File size: 24,965 Bytes
0dc0e7b e955969 4b649da 0dc0e7b 4b649da e955969 4b649da 0dc0e7b 4b649da 0dc0e7b 4b649da b86444b 4b649da 78e205b 4b649da b86444b 4b649da fbee1e5 4b649da fbee1e5 4b649da fbee1e5 4b649da fbee1e5 4b649da fbee1e5 4b649da 0dc0e7b 4b649da 0dc0e7b 4b649da 0dc0e7b 4b649da fbee1e5 0dc0e7b fbee1e5 0dc0e7b 4b649da 0dc0e7b 32c0992 fbee1e5 32c0992 0dc0e7b 32c0992 0dc0e7b 32c0992 0dc0e7b 4b649da b86444b 4b649da d317c25 4b649da d317c25 4b649da d317c25 4b649da b86444b 4b649da b86444b 4b649da b86444b 4b649da 78e205b 4b649da b86444b 4b649da b86444b 4b649da 0dc0e7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
---
library_name: transformers
tags: []
---
# DSM: Diffusion Models for Protein Sequence Generation
### Note: This readme is shared between our GitHub and Huggingface pages.
## Table of Contents
- [Introduction](#introduction)
- [Models](#models)
- [Usage](#usage)
- [Demos](#usage)
- [Local installation](#installation)
- [Training](#training)
- [Evaluation](#evaluation)
- [Results](#results)
- [Cite](#cite)
## Introduction
DSM (Diffusion Sequence Model) is a novel Protein Language Model (pLM) developed in collaboration between the [Gleghorn Lab](https://www.gleghornlab.com/) and [Synthyra](https://synthyra.com/). It was trained with masked diffusion to enable both high-quality representation learning and generative protein design. This repository contains the code for training, evaluating, and applying DSM and its variants.
DSM is capable of generating diverse, biomimetic sequences that align with expected amino acid compositions, secondary structures, and predicted functions. Furthermore, DSM's learned representations match or exceed those of comparably sized pLMs on various downstream tasks. DSM is detailed extensively in our [preprint](https://arxiv.org/abs/2506.08293) (which is currently in review). Beyond the base and PPI variants, we are currently training versions to jointly diffuse over sequence and foldseek tokens, as well as [Annotation Vocabulary](https://www.biorxiv.org/content/10.1101/2024.07.30.605924v1) tokens. Since the preprint release, Synthyra has trained [Synthyra/DSM_ppi_full](https://huggingface.co/Synthyra/DSM_ppi_full) which neglects the LoRA PPI training in favor for full finetuning. Additionally, the sequences SeqA and SeqB are jointly masked instead of just SeqB in the original version. We plan on adding the **many** new results to the second version of the preprint and eventual journal article.
## Models
Relevant Huggingface hosted models and datasets
- **Base DSM Models**:
- [GleghornLab/DSM_150](https://huggingface.co/GleghornLab/DSM_150) - 150M parameter DSM model
- [GleghornLab/DSM_650](https://huggingface.co/GleghornLab/DSM_650) - 650M parameter DSM model
- **DSM-ppi Models**:
(LoRA versions - results reported in paper but not recommended for real use)
- [GleghornLab/DSM_150_ppi_lora](https://huggingface.co/GleghornLab/DSM_150_ppi_lora) - 150M parameter LoRA DSM-ppi model
- [GleghornLab/DSM_650_ppi_lora](https://huggingface.co/GleghornLab/DSM_650_ppi_lora) - 650M parameter LoRA DSM-ppi model
- [GleghornLab/DSM_150_ppi_control](https://huggingface.co/GleghornLab/DSM_150_ppi_control) - Control version of LoRA DSM-ppi
(Fully finetuned - recommended for real use)
- [Synthyra/DSM_ppi_full](https://huggingface.co/Synthyra/DSM_ppi_full) - 650M parameter DSM-ppi model
- **Datasets**:
- [Synthyra/omg_prot50](https://huggingface.co/datasets/Synthyra/omg_prot50) - Open MetaGenomic dataset clustered at 50% identity (207M sequences)
- [GleghornLab/stringv12_modelorgs_9090](https://huggingface.co/datasets/GleghornLab/stringv12_modelorgs_9090) - STRING database model organisms (653k sequences)
- **Utility Models**:
- [GleghornLab/production_ss4_model](https://huggingface.co/GleghornLab/production_ss4_model) - Secondary structure prediction (4-class)
- [GleghornLab/production_ss9_model](https://huggingface.co/GleghornLab/production_ss9_model) - Secondary structure prediction (9-class)
## Usage
This section outlines how to use a trained `DSM` model for common generation tasks. The core generation logic is provided by the `GenerateMixin` class, used by `DSM` models.
