GardensOfBabylon29 commited on
Commit
19f210a
·
verified ·
1 Parent(s): 9d4d2f4

first RL model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v3
16
+ type: LunarLander-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 211.92 +/- 100.58
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v3**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x000001F10D3A1CF0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000001F10D3A1D80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000001F10D3A1E10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000001F10D3A1EA0>", "_build": "<function ActorCriticPolicy._build at 0x000001F10D3A1F30>", "forward": "<function ActorCriticPolicy.forward at 0x000001F10D3A1FC0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x000001F10D3A2050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000001F10D3A20E0>", "_predict": "<function ActorCriticPolicy._predict at 0x000001F10D3A2170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000001F10D3A2200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000001F10D3A2290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x000001F10D3A2320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000001F10D3A4A40>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1753450630384418500, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADNkCr5Wqww98m0ePUH3kr7Kgow90+98vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV/gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGzbdnbqQimMAWyUTRMBjAF0lEdAp5f/4M4LkXV9lChoBkdAcDhYlIEr5WgHS+loCEdAp5rrh1klNXV9lChoBkdAcR5YChew92gHTScCaAhHQKedEJZW7vp1fZQoaAZHQHCpF0knkT9oB0vsaAhHQKed/LYf4h51fZQoaAZHQHFGLVJ+UhVoB0veaAhHQKehAVLSNOx1fZQoaAZHQHHBC5uqFRJoB03/AWgIR0Cnoyi/XXiBdX2UKGgGR0BgF7upjtojaAdN6ANoCEdAp6lEJng5znV9lChoBkdAcckuhbnoxGgHS8doCEdAp6n+5SWJJ3V9lChoBkdAbqm/Z/Tb4GgHTdQCaAhHQKeu3fyf+S91fZQoaAZHQGTFVsDW9UVoB03oA2gIR0CntPEEs8PndX2UKGgGR0Bxdva4+bExaAdL/2gIR0CnthHXEqDsdX2UKGgGR0ByMc6zVtoBaAdL8GgIR0Cntwx8D0UXdX2UKGgGR0BwB5NpM6BAaAdL3WgIR0CnuhLO7g89dX2UKGgGR0ByXNNBWxQjaAdL22gIR0CnuvVGCqZMdX2UKGgGR0BwgVj3Ehq1aAdL4GgIR0Cnu95avA45dX2UKGgGR0Bxheb6P8yfaAdL02gIR0CnvNaMrEtNdX2UKGgGR0Bxbp5t3wCsaAdL8GgIR0CnwBguIyj6dX2UKGgGR0Bvnb9ZRsMzaAdL22gIR0CnwQUv4/NadX2UKGgGR0BxLjCwbEP2aAdL92gIR0CnwhLXcxj8dX2UKGgGR0BzAWqKgqVhaAdL3mgIR0CnwxH/T9bYdX2UKGgGR0BysDaN+9amaAdL0mgIR0CnxBFIuoP1dX2UKGgGR0BwumGpMpPRaAdL3mgIR0CnxyAow22odX2UKGgGR0BvNSeVcD8taAdL1mgIR0CnyBFu3trsdX2UKGgGR0Bw3sztTkyUaAdNRwFoCEdAp8lpJTVDr3V9lChoBkdAcldd5prULGgHTTABaAhHQKfK01FYuCh1fZQoaAZHQHF7HKnvUjNoB0vGaAhHQKfNkGIsRQJ1fZQoaAZHQErWrPt2LYRoB0u0aAhHQKfOZfiPyTZ1fZQoaAZHQHLhhD9fkWBoB0vSaAhHQKfPXHsC1Z11fZQoaAZHQHMIJzkp7TloB0vHaAhHQKfQLO7g88t1fZQoaAZHQHAtSv1UVBVoB0vFaAhHQKfRDRqGlAN1fZQoaAZHQFEJ4gA6uGNoB0usaAhHQKfTr9Oymhx1fZQoaAZHQHFZTjFQ2uRoB0vgaAhHQKfUkUILPUt1fZQoaAZHQHIO5kXk5p9oB0vkaAhHQKfVpPfsNUh1fZQoaAZHQG/uJemelKtoB00ZAWgIR0Cn1sGiQDFIdX2UKGgGR0BxeeYKIBRyaAdL/WgIR0Cn2aOAiFCcdX2UKGgGR0BtFNu+AVfvaAdNqAFoCEdAp9tUpobn5nV9lChoBkdAcMF/B3zMA2gHS8xoCEdAp9xAJC0F83V9lChoBkdAcl7njyWiUWgHS/NoCEdAp91XOGCZnnV9lChoBkdAb7ZPBzmwJWgHS9toCEdAp+Aw8lolEHV9lChoBkdAYaZLf1pTM2gHTegDaAhHQKfmK9rXUYt1fZQoaAZHQHA0k2UB4lhoB0veaAhHQKfnEjwhGH51fZQoaAZHQHCtXc580DVoB0vCaAhHQKfn1EWIoE11fZQoaAZHQHCF2GATZg5oB00XAWgIR0Cn6O5AhStOdX2UKGgGR0BVfsPe54GEaAdN6ANoCEdAp+77CgsbvXV9lChoBkdActhjslb/wWgHTQABaAhHQKfwIJZW7vp1fZQoaAZHQHHYaGcnVoZoB0vhaAhHQKfzCgi/wiJ1fZQoaAZHQFxjSzgMtshoB03oA2gIR0Cn+XJwCKaYdX2UKGgGR0ByaZcpsoDxaAdLz2gIR0Cn+j8xTKkmdX2UKGgGR0BywHFl05lwaAdNLwFoCEdAp/uog9vCM3V9lChoBkdAcK1NMGorF2gHTToBaAhHQKf9Q19fCyh1fZQoaAZHQHKzuIuXeFdoB0vkaAhHQKgAI8brC3x1fZQoaAZHQG3Qs+u/1xtoB0vLaAhHQKgA8qHXVb11fZQoaAZHQGMLfxc3VCpoB03oA2gIR0CoB0QXZXdTdX2UKGgGR0BvslTLns9kaAdNJQFoCEdAqAh7rPdEcHV9lChoBkdAcAZybhFVk2gHTXUBaAhHQKgMGvmHP/t1fZQoaAZHQHJ1V67dzn1oB0vVaAhHQKgNBmSQo1F1fZQoaAZHQHJKJTuOS4hoB0vLaAhHQKgN1gDRtxd1fZQoaAZHQHMvk1IiC8RoB0voaAhHQKgO4xASnLt1fZQoaAZHQHNA+DaoMrpoB0vdaAhHQKgP139JjDt1fZQoaAZHQHGcVSKm8/VoB0vaaAhHQKgSqhakhzN1fZQoaAZHQHB/z4DcM3JoB0vpaAhHQKgTo6Ymb9Z1fZQoaAZHQGDNsFUyYXxoB03oA2gIR0CoGbY0Mw10dX2UKGgGR0Bhn1w71ZkkaAdN6ANoCEdAqB++0zCUHXV9lChoBkdAbXa+W4Vh1GgHS+FoCEdAqCCmgQHzH3V9lChoBkdAYrupZwGW2WgHTegDaAhHQKgm52L5ylx1fZQoaAZHQHMgW3z+WGBoB0vjaAhHQKgn2UoKD011fZQoaAZHQHDIQWBSUC9oB0v/aAhHQKgo49q1w5x1fZQoaAZHQHCl85OrQw9oB0vLaAhHQKgrmD3/PxB1fZQoaAZHQHIFkRBeHBVoB02zAWgIR0CoLVuCoS+QdX2UKGgGR0BX+KreZXuFaAdN6ANoCEdAqDNwLmZE2HV9lChoBkdAcqorxAjY7WgHS/NoCEdAqDRuxt52QnV9lChoBkdAcCJWFvhqCmgHS9VoCEdAqDVK+HrQgXV9lChoBkdAUcxnFo+OfmgHS6doCEdAqDffGCI1tXV9lChoBkdAb6OhL5AQhGgHS9loCEdAqDi/MOf/WHV9lChoBkdAcW5r4FiazGgHTRIBaAhHQKg56I/qxC91fZQoaAZHQHEJH6Q/5cloB0vyaAhHQKg65vm5lOJ1fZQoaAZHQHMKHRG+bmVoB0vQaAhHQKg9wicG1QZ1fZQoaAZHQG9rw7tAs05oB0vYaAhHQKg+rX3g1m91fZQoaAZHQG9yUqx1PnBoB0vbaAhHQKg/l9UCJXR1fZQoaAZHQHEnWLxZuAJoB02UAWgIR0CoQTu8K5TZdX2UKGgGR0ByCfo/zJ6qaAdL02gIR0CoRAPy08eTdX2UKGgGR0Bw0FUgjhUBaAdLxmgIR0CoRNEsrd30dX2UKGgGR0BxQWglF+d9aAdLuWgIR0CoRY84o7V8dX2UKGgGR0BwVZJf6XSjaAdNTQFoCEdAqEbpsVLzw3V9lChoBkdAZOlnAZbY9WgHTegDaAhHQKhNF53Tuv51fZQoaAZHQHLXSn5zo2ZoB0vsaAhHQKhQAJVsDW91fZQoaAZHQHN1Z84PwuxoB0u4aAhHQKhQ8lnAZbZ1fZQoaAZHQHHHABLf1pVoB0vNaAhHQKhR2ZmZmZp1fZQoaAZHQHHj41k1/DtoB0vDaAhHQKhSl0e2d/d1fZQoaAZHQG1a7O/tY0VoB0vjaAhHQKhTeUjcEeR1fZQoaAZHQHElO8wpON5oB00nAWgIR0CoVo0tZmqYdX2UKGgGR0BvWC7yxzJZaAdLzGgIR0CoV2+ERJ2/dX2UKGgGR0BwHgUQCjk/aAdL5mgIR0CoWGPY4ACGdX2UKGgGR0ByIFZyMkyDaAdLtmgIR0CoWSTQeFL4dX2UKGgGR0BwAO3MINVjaAdL4GgIR0CoWhepXIU8dX2UKGgGR0BxODHfdhy9aAdL1mgIR0CoXPl85S3tdX2UKGgGR0BxvU8zQ/oraAdLw2gIR0CoXcJsoDxLdX2UKGgGR0BysMC2c8T0aAdLxGgIR0CoXpKMefZmdX2UKGgGR0BwIgKPXCj2aAdLz2gIR0CoX4KZlWfcdX2UKGgGR0BQugyuZCv6aAdLkGgIR0CoYD8VpKzzdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 