zeeshaan-ai commited on
Commit
7f88419
Β·
verified Β·
1 Parent(s): ea06444

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +152 -0
README.md ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - GetSoloTech/Code-Reasoning
4
+ base_model:
5
+ - GetSoloTech/Gemma3-Code-Reasoning-4B
6
+ pipeline_tag: text-generation
7
+ tags:
8
+ - coding
9
+ - reasoning
10
+ - problem-solving
11
+ - algorithms
12
+ - python
13
+ - c++
14
+ - code-reasoning
15
+ - competitive-programming
16
+ ---
17
+
18
+ # Gemma3-Code-Reasoning-4B-GGUF
19
+
20
+ This repository contains GGUF (GGML Universal Format) quantized versions of the [GetSoloTech/Gemma3-Code-Reasoning-4B](https://huggingface.co/GetSoloTech/Gemma3-Code-Reasoning-4B) model, optimized for local inference with various quantization levels to balance performance and resource usage.
21
+
22
+ ## 🎯 Model Overview
23
+
24
+ This is a **LoRA-finetuned** version of `gemma-3-4b-it` specifically optimized for competitive programming and code reasoning tasks. The model has been trained on the high-quality Code-Reasoning dataset to enhance its capabilities in solving complex programming problems with detailed reasoning.
25
+
26
+ ## πŸš€ Key Features
27
+
28
+ - **Enhanced Code Reasoning**: Specifically trained on competitive programming problems
29
+ - **Thinking Capabilities**: Inherits the advanced reasoning capabilities from the base model
30
+ - **High-Quality Solutions**: Trained on solutions with β‰₯85% test case pass rates
31
+ - **Structured Output**: Optimized for generating well-reasoned programming solutions
32
+ - **Efficient Training**: Uses LoRA adapters for efficient parameter updates
33
+ - **Multiple Quantization Levels**: Available in various GGUF formats for different hardware capabilities
34
+
35
+ ## πŸ“ Available GGUF Models
36
+ | Model File | Size | Quantization | Use Case |
37
+ |------------|------|--------------|----------|
38
+ | `Gemma3-Code-Reasoning-4B.f16.gguf` | 7.77 GB | FP16 | Highest quality, requires more VRAM |
39
+ | `Gemma3-Code-Reasoning-4B.Q8_0.gguf` | 4.13 GB | Q8_0 | High quality, good balance |
40
+ | `Gemma3-Code-Reasoning-4B.Q6_K.gguf` | 3.19 GB | Q6_K | Good quality, moderate VRAM usage |
41
+ | `Gemma3-Code-Reasoning-4B.Q5_K_M.gguf` | 2.83 GB | Q5_K_M | Balanced quality and size |
42
+ | `Gemma3-Code-Reasoning-4B.Q4_K_M.gguf` | 2.49 GB | Q4_K_M | Good compression, reasonable quality |
43
+ | `Gemma3-Code-Reasoning-4B.Q3_K_M.gguf` | 2.1 GB | Q3_K_M | Smaller size, moderate quality |
44
+ | `Gemma3-Code-Reasoning-4B.Q2_K.gguf` | 1.73 GB | Q2_K | Smallest size, basic quality |
45
+ | `Gemma3-Code-Reasoning-4B.IQ4_XS.gguf` | 2.28 GB | IQ4_XS | Intel optimized, good quality |
46
+
47
+ ## πŸ”§ Usage
48
+
49
+ ### Using with llama.cpp
50
+
51
+ ```bash
52
+ # Download a GGUF model file
53
+ wget https://huggingface.co/GetSoloTech/Gemma3-Code-Reasoning-4B-GGUF/resolve/main/Gemma3-Code-Reasoning-4B.Q4_K_M.gguf
54
+
55
+ # Run inference with llama.cpp
56
+ ./llama.cpp/main -m Gemma3-Code-Reasoning-4B.Q4_K_M.gguf -n 4096 --repeat_penalty 1.1 -p "You are an expert competitive programmer. Solve this problem: [YOUR_PROBLEM_HERE]"
57
+ ```
58
+
59
+ ### Using with Python (llama-cpp-python)
60
+
61
+ ```python
62
+ from llama_cpp import Llama
63
+
64
+ # Load the model
65
+ llm = Llama(
66
+ model_path="./Gemma3-Code-Reasoning-4B.Q4_K_M.gguf",
67
+ n_ctx=4096,
68
+ n_threads=4
69
+ )
70
+
71
+ # Prepare the prompt
72
+ prompt = """You are an expert competitive programmer. Read the problem and produce a correct, efficient solution. Include reasoning if helpful.