First, ensure you have a trained model (either one you trained or a pre-trained one from Hugging Face Hub) and the necessary environment set up.
```python
import torch
from models.modeling_dsm import DSM # Or DSM_ppi for binder generation
# Load a pre-trained model
model_name_or_path = "GleghornLab/DSM_650" # Replace with your model of choice
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = DSM.from_pretrained(model_name_or_path).to(device).eval()
tokenizer = model.tokenizer
```
```console
You are using a model of type esm_diff to instantiate a model of type dsm. This is not supported for all configurations of models and can yield errors.
```
This warning is normal - all good!
### 1. Unconditional Sequence Generation
To generate a novel sequence of a specific length. DSM uses a progressive denoising approach.
```python
### Unconditional generation
length = 100
mask_token = tokenizer.mask_token
# optionally, enforce starting with methionine
input_tokens = tokenizer.encode('M' + ''.join([mask_token] * (length - 1)), add_special_tokens=True, return_tensors='pt').to(device)
output = model.mask_diffusion_generate(
tokenizer=tokenizer,
input_tokens=input_tokens,
step_divisor=100, # lower is slower but better
temperature=1.0, # sampling temperature
remasking="random", # strategy for remasking tokens not kept
preview=False, # set this to True to watch the mask tokens get rilled in real time
slow=False, # adds a small delay to the real time filling (because it is usually very fast and watching carefully is hard!)
return_trajectory=False # set this to True to return the trajectory of the generation (what you watch in the preview)
) # Note: output will be a tuple if return_trajectory is True
generated_sequences = model.decode_output(output)
print(f"Generated sequence: {generated_sequences[0]}")
```
```console
Generated sequence: MFRVDALQVAQQETLAIGRSTAYDKQESPSMAQRQVLTQLAAYGGENDLRQICIPAERRNFLSIANGASYQFVEEDNEANGGYWSPHKAGLPESACKRFI
```
### 2. Mask Filling (Inpainting)
To fill in masked regions of a template sequence:
```python
# Mask Filling / Inpainting
template_sequence = "MA<mask><mask><mask>KEG<mask><mask>STL"
input_tokens = tokenizer.encode(template_sequence, add_special_tokens=True, return_tensors='pt').to(device)
output = model.mask_diffusion_generate(
tokenizer=tokenizer,
input_tokens=input_tokens,
step_divisor=100, # lower is slower but better
temperature=1.0, # sampling temperature
remasking="random", # strategy for remasking tokens not kept
preview=False, # set this to True to watch the mask tokens get rilled in real time
slow=False, # adds a small delay to the real time filling (because it is usually very fast and watching carefully is hard!)
return_trajectory=False # set this to True to return the trajectory of the generation (what you watch in the preview)
) # Note: output will be a tuple if return_trajectory is True
generated_sequences = model.decode_output(output)
print(f"Generated sequence: {generated_sequences[0]}")
```
```console
Generated sequence: MAVKFKEGGISTL
```
### 3. Conditional Generation (e.g., Binders - using DSM-ppi)
```python
# from models.modeling_dsm import DSM_ppi
# model_binder = DSM_ppi.from_pretrained("GleghornLab/DSM_650_ppi_lora").to(device).eval()
# The lora version from the paper leads to unreliable outputs
# Synthyra has generously trained a version through full fine tuning
model = DSM.from_pretrained("Synthyra/DSM_ppi_full").to(device).eval()
# BBF-14
target_seq = "MGTPLWALLGGPWRGTATYEDGTKVTLDYRYTRVSPDRLRADVTYTTPDGTTLEATVDLWKDANGVIRYHATYPDGTSADGTLTQLDADTLLATGTYDDGTKYTVTLTRVAPGSGWHHHHHH"
