--- datasets: - GetSoloTech/Code-Reasoning base_model: - GetSoloTech/Gemma3-Code-Reasoning-4B pipeline_tag: text-generation tags: - coding - reasoning - problem-solving - algorithms - python - c++ - code-reasoning - competitive-programming --- # Gemma3-Code-Reasoning-4B-GGUF This repository contains GGUF (GGML Universal Format) quantized versions of the [GetSoloTech/Gemma3-Code-Reasoning-4B](https://huggingface.co/GetSoloTech/Gemma3-Code-Reasoning-4B) model, optimized for local inference with various quantization levels to balance performance and resource usage. ## 🎯 Model Overview This is a **LoRA-finetuned** version of `gemma-3-4b-it` specifically optimized for competitive programming and code reasoning tasks. The model has been trained on the high-quality Code-Reasoning dataset to enhance its capabilities in solving complex programming problems with detailed reasoning. ## 🚀 Key Features - **Enhanced Code Reasoning**: Specifically trained on competitive programming problems - **Thinking Capabilities**: Inherits the advanced reasoning capabilities from the base model - **High-Quality Solutions**: Trained on solutions with ≥85% test case pass rates - **Structured Output**: Optimized for generating well-reasoned programming solutions - **Efficient Training**: Uses LoRA adapters for efficient parameter updates - **Multiple Quantization Levels**: Available in various GGUF formats for different hardware capabilities ## 📁 Available GGUF Models | Model File | Size | Quantization | Use Case | |------------|------|--------------|----------| | `Gemma3-Code-Reasoning-4B.f16.gguf` | 7.77 GB | FP16 | Highest quality, requires more VRAM | | `Gemma3-Code-Reasoning-4B.Q8_0.gguf` | 4.13 GB | Q8_0 | High quality, good balance | | `Gemma3-Code-Reasoning-4B.Q6_K.gguf` | 3.19 GB | Q6_K | Good quality, moderate VRAM usage | | `Gemma3-Code-Reasoning-4B.Q5_K_M.gguf` | 2.83 GB | Q5_K_M | Balanced quality and size | | `Gemma3-Code-Reasoning-4B.Q4_K_M.gguf` | 2.49 GB | Q4_K_M | Good compression, reasonable quality | | `Gemma3-Code-Reasoning-4B.Q3_K_M.gguf` | 2.1 GB | Q3_K_M | Smaller size, moderate quality | | `Gemma3-Code-Reasoning-4B.Q2_K.gguf` | 1.73 GB | Q2_K | Smallest size, basic quality | | `Gemma3-Code-Reasoning-4B.IQ4_XS.gguf` | 2.28 GB | IQ4_XS | Intel optimized, good quality | ## 🔧 Usage ### Using with llama.cpp ```bash # Download a GGUF model file wget https://huggingface.co/GetSoloTech/Gemma3-Code-Reasoning-4B-GGUF/resolve/main/Gemma3-Code-Reasoning-4B.Q4_K_M.gguf # Run inference with llama.cpp ./llama.cpp/main -m Gemma3-Code-Reasoning-4B.Q4_K_M.gguf -n 4096 --repeat_penalty 1.1 -p "You are an expert competitive programmer. Solve this problem: [YOUR_PROBLEM_HERE]" ``` ### Using with Python (llama-cpp-python) ```python from llama_cpp import Llama # Load the model llm = Llama( model_path="./Gemma3-Code-Reasoning-4B.Q4_K_M.gguf", n_ctx=4096, n_threads=4 ) # Prepare the prompt prompt = """You are an expert competitive programmer. Read the problem and produce a correct, efficient solution. Include reasoning if helpful. Problem: [YOUR_PROGRAMMING_PROBLEM_HERE] Solution:""" # Generate response output = llm( prompt, max_tokens=4096, temperature=1.0, top_p=0.95, top_k=64, repeat_penalty=1.1 ) print(output['choices'][0]['text']) ``` ## 🎛️ Recommended Settings - **Temperature**: 1.0 - **Top-p**: 0.95 - **Top-k**: 64 - **Max New Tokens**: 4096 (adjust based on problem complexity) - **Repeat Penalty**: 1.1 ## 💻 Hardware Requirements | Quantization | Minimum VRAM | Recommended VRAM | CPU RAM | |--------------|--------------|------------------|---------| | FP16 | 8 GB | 12 GB | 16 GB | | Q8_0 | 5 GB | 8 GB | 12 GB | | Q6_K | 4 GB | 6 GB | 10 GB | | Q5_K_M | 3 GB | 5 GB | 8 GB | | Q4_K_M | 3 GB | 4 GB | 6 GB | | Q3_K_M | 2 GB | 3 GB | 4 GB | | Q2_K | 2 GB | 2 GB | 3 GB | | IQ4_XS | 3 GB | 4 GB | 6 GB | ## 📈 Performance Expectations This finetuned model is expected to show improved performance on: - **Competitive Programming Problems**: Better understanding of problem constraints and requirements - **Code Generation**: More accurate and efficient solutions - **Reasoning Quality**: Enhanced step-by-step reasoning for complex problems - **Solution Completeness**: More comprehensive solutions with proper edge case handling ## 🔗 Related Resources - **Base Model**: [GetSoloTech/Gemma3-Code-Reasoning-4B](https://huggingface.co/GetSoloTech/Gemma3-Code-Reasoning-4B) - **Training Dataset**: [GetSoloTech/Code-Reasoning](https://huggingface.co/datasets/GetSoloTech/Code-Reasoning) - **Original Gemma Model**: [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it) - **llama.cpp**: [GitHub Repository](https://github.com/ggerganov/llama.cpp) - **llama-cpp-python**: [PyPI Package](https://pypi.org/project/llama-cpp-python/) ## 🤝 Contributing This model was created using the Unsloth framework and the Code-Reasoning dataset. For questions about: - The base model: [Gemma3 Huggingface](https://huggingface.co/google/gemma-3-4b-it) - The training dataset: [Code-Reasoning Repository](https://huggingface.co/datasets/GetSoloTech/Code-Reasoning) - The training framework: [Unsloth Documentation](https://github.com/unslothai/unsloth) ## 🙏 Acknowledgments - **Gemma Team** for the excellent base model - **Unsloth Team** for the efficient training framework - **NVIDIA Research** for the original OpenCodeReasoning-2 dataset - **llama.cpp community** for the GGUF format and tools ## 📞 Contact For questions about this GGUF converted model, please open an issue in the repository. --- **Note**: This model is specifically optimized for competitive programming and code reasoning tasks. Choose the appropriate quantization level based on your hardware capabilities and quality requirements.