73
+
74
+ Problem: [YOUR_PROGRAMMING_PROBLEM_HERE]
75
+
76
+ Solution:"""
77
+
78
+ # Generate response
79
+ output = llm(
80
+ prompt,
81
+ max_tokens=4096,
82
+ temperature=1.0,
83
+ top_p=0.95,
84
+ top_k=64,
85
+ repeat_penalty=1.1
86
+ )
87
+
88
+ print(output['choices'][0]['text'])
89
+ ```
90
+
91
+
92
+ ## πŸŽ›οΈ Recommended Settings
93
+
94
+ - **Temperature**: 1.0
95
+ - **Top-p**: 0.95
96
+ - **Top-k**: 64
97
+ - **Max New Tokens**: 4096 (adjust based on problem complexity)
98
+ - **Repeat Penalty**: 1.1
99
+
100
+
101
+ ## πŸ’» Hardware Requirements
102
+
103
+ | Quantization | Minimum VRAM | Recommended VRAM | CPU RAM |
104
+ |--------------|--------------|------------------|---------|
105
+ | FP16 | 8 GB | 12 GB | 16 GB |
106
+ | Q8_0 | 5 GB | 8 GB | 12 GB |
107
+ | Q6_K | 4 GB | 6 GB | 10 GB |
108
+ | Q5_K_M | 3 GB | 5 GB | 8 GB |
109
+ | Q4_K_M | 3 GB | 4 GB | 6 GB |
110
+ | Q3_K_M | 2 GB | 3 GB | 4 GB |
111
+ | Q2_K | 2 GB | 2 GB | 3 GB |
112
+ | IQ4_XS | 3 GB | 4 GB | 6 GB |
113
+
114
+ ## πŸ“ˆ Performance Expectations
115
+
116
+ This finetuned model is expected to show improved performance on:
117
+
118
+ - **Competitive Programming Problems**: Better understanding of problem constraints and requirements
119
+ - **Code Generation**: More accurate and efficient solutions
120
+ - **Reasoning Quality**: Enhanced step-by-step reasoning for complex problems
121
+ - **Solution Completeness**: More comprehensive solutions with proper edge case handling
122
+
123
+ ## πŸ”— Related Resources
124
+
125
+ - **Base Model**: [GetSoloTech/Gemma3-Code-Reasoning-4B](https://huggingface.co/GetSoloTech/Gemma3-Code-Reasoning-4B)
126
+ - **Training Dataset**: [GetSoloTech/Code-Reasoning](https://huggingface.co/datasets/GetSoloTech/Code-Reasoning)
127
+ - **Original Gemma Model**: [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it)
128
+ - **llama.cpp**: [GitHub Repository](https://github.com/ggerganov/llama.cpp)
129
+ - **llama-cpp-python**: [PyPI Package](https://pypi.org/project/llama-cpp-python/)
130
+
131
+ ## 🀝 Contributing
132
+
133
+ This model was created using the Unsloth framework and the Code-Reasoning dataset. For questions about:
134
+
135
+ - The base model: [Gemma3 Huggingface](https://huggingface.co/google/gemma-3-4b-it)
136
+ - The training dataset: [Code-Reasoning Repository](https://huggingface.co/datasets/GetSoloTech/Code-Reasoning)
137
+ - The training framework: [Unsloth Documentation](https://github.com/unslothai/unsloth)
138
+
139
+ ## πŸ™ Acknowledgments
140
+
141
+ - **Gemma Team** for the excellent base model
142
+ - **Unsloth Team** for the efficient training framework
143
+ - **NVIDIA Research** for the original OpenCodeReasoning-2 dataset
144
+ - **llama.cpp community** for the GGUF format and tools
145
+
146
+ ## πŸ“ž Contact
147
+
148
+ For questions about this GGUF converted model, please open an issue in the repository.
149
+
150
+ ---
151
+
152
+ **Note**: This model is specifically optimized for competitive programming and code reasoning tasks. Choose the appropriate quantization level based on your hardware capabilities and quality requirements.