9770, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAACDAAAAgwAAAIMEAACDB2w/JwAAAIMEAAACAAAAAgJRoC0sIhZSMAUOUdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFnSUUpSMBGhpZ2iUaBMoliAAAAAAAAAAAAAgQAAAIEAAACBBAAAgQdsPyUAAACBBAACAPwAAgD+UaAtLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgdSwiFlGgWdJRSlIwIbG93X3JlcHKUjFtbIC0yLjUgICAgICAgIC0yLjUgICAgICAgLTEwLiAgICAgICAgLTEwLiAgICAgICAgIC02LjI4MzE4NTUgLTEwLgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWyAyLjUgICAgICAgIDIuNSAgICAgICAxMC4gICAgICAgIDEwLiAgICAgICAgIDYuMjgzMTg1NSAxMC4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [8], "low": "[ -2.5 -2.5 -10. -10. -6.2831855 -10.\n -0. -0. ]", "bounded_below": "[ True True True True True True True True]", "high": "[ 2.5 2.5 10. 10. 6.2831855 10.\n 1. 1. ]", "bounded_above": "[ True True True True True True True True]", "low_repr": "[ -2.5 -2.5 -10. -10. -6.2831855 -10.\n -0. -0. ]", "high_repr": "[ 2.5 2.5 10. 10. 6.2831855 10.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "rollout_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNgAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwNUm9sbG91dEJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'advantages': <class 'numpy.ndarray'>, 'returns': <class 'numpy.ndarray'>, 'episode_starts': <class 'numpy.ndarray'>, 'log_probs': <class 'numpy.ndarray'>, 'values': <class 'numpy.ndarray'>}", "__doc__": "\n Rollout buffer used in on-policy algorithms like A2C/PPO.\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to classic advantage when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ", "__init__": "<function RolloutBuffer.__init__ at 0x000001F10D2F8C10>", "reset": "<function RolloutBuffer.reset at 0x000001F10D2F8CA0>", "compute_returns_and_advantage": "<function RolloutBuffer.compute_returns_and_advantage at 0x000001F10D2F8D30>", "add": "<function RolloutBuffer.add at 0x000001F10D2F8DC0>", "get": "<function RolloutBuffer.get at 0x000001F10D2F8E50>", "_get_samples": "<function RolloutBuffer._get_samples at 