---
library_name: transformers
tags:
- MoroccanArabic
- Darija
- GemMaroc
datasets:
- GemMaroc/TULU-3-50k-darija-english
language:
- ar
- ary
- en
base_model:
- google/gemma-3-27b-it
---
# Model Card for Model ID
# GemMaroc‑27B
Unlocking **Moroccan Darija** proficiency in a state‑of‑the‑art large language model, trained with a *minimal‑data, green‑AI* recipe that preserves Gemma‑27B’s strong reasoning abilities while adding fluent Darija generation.
---
## Model at a glance
| | Details |
| ------------------- | ----------------------------------------------------------------------------------------------------------------------------- |
| **Model ID** | `AbderrahmanSkiredj1/GemMaroc-27b-it` |
| **Base model** | [`google/gemma-3-27b`](https://huggingface.co/google/gemma-3-27b) |
| **Architecture** | Decoder‑only Transformer (Gemma 3) |
| **Parameters** | 27 billion |
| **Context length** | 2 048 tokens |
| **Training regime** | Supervised fine‑tuning (LoRA → merged) on 50 K high‑quality Darija/English instructions TULU‑50K slice |
| **Compute budget** | 48 GPU·h (8 × H100‑80GB × 6 h) – ≈ 26 kWh / 10 kg CO₂e |
| **License** | Apache 2.0 |
---
## Why another Darija model?
* **Inclusive AI** > 36 million speakers of Moroccan Arabic remain underserved by open LLMs.
* **Quality‑over‑quantity** A carefully curated 50 K instruction set surfaces Darija competence without sacrificing cross‑lingual reasoning.
* **Green AI** GemMaroc achieves Atlas‑Chat‑level Darija scores using < 2 % of the energy.
---
## Benchmark summary
| Model | Darija MMLU | Darija HellaSwag | GSM8K @5 | HellaSwag (EN) |
| ---------------- | ----------- | ---------------- | ---------- | -------------- |
| Atlas‑Chat‑27B | **61.9 %** | 48.4 % | 82.0 % | 77.8 % |
| **GemMaroc‑27B** | 61.6 % | **60.5 %** | **84.2 %** | **79.3 %** |
Zero‑shot accuracy; full table in the paper.
---
## Quick start
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id = "AbderrahmanSkiredj1/GemMaroc-27b-it"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype="auto",
device_map="auto"
)
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device_map="auto",
max_new_tokens=1024,
temperature=0.7,
repetition_penalty=1.2,
no_repeat_ngram_size=3,
)
messages = [
{"role": "user", "content": "شنو هي نظرية ‘butterfly effect’؟ فسّرها بدارجة ونقّط مثال بسيط."}
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
print(pipe(prompt)[0]["generated_text"][len(prompt):])
```
### Chat template (Gemma 3 format)
The tokenizer provides a baked‑in Jinja template that starts with a **begin‑of‑sequence** token (``), then alternates user/model turns, each wrapped by `` … `` markers. When you set `add_generation_prompt=True` it ends after the opening model tag so the model can continue:
```
user
{user message}
model
```
The assistant will keep generating tokens until it decides to emit ``.
```python
prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
```
No manual token juggling required—the call above handles BOS, turn delimiters, and newline placement automatically.
---
Pre‑quantised checkpoints will be published under the same repo tags (`gemmaroc‑27b‑awq‑int4`, `gemmaroc‑27b‑gguf‑q4_k_m`).
---
## Training recipe (one‑paragraph recap)
1. **Data** Translate a 44 K reasoning slice of TULU 50K into Darija, keeping 20 % English for cross‑lingual robustness.
2. **LoRA SFT** Rank 16, α = 32, 3 epochs, bf16, context 2 048.
3. **Merge & push** Merge LoRA into base weights (`peft.merge_and_unload`), convert to safetensors, upload.
---
## Limitations & ethical considerations
* Sentiment and abstractive summarisation still trail state‑of‑the‑art.
* Tokeniser is unchanged; rare Darija spellings may fragment.
* Model may inherit societal biases present in pre‑training data.
* No RLHF / RLAIF safety alignment yet – apply a moderation layer in production.
---
## Citation
If you use GemMaroc in your work, please cite:
```bibtex
@misc{skiredj2025gemmarocunlockingdarijaproficiency,
title={GemMaroc: Unlocking Darija Proficiency in LLMs with Minimal Data},
author={Abderrahman Skiredj and Ferdaous Azhari and Houdaifa Atou and Nouamane Tazi and Ismail Berrada},
year={2025},
eprint={2505.17082},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.17082},
}
```