# For binder generation, the 'interactor' (SeqB) part is what gets generated/filled.
# Start with a fully masked interactor of desired length.
interactor_template_len = 256
interactor_template = ''.join([mask_token] * interactor_template_len)
combined_input_str = target_seq + '<eos>' + interactor_template
input_tokens = tokenizer.encode(combined_input_str, add_special_tokens=True, return_tensors='pt').to(device)
output = model.mask_diffusion_generate(
tokenizer=tokenizer,
input_tokens=input_tokens,
step_divisor=100, # lower is slower but better
temperature=1.0, # sampling temperature
remasking="random", # strategy for remasking tokens not kept
preview=False, # set this to True to watch the mask tokens get rilled in real time
slow=False, # adds a small delay to the real time filling (because it is usually very fast and watching carefully is hard!)
return_trajectory=False # set this to True to return the trajectory of the generation (what you watch in the preview)
) # Note: output will be a tuple if return_trajectory is True
target, binder = model.decode_dual_input(output, seperator='<eos>')
# Parse out the generated interactor part based on EOS tokens.
# Example: generated_full_seq_str.split(model_binder.tokenizer.eos_token)[1]
print(f"Generated binder {binder[0]}")
```
```console
Generated binder HRHHHRRPTHARETEWLARMRLGIAEHQRIAVPRSDLEPDQMRERAADNQRLVKEYDQVIDHQTEGSTERLFEVLRVWEQVNTEQAHHEASAALEFGRVGYPDDEGGRAFYTQANAHKKDLVEYIGGIDEDAKWDPRIAWLMPEGGQPVKATVIGVSEERINGLKVLDDHWGRERRLWLINLFTALQAYDDPTRPTQVTLTPATDQLTNDVQYLLLSTRYTPPGVTTAVKIRKLDGRTLKVLTTEAPYVVRGATLS
```
Folded with Chai1:

`Synthyra/DSM_ppi_full` was actually trained to fill masks from any part of SeqA and SeqB. That means you can fully hallucinate plausibly interacting protein pairs.
```python
seq_a_length = 128
seq_b_length = 128
seq_a_template = ''.join([mask_token] * seq_a_length)
seq_b_template = ''.join([mask_token] * seq_b_length)
combined_input_str = seq_a_template + '<eos>' + seq_b_template
input_tokens = tokenizer.encode(combined_input_str, add_special_tokens=True, return_tensors='pt').to(device)
output = model.mask_diffusion_generate(
tokenizer=tokenizer,
input_tokens=input_tokens,
step_divisor=10, # lower is slower but better
temperature=1.0, # sampling temperature
remasking="random", # strategy for remasking tokens not kept
preview=False, # set this to True to watch the mask tokens get rilled in real time
slow=False, # adds a small delay to the real time filling (because it is usually very fast and watching carefully is hard!)
return_trajectory=False # set this to True to return the trajectory of the generation (what you watch in the preview)
) # Note: output will be a tuple if return_trajectory is True
seqa, seqb = model.decode_dual_input(output, seperator='<eos>')
# Parse out the generated interactor part based on EOS tokens.
# Example: generated_full_seq_str.split(model_binder.tokenizer.eos_token)[1]
print(f"SeqA: {seqa[0][5:]}") # remove cls token
print(f"SeqB: {seqb[0]}")
```
```console
SeqA: MVNLAKMRQRTEQNLREVSSFVKILFHTVLKFPMKINIGIHVHINMQAAQNAAADQNMQATNVIDLHNFKMGKDIGVDNKASATAHIYDEAHHTFLQLGAIKLLHAIPMIAGPVRCRLPIGFGHRFRG
SeqB: HYKNPMHSLLDSNVLHKDVVEVRLPIKIGMELDVMASAMREFLMPGTQQGDLRVIAEKRPVNKLHTYRRDLVKLLLAGAKLGTEAKSVELDLYRTELGGLVVYIININIATWDIIFAKVKICRGNDKP
```
Folded with Chai1:

## Demos
There are various demos with many more to come. For example, in `demo_dsm_ppi_full.py` (run by `python -m demos.demo_dsm_ppi_full`) we perform a test on DSM-ppi.