0x000001F10D2F8EE0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000001F10BA21C80>"}, "rollout_buffer_kwargs": {}, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'stable_baselines3.common.utils.FloatSchedule'>", ":serialized:": "gAWVeQAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMDUZsb2F0U2NoZWR1bGWUk5QpgZR9lIwOdmFsdWVfc2NoZWR1bGWUaACMEENvbnN0YW50U2NoZWR1bGWUk5QpgZR9lIwDdmFslEc/yZmZmZmZmnNic2Iu", "value_schedule": "ConstantSchedule(val=0.2)"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'stable_baselines3.common.utils.FloatSchedule'>", ":serialized:": "gAWVeQAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMDUZsb2F0U2NoZWR1bGWUk5QpgZR9lIwOdmFsdWVfc2NoZWR1bGWUaACMEENvbnN0YW50U2NoZWR1bGWUk5QpgZR9lIwDdmFslEc/UGJN0vGp/HNic2Iu", "value_schedule": "ConstantSchedule(val=0.001)"}, "system_info": {"OS": "Windows-10-10.0.22631-SP0 10.0.22631", "Python": "3.10.10", "Stable-Baselines3": "2.7.0", "PyTorch": "2.7.1+cu126", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "1.2.0", "OpenAI Gym": "0.26.2"}}
ppo-LunarLander-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e981b38ce32a85faf77b717c086a63161c4ebf06ec5843adf46982cb67f9d60
3
+ size 149302
ppo-LunarLander-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.7.0
ppo-LunarLander-v3/data ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x000001F10D3A1CF0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000001F10D3A1D80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000001F10D3A1E10>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000001F10D3A1EA0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x000001F10D3A1F30>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x000001F10D3A1FC0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x000001F10D3A2050>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000001F10D3A20E0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x000001F10D3A2170>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000001F10D3A2200>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000001F10D3A2290>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x000001F10D3A2320>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x000001F10D3A4A40>"
21
+ },
22
+ "verbose": 0,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1000448,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1753450630384418500,
30
+ "learning_rate": 0.001,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADNkCr5Wqww98m0ePUH3kr7Kgow90+98vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.00044800000000000395,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV/gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGzbdnbqQimMAWyUTRMBjAF0lEdAp5f/4M4LkXV9lChoBkdAcDhYlIEr5WgHS+loCEdAp5rrh1klNXV9lChoBkdAcR5YChew92gHTScCaAhHQKedEJZW7vp1fZQoaAZHQHCpF0knkT9oB0vsaAhHQKed/LYf4h51fZQoaAZHQHFGLVJ+UhVoB0veaAhHQKehAVLSNOx1fZQoaAZHQHHBC5uqFRJoB03/AWgIR0Cnoyi/XXiBdX2UKGgGR0BgF7upjtojaAdN6ANoCEdAp6lEJng5znV9lChoBkdAcckuhbnoxGgHS8doCEdAp6n+5SWJJ3V9lChoBkdAbqm/Z/Tb4GgHTdQCaAhHQKeu3fyf+S