.2833    | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.0393 | 0.2333     | 0.0058   | 0.8          | 0.0086 | 0.1       |
| No log        | 23.0  | 184  | 1.0195          | 0.0135 | 0.0204 | 0.014  | 0.0135    | -1.0       | -1.0      | 0.0729 | 0.0917 | 0.2917  | 0.2917    | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.0385 | 0.2667     | 0.0061   | 0.8          | 0.0092 | 0.1       |
| No log        | 24.0  | 192  | 1.0240          | 0.0145 | 0.023  | 0.0139 | 0.0145    | -1.0       | -1.0      | 0.0792 | 0.0917 | 0.2917  | 0.2917    | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.0385 | 0.2667     | 0.0101   | 0.8          | 0.0095 | 0.1       |
| No log        | 25.0  | 200  | 1.0151          | 0.0157 | 0.024  | 0.0176 | 0.0157    | -1.0       | -1.0      | 0.0854 | 0.0917 | 0.2917  | 0.2917    | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.0385 | 0.2667     | 0.0147   | 0.8          | 0.0096 | 0.1       |
| No log        | 26.0  | 208  | 1.0143          | 0.0153 | 0.0233 | 0.0168 | 0.0153    | -1.0       | -1.0      | 0.0854 | 0.0917 | 0.2917  | 0.2917    | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.0385 | 0.2667     | 0.013    | 0.8          | 0.0099 | 0.1       |
| No log        | 27.0  | 216  | 1.0092          | 0.0157 | 0.0235 | 0.017  | 0.0157    | -1.0       | -1.0      | 0.0854 | 0.0917 | 0.2917  | 0.2917    | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.0385 | 0.2667     | 0.0146   | 0.8          | 0.0099 | 0.1       |
| No log        | 28.0  | 224  | 1.0051          | 0.0157 | 0.0235 | 0.017  | 0.0157    | -1.0       | -1.0      | 0.0854 | 0.0917 | 0.2917  | 0.2917    | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.0385 | 0.2667     | 0.0146   | 0.8          | 0.0099 | 0.1       |
| No log        | 29.0  | 232  | 1.0046          | 0.0157 | 0.0235 | 0.017  | 0.0157    | -1.0       | -1.0      | 0.0854 | 0.0917 | 0.2917  | 0.2917    | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.0385 | 0.2667     | 0.0146   | 0.8          | 0.0099 | 0.1       |
| No log        | 30.0  | 240  | 1.0051          | 0.0157 | 0.0235 | 0.017  | 0.0157    | -1.0       | -1.0      | 0.0854 | 0.0917 | 0.2917  | 0.2917    | -1.0       | -1.0      | 0.0      | 0.0          | -1.0      | -1.0          | 0.0385 | 0.2667     | 0.0146   | 0.8          | 0.0099 | 0.1       |


### Framework versions

- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0