We take 1000 protein pairs from BIOGRID (real protein-protein interactions) and 1000 from Negatome (non interacting protein pairs) and mask the second sequence (SeqB) by 50%.
This acts as a sanity check, as we expect the accuracy on reconstructing real positive PPIs to be higher than the accuracy on non-interacting proteins.
Indeed, this is the case:
```console
==================================================
RESULTS COMPARISON
==================================================
Positive examples:
Mean accuracy: 0.495 ± 0.322
Processed: 1000 examples
Negative examples:
Mean accuracy: 0.227 ± 0.231
Processed: 1000 examples
Difference (Positive - Negative): 0.267
T-test: t=21.331, p=0.000
Difference is statistically significant (p < 0.05)
```
## Installation
1. **Clone the repository:**
```bash
git clone <repository-url>
cd <repository-name>
```
2. **Initialize the submodules:**
```bash
git submodule update --init --remote --recursive
```
3. **Set up the Python virtual environment:**
The `setup_bioenv.sh` script creates a virtual environment named `bioenv` in your home directory (`~/bioenv`), installs PyTorch with CUDA 12.6 support, and then installs all other dependencies from `requirements.txt`.
Make the script executable:
```bash
chmod +x setup_bioenv.sh
```
Run the script:
```bash
./setup_bioenv.sh
```
If you are not on a linux machine, you can install the requirements directly
```console
python -m pip install -r requirements.txt
```
4. **Activate the environment:**
Each time you want to work on this project, activate the virtual environment:
```bash
source ~/bioenv/bin/activate
```
5. **To deactivate the environment:**
```bash
deactivate
```
## Training
The primary script for training models is `training/train_dsm.py`. This script further pretrains an ESM2 checkpoint using the DSM objective (masked diffusion based on LLaDA) on a large protein sequence dataset like [OMG-prot50](https://huggingface.co/datasets/Synthyra/omg_prot50).
### Main Training Script: `train_dsm.py`
- **Base Model**: DSM models are extended from pre-trained ESM2 checkpoints (e.g., ESM2-150M, ESM2-650M).
- **Training Objective**: Masked diffusion loss, where the model predicts masked tokens. The loss is scaled by `1/(t + epsilon)` where `t` is the corruption level, penalizing errors more at low mask rates.
- **Language Modeling Head**: Uses a modified head with a soft-logit cap (`tau=30`) and tied output projection weights to the token embeddings.
- **Data Handling**:
- Training data can be streamed from datasets like [Synthyra/omg_prot50](https://huggingface.co/datasets/Synthyra/omg_prot50) (a version of Open MetaGenomic dataset clustered at 50% identity).
- Uses `data.dataset_classes.SequenceDatasetFromList` for validation/test sets and `data.dataset_classes.IterableDatasetFromHF` for streaming training.
- `data.data_collators.SequenceCollator` is used for batching.
- **Training Process**:
- Utilizes Hugging Face `TrainingArguments`.
- A custom `IterableTrainer` (from `training.iterable_trainer.py`) handles iterable datasets.
- Uses AdamW optimizer and a cosine learning rate scheduler with linear warmup.
- Supports logging to Weights & Biases (wandb).
- The trained model can be pushed to Hugging Face Hub.
- Example checkpoints mentioned in the paper: [DSM-150](https://huggingface.co/GleghornLab/DSM_150) (from ESM2-150M, 100k steps, batch 32, seqlen 512, LR 1e-4) and [DSM-650](https://huggingface.co/GleghornLab/DSM_650) (from ESM2-650M, 100k steps, global batch 128, seqlen 2048, LR 1e-4).
**Usage Example:**
```bash
python -m training.train_dsm \
--model_path facebook/esm2_t33_650M_UR50D \
--save_path GleghornLab/DSM_650 \
--lr 1e-4 \
--batch_size 8 \
--grad_accum 16 \
--max_steps 100000 \
--save_every 1000 \
--fp16 \
--wandb_project "DSM_Training" \
--token <your_hf_token_if_needed_for_private_repo_or_saving>
```
**Key Command-Line Arguments for `train_dsm.py`:**
* `--token`: Hugging Face token.
* `--model_path`: Path to the base ESM2 model to start from.
* `--save_path`: Path to save the trained DSM model on Hugging Face Hub.
* `--lr`: Learning rate.