91fZQoaAZHQGTFVsDW9UVoB03oA2gIR0CntPEEs8PndX2UKGgGR0Bxdva4+bExaAdL/2gIR0CnthHXEqDsdX2UKGgGR0ByMc6zVtoBaAdL8GgIR0Cntwx8D0UXdX2UKGgGR0BwB5NpM6BAaAdL3WgIR0CnuhLO7g89dX2UKGgGR0ByXNNBWxQjaAdL22gIR0CnuvVGCqZMdX2UKGgGR0BwgVj3Ehq1aAdL4GgIR0Cnu95avA45dX2UKGgGR0Bxheb6P8yfaAdL02gIR0CnvNaMrEtNdX2UKGgGR0Bxbp5t3wCsaAdL8GgIR0CnwBguIyj6dX2UKGgGR0Bvnb9ZRsMzaAdL22gIR0CnwQUv4/NadX2UKGgGR0BxLjCwbEP2aAdL92gIR0CnwhLXcxj8dX2UKGgGR0BzAWqKgqVhaAdL3mgIR0CnwxH/T9bYdX2UKGgGR0BysDaN+9amaAdL0mgIR0CnxBFIuoP1dX2UKGgGR0BwumGpMpPRaAdL3mgIR0CnxyAow22odX2UKGgGR0BvNSeVcD8taAdL1mgIR0CnyBFu3trsdX2UKGgGR0Bw3sztTkyUaAdNRwFoCEdAp8lpJTVDr3V9lChoBkdAcldd5prULGgHTTABaAhHQKfK01FYuCh1fZQoaAZHQHF7HKnvUjNoB0vGaAhHQKfNkGIsRQJ1fZQoaAZHQErWrPt2LYRoB0u0aAhHQKfOZfiPyTZ1fZQoaAZHQHLhhD9fkWBoB0vSaAhHQKfPXHsC1Z11fZQoaAZHQHMIJzkp7TloB0vHaAhHQKfQLO7g88t1fZQoaAZHQHAtSv1UVBVoB0vFaAhHQKfRDRqGlAN1fZQoaAZHQFEJ4gA6uGNoB0usaAhHQKfTr9Oymhx1fZQoaAZHQHFZTjFQ2uRoB0vgaAhHQKfUkUILPUt1fZQoaAZHQHIO5kXk5p9oB0vkaAhHQKfVpPfsNUh1fZQoaAZHQG/uJemelKtoB00ZAWgIR0Cn1sGiQDFIdX2UKGgGR0BxeeYKIBRyaAdL/WgIR0Cn2aOAiFCcdX2UKGgGR0BtFNu+AVfvaAdNqAFoCEdAp9tUpobn5nV9lChoBkdAcMF/B3zMA2gHS8xoCEdAp9xAJC0F83V9lChoBkdAcl7njyWiUWgHS/NoCEdAp91XOGCZnnV9lChoBkdAb7ZPBzmwJWgHS9toCEdAp+Aw8lolEHV9lChoBkdAYaZLf1pTM2gHTegDaAhHQKfmK9rXUYt1fZQoaAZHQHA0k2UB4lhoB0veaAhHQKfnEjwhGH51fZQoaAZHQHCtXc580DVoB0vCaAhHQKfn1EWIoE11fZQoaAZHQHCF2GATZg5oB00XAWgIR0Cn6O5AhStOdX2UKGgGR0BVfsPe54GEaAdN6ANoCEdAp+77CgsbvXV9lChoBkdActhjslb/wWgHTQABaAhHQKfwIJZW7vp1fZQoaAZHQHHYaGcnVoZoB0vhaAhHQKfzCgi/wiJ1fZQoaAZHQFxjSzgMtshoB03oA2gIR0Cn+XJwCKaYdX2UKGgGR0ByaZcpsoDxaAdLz2gIR0Cn+j8xTKkmdX2UKGgGR0BywHFl05lwaAdNLwFoCEdAp/uog9vCM3V9lChoBkdAcK1NMGorF2gHTToBaAhHQKf9Q19fCyh1fZQoaAZHQHKzuIuXeFdoB0vkaAhHQKgAI8brC3x1fZQoaAZHQG3Qs+u/1xtoB0vLaAhHQKgA8qHXVb11fZQoaAZHQGMLfxc3VCpoB03oA2gIR0CoB0QXZXdTdX2UKGgGR0BvslTLns9kaAdNJQFoCEdAqAh7rPdEcHV9lChoBkdAcAZybhFVk2gHTXUBaAhHQKgMGvmHP/t1fZQoaAZHQHJ1V67dzn1oB0vVaAhHQKgNBmSQo1F1fZQoaAZHQHJKJTuOS4hoB0vLaAhHQKgN1gDRtxd1fZQoaAZHQHMvk1IiC8RoB0voaAhHQKgO4xASnLt1fZQoaAZHQHNA+DaoMrpoB0vdaAhHQKgP139JjDt1fZQoaAZHQHGcVSKm8/VoB0vaaAhHQKgSqhakhzN1fZQoaAZHQHB/z4DcM3JoB0vpaAhHQKgTo6Ymb9Z1fZQoaAZHQGDNsFUyYXxoB03oA2gIR0CoGbY0Mw10dX2UKGgGR0Bhn1w71ZkkaAdN6ANoCEdAqB++0zCUHXV9lChoBkdAbXa+W4Vh1GgHS+FoCEdAqCCmgQHzH3V9lChoBkdAYrupZwGW2WgHTegDaAhHQKgm52L5ylx1fZQoaAZHQHMgW3z+WGBoB0vjaAhHQKgn2UoKD011fZQoaAZHQHDIQWBSUC9oB0v/aAhHQKgo49q1w5x1fZQoaAZHQHCl85OrQw9oB0vLaAhHQKgrmD3/PxB1fZQoaAZHQHIFkRBeHBVoB02zAWgIR0CoLVuCoS+QdX2UKGgGR0BX+KreZXuFaAdN6ANoCEdAqDNwLmZE2HV9lChoBkdAcqorxAjY7WgHS/NoCEdAqDRuxt52QnV9lChoBkdAcCJWFvhqCmgHS9VoCEdAqDVK+HrQgXV9lChoBkdAUcxnFo+OfmgHS6doCEdAqDffGCI1tXV9lChoBkdAb6OhL5AQhGgHS9loCEdAqDi/MOf/WHV9lChoBkdAcW5r4FiazGgHTRIBaAhHQKg56I/qxC91fZQoaAZHQHEJH6Q/5cloB0vyaAhHQKg65vm5lOJ1fZQoaAZHQHMKHRG+bmVoB0vQaAhHQKg9wicG1QZ1fZQoaAZHQG9rw7tAs05oB0vYaAhHQKg+rX3g1m91fZQoaAZHQG9yUqx1PnBoB0vbaAhHQKg/l9UCJXR1fZQoaAZHQHEnWLxZuAJoB02UAWgIR0CoQTu8K5TZdX2UKGgGR0ByCfo/zJ6qaAdL02gIR0CoRAPy08eTdX2UKGgGR0Bw0FUgjhUBaAdLxmgIR0CoRNEsrd30dX2UKGgGR0BxQWglF+d9aAdLuWgIR0CoRY84o7V8dX2UKGgGR0BwVZJf6XSjaAdNTQFoCEdAqEbpsVLzw3V9lChoBkdAZOlnAZbY9WgHTegDaAhHQKhNF53Tuv51fZQoaAZHQHLXSn5zo2ZoB0vsaAhHQKhQAJVsDW91fZQoaAZHQHN1Z84PwuxoB0u4aAhHQKhQ8lnAZbZ1fZQoaAZHQHHHABLf1pVoB0vNaAhHQKhR2ZmZmZp1fZQoaAZHQHHj41k1/DtoB0vDaAhHQKhSl0e2d/d1fZQoaAZHQG1a7O/tY0VoB0vjaAhHQKhTeUjcEeR1fZQoaAZHQHElO8wpON5oB00nAWgIR0CoVo0tZmqYdX2UKGgGR0BvWC7yxzJZaAdLzGgIR0CoV2+ERJ2/dX2UKGgGR0BwHgUQCjk/aAdL5mgIR0CoWGPY4ACGdX2UKGgGR0ByIFZyMkyDaAdLtmgIR0CoWSTQeFL4dX2UKGgGR0BwAO3MINVjaAdL4GgIR0CoWhepXIU8dX2UKGgGR0BxODHfdhy9aAdL1mgIR0CoXPl85S3tdX2UKGgGR0BxvU8zQ/oraAdLw2gIR0CoXcJsoDxLdX2UKGgGR0BysMC2c8T0aAdLxGgIR0CoXpKMefZmdX2UKGgGR0BwIgKPXCj2aAdLz2gIR0CoX4KZlWfcdX2UKGgGR0BQugyuZCv6aAdLkGgIR0CoYD8VpKzzdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 9770,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAACDAAAAgwAAAIMEAACDB2w/JwAAAIMEAAACAAAAAgJRoC0sIhZSMAUOUdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFnSUUpSMBGhpZ2iUaBMoliAAAAAAAAAAAAAgQAAAIEAAACBBAAAgQdsPyUAAACBBAACAPwAAgD+UaAtLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgdSwiFlGgWdJRSlIwIbG93X3JlcHKUjFtbIC0yLjUgICAgICAgIC0yLjUgICAgICAgLTEwLiAgICAgICAgLTEwLiAgICAgICAgIC02LjI4MzE4NTUgLTEwLgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWyAyLjUgICAgICAgIDIuNSAgICAgICAxMC4gICAgICAgIDEwLiAgICAgICAgIDYuMjgzMTg1NSAxMC4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "_shape": [
60
+ 8
61
+ ],
62
+ "low": "[ -2.5 -2.5 -10. -10. -6.2831855 -10.\n -0. -0. ]",
63
+ "bounded_below": "[ True True True True True True True True]",
64
+ "high": "[ 2.5 2.5 10. 10. 6.2831855 10.\n 1. 1. ]",
65
+ "bounded_above": "[ True True True True True True True True]",
66
+ "low_repr": "[ -2.5 -2.5 -10. -10. -6.2831855 -10.\n -0. -0. ]",
67
+ "high_repr": "[ 2.5 2.5 10. 10. 6.2831855 10.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 1024,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "rollout_buffer_class": {
87
+ ":type:": "<class 'abc.ABCMeta'>",
88
+ ":serialized:": "gAWVNgAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwNUm9sbG91dEJ1ZmZlcpSTlC4=",
89
+ "__module__": "stable_baselines3.common.buffers",
90
+ "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'advantages': <class 'numpy.ndarray'>, 'returns': <class 'numpy.ndarray'>, 'episode_starts': <class 'numpy.ndarray'>, 'log_probs': <class 'numpy.ndarray'>, 'values': <class 'numpy.ndarray'>}",