* `--batch_size`: Batch size per device.
* `--grad_accum`: Gradient accumulation steps.
* `--max_steps`: Maximum training steps.
* `--wandb_project`: Wandb project name (default: `DSM`).
* `--max_length`: Maximum sequence length.
* `--save_every`: Save model and evaluate every N steps.
* `--fp16`: Enable mixed-precision training.
* `--bugfix`: Use small batch size and max length for debugging.
### Other Training Scripts (e.g., for DSM-ppi)
The `training/` directory may also contain scripts like `train_dsm_bind.py`.
- DSM-ppi (e.g., [DSM-150-ppi](https://huggingface.co/GleghornLab/DSM_150_ppi_lora), [DSM-650-ppi](https://huggingface.co/GleghornLab/DSM_650_ppi_lora)) is fine-tuned on PPI datasets.
- Training involves conditioning on a target sequence (SeqA) to generate an interactor (SeqB) using the format `[CLS]--SeqA--[EOS]--[MASKED~SeqB]--[EOS]`.
- LoRA (Low-Rank Adaptation) can be applied to attention layers for efficient fine-tuning.
And `training/iterable_trainer.py` provides the `get_iterable_trainer` function used by `train_dsm.py` to enable training with iterable datasets.
## Evaluation
The repository includes a comprehensive suite for evaluating model performance, focusing on:
1. **Sequence Reconstruction (Mask Filling):**
* Evaluated by masking validation/test sets at various corruption rates (5% to 90%) and measuring cross-entropy loss, weighted F1 score, and Alignment Score (ASc) for the masked positions.
* The script `evaluation/mask_filling.py` is central to this.
2. **Unconditional Generation Quality:**
* Generate a corpus of sequences based on lengths from a reference set (e.g., validation data).
* Compare distributions (1-mers, 2-mers, 3-mers) of amino acids and predicted secondary structures between generated and natural sequences using χ² test and Jensen-Shannon (JS) divergence.
* Compare distributions of predicted functional annotations (e.g., using Annotation Vocabulary - AV terms).
* Scripts involved: `evaluation/unconditional_generation_tuning.py` (to find optimal generation parameters like temperature and step divisor `s`), `evaluation/unconditional_generation.py`, `evaluation/ss_pred.py` (using [production_ss4_model](https://huggingface.co/GleghornLab/production_ss4_model) or [production_ss9_model](https://huggingface.co/GleghornLab/production_ss9_model)), `evaluation/annotate_comparisons.py`, `evaluation/compare_distributions.py`, `evaluation/plot_distribution_comparisons.py`.
* The `run_eval_pipeline.py` script automates this workflow.
3. **Representation Quality (Model Probing):**
* Evaluate learned embeddings by training linear probes (or simple transformer blocks) on various downstream tasks (e.g., secondary structure prediction, localization prediction, etc.).
* Performance is compared against random vectors, randomized transformers, and other established pLMs.
* The assessment was done with [Protify](https://github.com/Synthyra/Protify), an open-source framework that can be used for pLM training and evaluation.
4. **Conditional Generation (Binder Design for DSM-ppi):**
* Evaluate DSM-ppi on benchmarks like BenchBB.
* Generate binders for target proteins using template-based masking strategies.
* Assess generated binders using *in-silico* tools like Synteract2 for predicted binding affinity (ppKd).
The `evaluation/` directory also contains a `readme.md` which provides further details on some evaluation workflows. Key metrics used include:
- **Alignment Score (ASc):** A normalized Needleman-Wunsch global alignment score (using BLOSUM62) to measure sequence similarity, robust to length variations. ASc(a, b) = l/(f(a, a) - f(a, b) + l).
- **Jensen-Shannon (JS) Divergence:** To compare distributions of k-mers and functional terms.
**Running the Full Unconditional Evaluation Pipeline:**
```bash
python run_eval_pipeline.py --token YOUR_HF_TOKEN --data_dir ./evaluation_results
```
Refer to `run_eval_pipeline.py --help` for more options, such as `--skip_tuning`.
### Mask Filling Evaluation
The script `evaluation/mask_filling.py` is used to evaluate models on their ability to predict masked tokens in a sequence across various masking rates.
- **Functionality:**
- Evaluates different models (DSM, DPLM, standard ESM models).
- Tests across multiple datasets ([Synthyra/omg_prot50](https://huggingface.co/datasets/Synthyra/omg_prot50), [GleghornLab/stringv12_modelorgs_9090](https://huggingface.co/datasets/GleghornLab/stringv12_modelorgs_9090)).
- Calculates metrics: loss, perplexity, precision, recall, F1, accuracy, MCC, and alignment score.
- Saves detailed results to CSV files.
- Can generate a summary plot comparing model performance across different mask rates using `evaluation/plot_mask_fill_results.py`.
- **Usage Example:**
```bash
python -m evaluation.mask_filling \
--token YOUR_HF_TOKEN \
--batch_size 4 \
--mask_rates 0.15 0.30 0.50 \
--data_splits valid test \
--results_dir ./results/mask_fill_custom
```
To generate a comparison plot from existing results:
```bash
python -m evaluation.mask_filling --generate_comparison_plot --results_dir ./results/mask_fill_custom --plot_output ./results/mask_fill_custom/comparison.png
```
### Other Evaluation Scripts
The `evaluation/` directory contains additional scripts for more specific analyses. These are typically run independently:
- `evaluation/all_targets_uncond.py` and `evaluation/all_targets_cond.py`: Likely for evaluating generation towards specific targets, unconditionally and conditionally.
- `evaluation/conditional_binder.py` and `evaluation/unconditional_binder.py`: Suggest evaluation focused on generating protein binders.
- `evaluation/unconditional_by_length.py`: May evaluate unconditional generation focusing on sequence length distributions.
- `evaluation/utils.py`: Utility functions for evaluation scripts.
Users should refer to individual scripts (e.g., using `python -m evaluation.<script_name> --help`) for their specific usage and arguments.
The `evaluation/` directory also contains a `readme.md` which provides further details on the unconditional generation evaluation workflow.
## Results
DSM demonstrates strong performance in both protein sequence generation and representation learning, establishing masked diffusion as a powerful paradigm.
- **Biomimetic Sequence Generation**: Unconditionally generated DSM sequences closely mimic natural protein distributions in terms of amino acid k-mers, predicted secondary structures (JS divergence < 0.01 for AA k-mers), and predicted functional annotations (AV terms, JS divergence ~0.1). This suggests DSM captures underlying biological principles.
- **Superior Sequence Reconstruction**: DSM models significantly outperform MLM-based ESM2 models in reconstructing sequences from highly corrupted inputs (up to 90% masking).
- At 90% masking, DSM achieves an Alignment Score (ASc) of ~0.27, considerably higher than random.
- DSM models show higher F1 scores in reconstruction tasks compared to DPLM models, especially at high mask rates.
- **High-Quality Embeddings**: DSM embeddings match or exceed the quality of those from comparably sized pLMs (ESM2, DPLM) and even larger autoregressive models (ProtCLM 1B) on various downstream tasks evaluated by linear probing. [DSM-650](https://huggingface.co/GleghornLab/DSM_650) generally provides the best representations among tested models of similar size.
- **Effective Binder Design (DSM-ppi):**
- DSM-ppi fine-tuned on protein-protein interaction data, demonstrates the ability to generate protein binders conditioned on target sequences.
- On the BenchBB benchmark, DSM-generated binders (both unconditional DSM and conditional DSM-ppi) show promising predicted binding affinities, in some cases superior to known binders. For example, designs for EGFR showed high predicted pKd and good structural metrics (ipTM, pTM with AlphaFold3).
- **Efficiency**: DSM can generate realistic protein sequences from a single forward pass during reconstruction tasks at high mask rates, offering potential efficiency advantages over iterative AR or some discrete diffusion models.
These results highlight DSM's capability to unify high-quality protein representation learning and biologically coherent generative modeling within a single framework.
## Cite
```
@misc{hallee2025diffusionsequencemodelsenhanced,
title={Diffusion Sequence Models for Enhanced Protein Representation and Generation},
author={Logan Hallee and Nikolaos Rafailidis and David B. Bichara and Jason P. Gleghorn},
year={2025},
eprint={2506.08293},
archivePrefix={arXiv},
primaryClass={q-bio.BM},
url={https://arxiv.org/abs/2506.08293},
}
```
|