91
+ "__doc__": "\n Rollout buffer used in on-policy algorithms like A2C/PPO.\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to classic advantage when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ",
92
+ "__init__": "<function RolloutBuffer.__init__ at 0x000001F10D2F8C10>",
93
+ "reset": "<function RolloutBuffer.reset at 0x000001F10D2F8CA0>",
94
+ "compute_returns_and_advantage": "<function RolloutBuffer.compute_returns_and_advantage at 0x000001F10D2F8D30>",
95
+ "add": "<function RolloutBuffer.add at 0x000001F10D2F8DC0>",
96
+ "get": "<function RolloutBuffer.get at 0x000001F10D2F8E50>",
97
+ "_get_samples": "<function RolloutBuffer._get_samples at 0x000001F10D2F8EE0>",
98
+ "__abstractmethods__": "frozenset()",
99
+ "_abc_impl": "<_abc._abc_data object at 0x000001F10BA21C80>"
100
+ },
101
+ "rollout_buffer_kwargs": {},
102
+ "batch_size": 64,
103
+ "n_epochs": 10,
104
+ "clip_range": {
105
+ ":type:": "<class 'stable_baselines3.common.utils.FloatSchedule'>",
106
+ ":serialized:": "gAWVeQAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMDUZsb2F0U2NoZWR1bGWUk5QpgZR9lIwOdmFsdWVfc2NoZWR1bGWUaACMEENvbnN0YW50U2NoZWR1bGWUk5QpgZR9lIwDdmFslEc/yZmZmZmZmnNic2Iu",
107
+ "value_schedule": "ConstantSchedule(val=0.2)"
108
+ },
109
+ "clip_range_vf": null,
110
+ "normalize_advantage": true,
111
+ "target_kl": null,
112
+ "lr_schedule": {
113
+ ":type:": "<class 'stable_baselines3.common.utils.FloatSchedule'>",
114
+ ":serialized:": "gAWVeQAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMDUZsb2F0U2NoZWR1bGWUk5QpgZR9lIwOdmFsdWVfc2NoZWR1bGWUaACMEENvbnN0YW50U2NoZWR1bGWUk5QpgZR9lIwDdmFslEc/UGJN0vGp/HNic2Iu",
115
+ "value_schedule": "ConstantSchedule(val=0.001)"
116
+ }
117
+ }
ppo-LunarLander-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa9dd02a4564b531899c145d58cd1a09f404529f5ed77ab7ec33e6629c17bdb2
3
+ size 88695
ppo-LunarLander-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e28e214c36f076b454b41803e1222765fa8d5ce2150178ae92521e0aad632fb
3
+ size 44095
ppo-LunarLander-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98b4d78ebb79a7f668431910a5959abdce137f13e82a02bcc28e585416046b97
3
+ size 1261
ppo-LunarLander-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Windows-10-10.0.22631-SP0 10.0.22631
2
+ - Python: 3.10.10
3
+ - Stable-Baselines3: 2.7.0
4
+ - PyTorch: 2.7.1+cu126
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.1
8
+ - Gymnasium: 1.2.0
9
+ - OpenAI Gym: 0.26.2
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 211.91614441660437, "std_reward": 100.57668215767151, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-07-25T15:56:45.903935"}